
Citation: Gao, Z.; Wittrup, E.;

Najarian, K. Leveraging

Multi-Annotator Label Uncertainties

as Privileged Information for Acute

Respiratory Distress Syndrome

Detection in Chest X-ray Images.

Bioengineering 2024, 11, 133.

https://doi.org/10.3390/

bioengineering11020133

Academic Editors: Alan Wang,

Sibusiso Mdletshe, Brady Williamson

and Guizhi Xu

Received: 16 January 2024

Accepted: 24 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Leveraging Multi-Annotator Label Uncertainties as Privileged
Information for Acute Respiratory Distress Syndrome Detection
in Chest X-ray Images
Zijun Gao 1,*,† , Emily Wittrup 1 and Kayvan Najarian 1,2,3,4

1 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109,
USA; ewittrup@med.umich.edu (E.W.); kayvan@med.umich.edu (K.N.)

2 Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA
4 Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan,

Ann Arbor, MI 48109, USA
* Correspondence: zijung@umich.edu
† Current address: J&J Innovative Medicine, Data Science, Analytics and Insight,

Cambridge, MA 02141, USA.

Abstract: Acute Respiratory Distress Syndrome (ARDS) is a life-threatening lung injury for which
early diagnosis and evidence-based treatment can improve patient outcomes. Chest X-rays (CXRs)
play a crucial role in the identification of ARDS; however, their interpretation can be difficult due to
non-specific radiological features, uncertainty in disease staging, and inter-rater variability among
clinical experts, thus leading to prominent label noise issues. To address these challenges, this study
proposes a novel approach that leverages label uncertainty from multiple annotators to enhance
ARDS detection in CXR images. Label uncertainty information is encoded and supplied to the model
as privileged information, a form of information exclusively available during the training stage and
not during inference. By incorporating the Transfer and Marginalized (TRAM) network and effective
knowledge transfer mechanisms, the detection model achieved a mean testing AUROC of 0.850, an
AUPRC of 0.868, and an F1 score of 0.797. After removing equivocal testing cases, the model attained
an AUROC of 0.973, an AUPRC of 0.971, and an F1 score of 0.921. As a new approach to addressing
label noise in medical image analysis, the proposed model has shown superiority compared to the
original TRAM, Confusion Estimation, and mean-aggregated label training. The overall findings
highlight the effectiveness of the proposed methods in addressing label noise in CXRs for ARDS
detection, with potential for use in other medical imaging domains that encounter similar challenges.

Keywords: acute respiratory distress syndrome; chest X-ray; learning using privileged information;
label uncertainty; label noise

1. Introduction

Acute Respiratory Distress Syndrome (ARDS) is an inflammatory lung injury char-
acterized by diffused alveolar damage. It occurs in critically ill patients due to various
etiologies such as major trauma, pneumonia, and sepsis. As a prevalent medical condition
worldwide, ARDS affects over 3 million people of all ages annually [1]. Due to the nonspe-
cific manifestations of ARDS, it can easily go unrecognized in patients until it is severe [2],
which leads to a hospital mortality rate of approximately 45% [2,3].

Chest X-rays (CXRs) are key in the clinical diagnosis of ARDS, specifically the radio-
logical presence of bilateral infiltrates. CXRs usually demonstrate evidence of ARDS in the
form of bilateral diffuse alveolar opacities, which may appear as consolidations as ARDS
progresses. Nevertheless, the image findings may vary depending on the stage and severity
of ARDS, and they may be subtle within the first 24 h following lung insult [4]. Additionally,
radiological features alone are nonspecific and may not correlate with clinical findings. As a
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result, poor agreements (a Cohen’s κ of <0.27) among clinicians on CXR interpretations for
ARDS diagnosis have been reported [5,6]. Given that ARDS has a fast-progressing nature,
recognizing and treating this condition promptly is crucial for better patient outcomes.
Therefore, approaches that can identify ARDS from CXRs are urgently needed to provide
patients with timely and evidence-based care.

Previous studies have used traditional machine learning (ML) and deep learning (DL)
approaches to detect ARDS from CXRs. Zaglam et al. [7] considered the image texture of
intercostal patches for distinguishing between CXRs with ARDS and those without. Af-
ter identifying the patches by the semiautomatic segmentation of ribs, histogram features,
co-occurrence matrix features, and spectral features were obtained and fed into a support
vector machine (SVM) for classification. Reamaroon et al. [8] employed SVM, random
forest, and tree-based boosting classifiers to detect ARDS based on handcrafted features ex-
tracted from entire CXRs. These features included directional blur features that capture the
cloudiness in the CXR, histogram features, co-occurrence matrix features, and features from
pre-trained deep neural networks. Regarding DL approaches, Sjoding et al. [9] proposed
an automatic ARDS detection network with Densenet [10], a widely used architecture for
medical imaging analysis. They first pre-trained the network by supervised learning on
public datasets, then fine tuned it with ARDS images for a downstream classification task.
In addition, they utilized GRAD-Cam to highlight the potential ARDS findings on CXRs
through saliency maps. On the other hand, Yahyatabar et al. [11] developed the Dense-Ynet
model for stratifying the severity of ARDS in CXR images by performing the segmentation
and classification tasks simultaneously. A global ARDS severity score for the CXRs was
provided based on the distribution of infiltrates in different lung quadrants.

Despite the effectiveness of existing approaches, previous research has not adequately
addressed concerns related to label uncertainty and noise. This is particularly notable
given the substantial inter-reviewer variability and poor agreements in ARDS diagnosis.
For example, Yahyatabar et al. [11] chose to exclude images with labeling disagreements.
Similarly, in studies by Reamaroon et al. [8] and Sjoding et al. [9], although uncertain
annotations from multiple clinicians were present in the dataset, the training and validation
labels relied solely on mean-aggregated values. This approach potentially exposes the
model to challenges in the performance and generalizability arising from noisy labels.

In the field of deep learning for medical image analysis, several strategies [12] have
been proposed to address the challenge of label noise, including label smoothing [13],
network structure modification [14], and data reweighting [15,16]. However, none of the
existing approaches have fully utilized label uncertainty from multiple experts, and the
prevailing practice of label averaging persists when multiple annotations are available.
Notably, two studies, namely Confusion Estimation [17] and the Transfer and Marginalize
(TRAM) network [18], have emerged as promising solutions to this challenge. Confusion
Estimation addresses observer confusion by simultaneously estimating correct labels and
annotator confusion matrices during network training. This method has demonstrated sig-
nificant improvements in tasks such as natural image classification and ultrasound cardiac
view classification, which is a medical imaging task. On the other hand, the TRAM network
incorporates the annotator’s information as privileged information, which is available
only during training and not during inference [19]. By employing a two-branch network
architecture consisting of the base and privileged branches, as well as updating the base
feature extractor solely through the privileged branch during training, the TRAM network
encourages the inclusion of knowledge from the privileged branch in the base branch dur-
ing testing when the privileged branch is no longer needed. In [18], the privileged branch
utilized multi-annotator labels and one-hot encoded annotator IDs as privileged informa-
tion, leading to enhanced performance in natural image tasks. However, its applicability to
medical data has not been investigated.

In this paper, we present a novel deep-learning model inspired by the TRAM [18]
method to enhance the detection of ARDS in CXR images by leveraging label uncertainty
from multiple annotators as privileged information. We propose three distinct encoding
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methods and a simple yet effective measurement of uncertainty. By incorporating a mecha-
nism to provide the model with privileged information only when necessary and refining
the privileged branch to apply ordinal regression on its output, the proposed model facili-
tates more effective knowledge transfer from the privileged branch to the base branch. As a
result, the model achieves superior testing performance compared to the original TRAM,
Confusion Estimation, and other baseline models trained with mean-aggregated labels.

The main contributions of this work can be summarized as follows:

1. We proposed a novel deep learning model that leverages label uncertainty from
multiple annotators to enhance the discriminative performance in identifying ARDS
from CXR images.

2. We introduced effective encoding methods and a measure of uncertainty for handling
multi-annotator uncertain labels.

3. We enhanced the TRAM network to address the label noise issue in medical image
analysis by incorporating specially designed mechanisms that facilitate effective
knowledge transfer. The proposed enhancements can be extend to other medical
imaging tasks and various computer vision applications.

Overall, the significance of this work lies in its approach in tackling the label noise
arising from multi-annotator label uncertainty in medical image analysis, particularly in
the context of ARDS detection in CXR images. On the one hand, it has the potential to
mitigate the impact of label noise and improve the accuracy of ARDS detection, which can
ultimately lead to more effective diagnoses and treatments of this life-threatening condition.
On the other hand, this methodology can be extended to address the analogous challenges
encountered in other medical imaging problems.

The remainder of this manuscript unfolds as follows. Section 2 introduces the dataset
used in this study and delves into the encoding methods and measures of uncertainty.
It provides further details on the model implementation, experimental setup, training
strategy, test metrics, and qualitative evaluation. Moving on, Section 3.1 presents the test
performances of the models on all test cases or stratified test cases. In Section 4, we provide
interpretations of the results and discuss the limitations of the current work, as well as offer
potential directions for future research.

2. Materials and Methods
2.1. Dataset
2.1.1. Inclusion Criteria

The study cohort was formed by retrospectively identifying adult patients admitted
to intensive care units at Michigan Medicine from 2016 to 2017 who met either of the
following criteria: (1) acute hypoxic respiratory failure, as defined by a PaO2 /FiO2 ratio
of <300 mm Hg while receiving invasive mechanical ventilation, or (2) moderate hypoxia,
which requires more than 3 L of supplemental oxygen via the nasal cannula for at least 2 h.

These inclusion criteria were designed to encompass a diverse patient population that
is representative of real-world clinical settings, which included patients with potential lung
disease phenotypes other than ARDS. As such, the objective of the study was to accurately
identify ARDS in patients presenting with a range of respiratory illnesses, rather than
differentiate between healthy and ARDS patients.

2.1.2. Characteristics

Examples of CXRs in this dataset are shown in Figure 1. Since the CXRs were obtained
from hospitalized settings, they exhibited a wide range of variations and complexities.
These include variations in image quality such as dynamic range and sharpness, the pres-
ence of medical devices or implants, and the manifestation of the disease itself. In total,
the cohort consisted of 3055 anteroposterior (AP) CXRs from 500 patients. As depicted
in Table 1, 2050 CXRs from 333 patients admitted in 2016 were used in training, while
1005 CXRs from 167 patients admitted in 2017 were designated as the hold-out test set,
with no patient overlap in the data split. Among these 500 patients, 309 were male and
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191 were female. The average age of the patients was 57.65 years, with a standard deviation
of 16.32 years. Further information regarding patient demographics can be found in Table 2.

Table 1. Number of patients and CXR images (ARDS and non-ARDS) in the training and testing sets.
All numbers shown are counts.

Patient ARDS CXRs Non-ARDS CXRs Total CXRs

Train 333 606 1444 2050
Test 167 327 678 1005

Total 500 933 2122 3055

Table 2. Demographics of the patients included in this study.

Patients (N) Age (yrs)

Male 309 57.16 ± 16.72
Female 191 58.46 ± 15.71

Total 500 57.65 ± 16.32

Figure 1. The upper panel displays the CXR scans of patients diagnosed with ARDS, while the
lower panel shows scans of patients without ARDS. The score array represents the annotation score
provided by multiple reviewers together with the averaged score and the corresponding measurement
of uncertainty (as defined in Section 2.3).

2.1.3. Label Scheme

Fourteen physicians trained in critical care medicine independently evaluated the
CXRs, with each image receiving two to four evaluations. The evaluations primarily relied
on the presence of bilateral opacities, which were supplemented by reviewing other clinical
information during the patient’s hospitalization. As illustrated in Figure 2, the physicians
used an ordinal scale ranging from 1 to 8 to rate the presence of ARDS, with a rating of
1 indicating high confidence that the CXR did not show ARDS, a rating of 8 indicating high
confidence of ARDS presence, and a rating of 4 or 5 indicating equivocal findings. Detailed
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information regarding the distribution of the number of reviewers per image and the total
images reviewed per reviewer can be found in Appendix A.

Figure 2. Diagram for the different labeling scores on a scale of 1 to 8. Solid circles indicate diagnoses
of ARDS, while empty ones represent non-ARDS. The size of the circles represents the certainty level
of an assigned score.

2.1.4. Label Agreement

To assess the agreement in the labeling among different reviewers, the evaluations
provided by each reviewer were binarized by applying a threshold of 4.5 to the annotated
scale. A Cohen’s κ coefficient was subsequently computed between each pair of the
reviewers based on the images that were reviewed by both reviewers. In cases where there
were no shared images for a specific pair of reviewers, the resulting κ value was set as NaN
(Not a Number). The mean Cohen’s κ value was around 0.366, indicating only a fair level
of agreement between reviewers [20]. Figure 3 displays a heatmap depicting the pairwise
Cohen’s κ values among the 14 reviewers.

Figure 3. The Cohen Kappa scores between the pairs of 14 independent reviewers’ agreement of
ARDS diagnosis from the CXR images.

2.1.5. Mean Label Aggregation

The CXR labels, y, were determined by averaging the annotated scores that were
assigned by different physicians. If the average score was below 4.5, the CXR was labeled
as non-ARDS; otherwise, it was labeled as ARDS. By employing this approach, a total
of 933 CXR images were identified as meeting the criteria for ARDS, while 2122 images
were labeled as non-ARDS. As listed in Table 1, there were 606 ARDS CXR images and
1444 non-ARDS images within the training set. In the holdout test set, the numbers stood
at 327 ARDS CXR images and 687 non-ARDS images. However, due to the high level
of label disagreements among the physicians, this approach inherently introduced noisy
labels. In the following sections, methods will be introduced to measure the uncertain
levels associated with these labels and to provide a more reliable assessment of the labels
during the testing phase.
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2.2. Encoding of Multi-Annotator Information

Assuming there are k annotations on a CXR image x, where k ∈ {2, 3, 4}, each an-
notation is represented by an annotation score Si ∈ S = {1, 2, . . . , 8}, and it is also as-
sociated with a reviewer’s ID, as denoted by Ti ∈ T = {1, 2, 3, . . . , 14}. In this context,
a sequence {(S1, T1), . . . , (Sk, Tk)} corresponds to the annotation scores provided by k re-
viewers, with each Si linked to the respective reviewer’s ID as Ti. To illustrate this, consider
the sequence {(6, 8), (2, 6), (2, 12)}, which represents three reviewers with reviewer IDs 8,
6, and 12, as well as corresponding annotation scores of 6, 2, and 2, respectively. To incor-
porate this information into the training of our proposed methods, we introduced three
encoding protocols as follows:

• Score Encoding (Score. E.): Only the annotation score is encoded. The encoder vector
is represented as E = [E1, E2, . . . , E7, E8] ∈ R8, where each element is

Es =
k

∑
i=1

{
1, if Si = s
0, otherwise

, s ∈ S .

The value of Es represents the count of occurrence of the corresponding score value s
among the k annotations. S represents the set of all possible scores.

• Separate Encoding (Separ. E.): Both the annotation scores and the annotator IDs
are encoded. The encoder vector for annotation scores is the same as that in the
Score Encoding protocol, while the one for the annotator ID is represented as A =
[A1, A2, . . . , A13, A14] ∈ R14, where

At =

{
1, if t ∈ {T1, . . . , TK}
0, otherwise

, t ∈ T ,

and T represents the set of all possible annotator IDs. A and E are then concatenated
to form the final encoder vector in R22.

• Combine Encoding (Comb. E.): Both the annotation score and the annotator ID are
encoded. The encoder vector is C = [C1, C2, . . . , C13, C14] ∈ R14. If an annotation Ti is
provided by annotator t with score Si, then Ct takes the value of Si. Otherwise, it is
assigned a value of 0. The formulation is

Ct =

{
Si, if t ∈ {T1, . . . , TK}
0, otherwise

, t ∈ T .

2.3. Measure for Uncertainty

The uncertainty of an ARDS diagnosis from a CXR image arises from two sources:
the annotation score provided by a reviewer and the agreements or disagreements among
reviewers. As discussed earlier, a rating of 1 or 8 indicates a higher certainty from the
physician regarding the presence or absence of ARDS findings in the CXR. However,
uncertainty is not solely dependent on the annotation score, but also on the level of
agreement between reviewers. Higher reviewer disagreements generally indicate a higher
level of uncertainty for a given case.

Therefore, following the notions described in the previous section, we designed the
following measure of uncertainty:

D =
1
k

K

∑
i

g(Si) + σS1,...,Sk .
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This was used to quantify the uncertainty at the image level, where σS1,...,Sk is the standard
deviation component that takes into account the variability in the scores Si assigned by
different reviewers and the function g(s) : S → R, which is defined as follows:

g(s) = −|s − 4.5|+ 3.5, s ∈ S .

The function g(s) captures the degree of uncertainty associated with each annotation
score. It assigns lower values of uncertainty to high-confidence ratings of 1 or 8 and a
higher value of uncertainty for equivocal ratings such as 4 or 5.

Table 3 presents the summary statistics of D on the training and testing sets, thereby
providing a comprehensive overview of its distribution and variability. In the training
set, the mean measurement of uncertainty was 1.95 with a standard deviation of 1.29,
ranging from a minimum of 0.00 to a maximum of 3.92. The 25th percentile (Q1) was
1.00, the median was 2.00, and the 75th percentile (Q3) was 3.25. Similarly, the mean
measurement of uncertainty in the testing set was 1.86 with a standard deviation of 1.23,
ranging from 0.00 to 3.83. The 25th percentile, median, and 75th percentile values were
consistent with those of the training set.

Although D may not serve as an unbiased estimator as in [16,21], it was proved to be
effective when combined with the thresholding mechanism described in Section 2.6. This
combination successfully promoted knowledge transfer in the proposed models.

Table 3. Summary statistics of the measurement of uncertainty on the training and test sets.

Uncertainty D Mean Std. Min. Q1 a Median Q3 b Max.

Training 1.95 1.29 0.00 1.00 2.00 3.25 3.92
Testing 1.86 1.23 0.00 1.00 2.00 3.22 3.83

a 25th percentile and b 75th percentile.

2.4. Supervised Per-Trained Encoder

The encoder used in this study was a ResNet50 [22] model that was pretrained using su-
pervised learning and the weight was obtained from the TorchXrayVision (https://github.
com/mlmed/torchxrayvision/ (accessed on 23 April 2023)) repository [23]. By leveraging
the knowledge learned from diverse publicly available datasets, including the RSNA Pneu-
monia Challenge (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge (ac-
cessed on 23 April 2023)), NIH Chest X-ray8 [24], PadChest [25], CheXpert [26], and MIMIC-
CXR datasets [27], the pretrained ResNet50 encoder provided a strong foundation for our
model to extract meaningful features from the CXR images.

To ensure compatibility with the pretrained encoder, the CXR images were processed
in accordance with [23]. They were resized to a dimension of 512 × 512 and then normalized
to a range of [−1024, 1024].

2.5. Proposed Method

Figure 4 illustrates the diagram of the proposed method encompassing data prepa-
ration, model training, and inference. As depicted in Figure 4b, the employed model
integrated two branches in its network architecture. The base branch includes an encoder
denoted as ϕ and a predictor labeled as ξ. Meanwhile, the privileged branch comprised a
privileged encoder represented as φ and a privileged predictor labeled as δ.

In the training stage, the encoder ϕ(x) generated an embedding from the input CXR
images x. The resulting embedding, denoted as z, serves two purposes. Firstly, it is passed
to the predictor ξ(z) on the base branch for the primary task. Secondly, it is concatenated
with the privileged annotation information encoded as z∗ = φ(x∗) and utilized by the
predictor δ(z∗, z) on the privileged branch. With a stop gradient (sg) operator applied to
the base branch, the back-propagation on the encoder ϕ only occurs through the privileged
branch. This mechanism, initially introduced in [18] and named TRAM, enables the

https://github.com/mlmed/torchxrayvision/
https://github.com/mlmed/torchxrayvision/
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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exploitation of the privileged annotation information x∗ to enhance the learning process
of the base branch. During the testing phase, only the base branch was retained for
making predictions.

Figure 4. Schematic diagram for (a) the data preparation, (b) training, and (c) inference pipelines.

The TRAM mechanism may encounter limitations when the annotation information
obtained from the privileged branch contains excessive details about the target label [28].
This situation arises as the model may heavily rely on the embedded score annotations z∗

in conjunction with δ(z∗, z) on the privileged branch, thus overshadowing the importance
of the learning associations between the input data x and the target label through the
encoder ϕ. Consequently, the models may struggle to generalize well to unseen examples
or to exhibit limited performance in the testing phase, where privileged information is not
available. Therefore, it is crucial to strike a balance in utilizing the privileged information
while ensuring that the base branch also learns from the input data to obtain an encoder
that produces robust and meaningful representations.

Two strategies were proposed to address the aforementioned issue. Firstly, the model
was provided with the privileged annotation, which was encoded as described in Section 2.2,
albeit only when the measurement of uncertainty, which was introduced in Section 2.3,
exceeded a certain threshold. When the uncertainty fell below this threshold, an all-zero
vector was used as a substitute for the privileged annotation information. By employing this
strategy, the model was encouraged to utilize the multi-annotator privileged information
primarily in the cases where the label may be noisy while also promoting the learning
of associations between clean samples and their corresponding labels within the encoder.
Secondly, instead of using binarized labels as the prediction target for the privileged branch,
a rank-consistent ordinal prediction approach was employed, where the averaged scores
µS among the annotators were rounded up and used as targets. This approach created a
more nuanced prediction target that effectively captured the ordinal nature of the labels.
Together with the thresholding mechanism, it will further encourage the learning of the
clean instances during network training and help with knowledge transfer across branches.
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2.6. Implementation Details and Training Logic

The models described below were implemented using PyTorch 1.10 and Python 3.7.
The experiments were conducted on two Tesla V100 GPUs, each equipped with 16 GB
of memory.

In our proposed model, the encoder ϕ is a ResNet50 model (as described in Section 2.4)
with its final prediction layer removed. The resulting embeddings have a dimension of 2048.
For the predictor ξ, we employed a linear layer to map the embeddings to the 2-dimensional
output. On the privileged branch, the privileged encoder φ was implemented as a linear
layer with 64 units, which was followed by batch normalization and ReLU activation to fa-
cilitate effective information flow and non-linearity. The output of φ was then concatenated
with the embeddings z and passed into the privileged predictor, which was a network
consisting of two layers. Each layer had 128 units, with batch normalization and ReLU
activation applied between the layers. Notably, the final layer of the privileged predictor
was specifically modified to align with a rank-consistent ordinal regression framework
known as CORN [29]. This choice was underpinned by its demonstrated efficiency across
various datasets [29] and its suggested superior performance, which was coupled with
fewer structural constraints during training compared to alternative rank-consistent losses
like CORAL [30].

The loss function L for training the network was defined as follows:

L = L1(ξ[sg(ϕ(x))], y) + βL2(δ[φ(x∗), ϕ(x)], µS).

Here, L1 represents the cross-entropy loss on the base branch, which measures the
discrepancy between the predicted label distribution and the mean aggregated labels y.
The function sg(·) denotes the stop gradient operation applied to the output of the en-
coder ϕ(x), thus ensuring that no gradients flow through the base branch during back-
propagation. On the other hand, L2 represents the CORN loss [29] on the privileged branch.
The target values µS ∈ S were obtained by averaging the scores provided by multiple
annotators and rounding them to the closest integer. The weight parameter β determines
the relative significance of the privileged branch loss compared to the base branch loss.
In the experiments, β was consistently set to 0.5, which was achieved by considering that
the search for the learning rate could adequately incorporate the impact of both losses,
as mentioned in [18].

In addition, the following models were implemented to provide a basis for comparison.
The encoder architectures in these models remained unchanged from the previous descrip-
tion. In addition, the three encoding methods were independently applied in experiments
for models that require annotator information encoding to evaluate the effectiveness.

1. Linear Probing: The encoder is frozen, and the predictor ξ is a linear layer with
an input feature size of 2048 and an output dimension of 2. The objective is to
minimize the cross-entropy loss between the predicted label distribution and the
mean-aggregated labels.

2. Fine Tuning: The predictor architecture and the loss remain the same as in the Linear
Probing architecture but with a trainable encoder.

3. Confusion Estimation: This model follows the same architecture as the Linear Prob-
ing approach but introduces trainable confusion matrices specific to each of the
14 reviewers. The prediction targets are obtained by binarizing the scores provided
by each reviewer, using a threshold of 4.5. Other details follow the approach outlined
in [17].

4. TRAM: This architecture is identical to the proposed model except that no threshold-
ing (Thresh.) is applied when supplying privileged annotation information and no
ordinal regression (Ord.Reg.) is used in the privileged branch.

5. TRAM w/Thresh.: This model builds upon the TRAM framework but incorporates
the thresholding mechanism, where a threshold is applied to determine whether to
use privileged annotation information.
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6. TRAM w/Ord. Reg.: This model builds upon the TRAM framework but has the
privileged branch that uses an ordinal regression in training.

The Adam optimizer [31] with default parameters was used in all the conducted exper-
iments. The hyperparameters of interest were the learning rates for the encoder, denoted
as α, and the learning rate β for the rest of the network. To determine the optimal learning
rates, a grid search was performed over the values α ∈ {1e − 4, 4e − 4, 1e − 5, 5e − 5, 1e − 6}
and β ∈ {1e − 3, 5e − 3, 1e − 4, 5e − 4, 1e − 5}. To ensure consistency in comparing the
encoding methods and to avoid extensive hyperparameter tuning, the threshold level
that distinguishes between more uncertain and less uncertain cases was not considered
a hyperparameter in our experiment. Instead, the median value of 2 was selected as the
threshold based on the statistics provided in Table 3. However, the choice of threshold level
did have an impact on the performance of the proposed models. As the threshold increased
from 0 to its maximum, the validation and testing performance initially improved and then
started to decline. Details on the influence of applying different thresholds to validation
and testing outcomes are listed in Appendix B.

Two separate random seeds were utilized to carry out the experiments. The first seed
was employed for hyperparameter selection, where the model was trained using a three-
fold cross-validation on the training set. The data splits were performed in a patient-wise
manner. Each fold was trained up to 40 epochs using a batch size of 64, and early stopping
was triggered if the validation loss did not decrease for 10 consecutive epochs. Among the
models trained on each fold, the one with the lowest validation loss was identified as
the optimal model. By calculating the mean statistics of the validation loss across the
optimal models from all three folds, we were able to determine the optimal combination
of hyperparameters. The second seed was used to repeat the three-fold cross-validation
process with the optimal hyperparameters. The optimal models obtained from each fold
were applied to the holdout test set, and the mean test metrics and standard deviation
were reported.

Furthermore, while the training loss, target label, and network architecture may
differ among different methods, the validation process was consistently conducted on
the same architecture depicted in Figure 4c. This architecture utilized mean-aggregated
labels and cross-entropy loss. To ensure the reliability of the validation set within each
fold and prevent potential misleading results, only cases with an uncertain level of 2 or
lower were included in the validation set after their assignment during cross-validation.
This filtering process ensured that the validation set consisted of cases with relatively low
uncertainty levels.

2.7. Test Evaluation

The performance metrics involved in model evaluation are precision, accuracy, sensi-
tivity, specificity, F1 score, the Matthews correlation coefficients (MCC) [32], the area under
the receiver operating characteristic curve (AUROC), and the area under the precision–recall
curve (AUPRC). The first six metrics were defined as

Precision =
TP

(TP + FP)
,

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

F1 Score =
2 × Sensitivity × Precision

Sensitivity + Precision
,
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MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN are the count of true positives, true negatives, false positives,
and false negatives samples, respectively.

Due to the absence of gold standard labels for the test set, we employed two evaluation
approaches. The first approach utilized mean-aggregated labels, while the second approach
categorized the predictions based on their uncertainty into two distinct ranges, i.e., [0, 2)
and [2, 4), which allowed us to analyze the model’s performance over different levels of
uncertainty. We paid more attention to cases with lower measurements of uncertainty
as they were more likely to have accurate labels.

2.8. Visual Explanations

To generate visual explanations for the best-performing proposed models, we utilized
ScoreCAM [33], a CAM-based visualization method that offers post hoc visual explanations,
on the test images. The implementation (https://github.com/jacobgil/pytorch-grad-cam
(accessed on 3 January 2024)) from [34] was employed, with layer 4 in the ResNet50
designated as the target layer.

3. Results
3.1. Performance Analysis of the Baseline and Proposed Models on the Test Set with Mean
Aggregated Labels

Table 4 presents the testing statistics across the different models, and it also shows
the comparisons of the model predictions against the mean-aggregated labels. The upper
panel (Table 4a) showcases the baseline models’ performances, while the lower panel
(Table 4b) focuses on the results for the proposed models. The best-performing metrics are
highlighted in bold for each tested metric in their respective panels for easier comparison.
The model names and encoding methods correspond to the abbreviations detailed in
Sections 2.2 and 2.6.

Table 4. Test performances across different models with mean-aggregated labels for the (a) baseline
and (b) proposed methods.

(a). Baselines Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score MCC

Linear Probing 0.768 ± 0.006 0.771 ± 0.006 0.838 ± 0.010 0.850 ± 0.008 0.776 ± 0.007 0.765 ± 0.006 0.772 ± 0.006 0.541 ± 0.012
Fine Tuning 0.771 ± 0.015 0.772 ± 0.010 0.855 ± 0.008 0.856 ± 0.012 0.775 ± 0.014 0.769 ± 0.009 0.773 ± 0.012 0.545 ± 0.014

Confusion Estimation [17] 0.785 ± 0.010 0.788 ± 0.009 0.870 ± 0.001 0.871 ± 0.001 0.794 ± 0.008 0.782 ± 0.010 0.789 ± 0.009 0.576 ± 0.018

TRAM [18] + Score. E. 0.763 ± 0.016 0.766 ± 0.016 0.835 ± 0.018 0.842 ± 0.017 0.773 ± 0.015 0.760 ± 0.016 0.768 ± 0.015 0.533 ± 0.031
TRAM [18] + Separ. E. 0.758 ± 0.012 0.762 ± 0.013 0.836 ± 0.018 0.842 ± 0.015 0.767 ± 0.013 0.756 ± 0.012 0.763 ± 0.013 0.523 ± 0.025
TRAM [18] + Comb. E. 0.764 ± 0.014 0.770 ± 0.014 0.834 ± 0.015 0.846 ± 0.012 0.781 ± 0.013 0.758 ± 0.014 0.772 ± 0.014 0.539 ± 0.027

TRAM w/Thresh. + Score. E. 0.785 ± 0.013 0.788 ± 0.014 0.860 ± 0.011 0.866 ± 0.009 0.795 ± 0.016 0.782 ± 0.013 0.790 ± 0.015 0.577 ± 0.029
TRAM w/Thresh. + Separ. E. 0.792 ± 0.011 0.796 ± 0.012 0.866 ± 0.016 0.872 ± 0.011 0.802 ± 0.014 0.789 ± 0.010 0.797 ± 0.012 0.591 ± 0.024
TRAM w/Thresh. + Comb. E. 0.786 ± 0.031 0.789 ± 0.033 0.859 ± 0.020 0.865 ± 0.021 0.796 ± 0.034 0.783 ± 0.031 0.791 ± 0.033 0.579 ± 0.065

TRAM w/Ord. Reg. + Score. E. 0.790 ± 0.007 0.790 ± 0.007 0.852 ± 0.017 0.861 ± 0.014 0.789 ± 0.008 0.790 ± 0.007 0.789 ± 0.007 0.579 ± 0.014
TRAM w/Ord. Reg. + Separ. E. 0.792 ± 0.009 0.792 ± 0.009 0.852 ± 0.016 0.860 ± 0.013 0.791 ± 0.009 0.792 ± 0.009 0.791 ± 0.009 0.583 ± 0.018
TRAM w/Ord. Reg. + Comb. E. 0.780 ± 0.014 0.780 ± 0.013 0.850 ± 0.014 0.858 ± 0.012 0.779 ± 0.012 0.780 ± 0.015 0.780 ± 0.013 0.560 ± 0.027

(b). Proposed Models Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score MCC

Proposed + Score. E. 0.798 ± 0.007 0.797 ± 0.006 0.868 ± 0.012 0.873 ± 0.010 0.796 ± 0.006 0.798 ± 0.007 0.797 ± 0.006 0.594 ± 0.012
Proposed + Separ. E. 0.796 ± 0.008 0.795 ± 0.007 0.864 ± 0.015 0.871 ± 0.012 0.793 ± 0.006 0.796 ± 0.008 0.794 ± 0.007 0.589 ± 0.014
Proposed + Comb. E. 0.789 ± 0.003 0.789 ± 0.003 0.863 ± 0.014 0.868 ± 0.010 0.788 ± 0.004 0.789 ± 0.003 0.789 ± 0.003 0.577 ± 0.006

Notes: The best performances under different metrics are highlighted in bold for (a) baseline models and
(b) proposed models, separately.

Among the tested baselines in Table 4a, the TRAM models with the threshold mecha-
nism (w/Thresh) and the Separate Encoding approach outperformed other models across
almost all metrics. It achieved a precision of 0.792, an accuracy of 0.796, an AUROC of
0.872, a sensitivity of 0.802, a specificity of 0.789, an F1 score of 0.797, and an MCC of 0.591.
The Confusion Estimation model attained the highest AUPRC of 0.870. When compar-

https://github.com/jacobgil/pytorch-grad-cam
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ing the different groups of TRAM-based models, it was notable that the inclusion of the
thresholding mechanism had a significant impact. The TRAM w/Thresh models, when
compared to the original TRAM models, demonstrated a 2–3% increase across all metrics.
Disregarding this mechanism can have a detrimental effect, as further illustrated by the fact
that the original TRAM model performed unfavorably on most metrics when compared to
the Linear Probing and Fine Tuning approaches.

Moreover, the incorporation of ordinal regression can lead to performance improve-
ments ranging from 1% to 3% compared to the original TRAM models, thus helping to
mitigate the performance drop in the absence of the thresholding mechanism. Additionally,
the performance of the Linear Probing approach was found to be comparable to that of the
Fine Tuning method, with only a slight difference observed in the AUPRC. This indicated
that the supervised pre-trained encoder is capable of capturing meaningful embeddings
from the CXR images. Furthermore, it suggests that the Fine Tuning approach could poten-
tially overfit the training data, thus resulting in similar performances to the Linear Probing
method despite having higher learning powers.

Among the proposed models in Table 4b, the best results were achieved when using
the proposed model with a Score Encoding methodology. This approach yielded a preci-
sion of 0.798, an accuracy of 0.797, an AUPRC of 0.868, an AUROC of 0.873, a sensitivity
of 0.796, a specificity of 0.798, an F1 score of 0.797, and an MCC of 0.594. Furthermore,
compared to the TRAM models that incorporated ordinal regression on the privileged
branch, as shown in Table 4a, the proposed models that additionally utilized the threshold-
ing mechanism demonstrated a performance improvement of up to 1% in all the testing
metrics. This finding reinforces the importance of the thresholding mechanism in achieving
effective models.

In summary, among all the tested models, the proposed network with a Score En-
coding method achieved the highest precision, accuracy, AUROC, specificity, F1 score,
and MCC. Conversely, the TRAM model when utilizing thresholding and the Separate
Encoding approach attained the highest sensitivity, while the Confusion Estimation model
yielded the highest AUPRC. The incorporation of a thresholding mechanism and the uti-
lization of ordinal regression on the privileged branch were deemed necessary for the
proposed models.

3.2. Performance Evaluation on the Stratified Testing Set: Clean and Equivocal Test Cases

Table 5 displays the performances of the various models on the stratified testing set
described in Section 2.7. The test cases were categorized based on their uncertainty levels,
as defined in Section 2.3, and were evaluated separately using different models. The upper
panel (a) presents the results for the 477 CXRs with uncertainty levels smaller than two,
which were referred to as clean test cases. The lower panel (b) shows the results for the
528 cases with higher uncertainty, which were denoted as equivocal test cases. In line
with the findings discussed in Section 3.1, the models incorporating the thresholding
mechanism demonstrated superior performance compared to those without it. Therefore,
the table includes only the models utilizing the thresholding mechanism, along with the
Linear Probing, Fine Tuning, and Confusion Estimation approaches, for a comprehensive
comparison.

Table 5. The performances across different models on the stratified test set.

(a). Uncertainty ∈ [0, 2), n = 477 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score MCC

Linear Probing 0.882 ± 0.009 0.886 ± 0.007 0.955 ± 0.006 0.958 ± 0.005 0.892 ± 0.005 0.881 ± 0.009 0.887 ± 0.007 0.773 ± 0.015
Fine Tuning 0.887 ± 0.006 0.889 ± 0.007 0.956 ± 0.003 0.956 ± 0.004 0.892 ± 0.008 0.887 ± 0.006 0.890 ± 0.007 0.778 ± 0.013

Confusion Estimation [17] 0.900 ± 0.004 0.903 ± 0.005 0.965 ± 0.002 0.965 ± 0.002 0.907 ± 0.007 0.899 ± 0.004 0.904 ± 0.005 0.806 ± 0.010

TRAM w/Thresh. + Score. E. 0.908 ± 0.008 0.911 ± 0.008 0.961 ± 0.009 0.965 ± 0.008 0.914 ± 0.008 0.907 ± 0.008 0.911 ± 0.008 0.821 ± 0.016
TRAM w/Thresh. + Separ. E. 0.911 ± 0.007 0.914 ± 0.007 0.966 ± 0.011 0.969 ± 0.007 0.918 ± 0.008 0.910 ± 0.007 0.914 ± 0.007 0.827 ± 0.015
TRAM w/Thresh. + Comb. E. 0.902 ± 0.035 0.905 ± 0.035 0.962 ± 0.012 0.964 ± 0.012 0.909 ± 0.034 0.901 ± 0.035 0.906 ± 0.034 0.811 ± 0.069
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Table 5. Cont.

(a). Uncertainty ∈ [0, 2), n = 477 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score MCC

Proposed + Score. E. 0.921 ± 0.006 0.921 ± 0.005 0.971 ± 0.005 0.973 ± 0.003 0.920 ± 0.004 0.921 ± 0.006 0.921 ± 0.005 0.840 ± 0.009
Proposed + Separ. E. 0.920 ± 0.008 0.920 ± 0.008 0.969 ± 0.007 0.972 ± 0.005 0.919 ± 0.009 0.920 ± 0.008 0.920 ± 0.008 0.839 ± 0.017
Proposed + Comb. E. 0.915 ± 0.003 0.915 ± 0.004 0.969 ± 0.005 0.971 ± 0.003 0.915 ± 0.004 0.915 ± 0.003 0.915 ± 0.004 0.830 ± 0.008

(b). Uncertainty ∈ [2, 4], n = 528 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score MCC

Linear Probing 0.664 ± 0.005 0.666 ± 0.006 0.693 ± 0.008 0.724 ± 0.008 0.672 ± 0.008 0.660 ± 0.003 0.668 ± 0.006 0.332 ± 0.011
Fine Tuning 0.666 ± 0.013 0.667 ± 0.013 0.720 ± 0.013 0.731 ± 0.010 0.670 ± 0.014 0.664 ± 0.013 0.668 ± 0.014 0.334 ± 0.027

Confusion Estimation [17] 0.681 ± 0.015 0.684 ± 0.013 0.737 ± 0.006 0.748 ± 0.003 0.691 ± 0.009 0.677 ± 0.017 0.686 ± 0.012 0.368 ± 0.027

TRAM w/Thresh. + Score. E. 0.675 ± 0.019 0.678 ± 0.021 0.715 ± 0.015 0.732 ± 0.011 0.688 ± 0.026 0.669 ± 0.017 0.681 ± 0.022 0.356 ± 0.042
TRAM w/Thresh. + Separ. E. 0.685 ± 0.015 0.689 ± 0.016 0.718 ± 0.022 0.738 ± 0.018 0.698 ± 0.019 0.680 ± 0.014 0.691 ± 0.017 0.378 ± 0.033
TRAM w/Thresh. + Comb. E. 0.681 ± 0.031 0.685 ± 0.033 0.715 ± 0.021 0.736 ± 0.026 0.694 ± 0.035 0.676 ± 0.030 0.687 ± 0.033 0.369 ± 0.065

Proposed + Score. E. 0.686 ± 0.009 0.686 ± 0.009 0.715 ± 0.017 0.737 ± 0.018 0.684 ± 0.009 0.687 ± 0.009 0.685 ± 0.009 0.371 ± 0.017
Proposed + Separ. E. 0.683 ± 0.008 0.682 ± 0.007 0.709 ± 0.020 0.733 ± 0.018 0.679 ± 0.006 0.684 ± 0.009 0.681 ± 0.007 0.363 ± 0.014
Proposed + Comb. E. 0.675 ± 0.004 0.675 ± 0.004 0.712 ± 0.025 0.731 ± 0.018 0.673 ± 0.004 0.676 ± 0.005 0.674 ± 0.004 0.349 ± 0.008

Notes: The best performances under different metrics are highlighted in bold for test results in panels (a) and (b),
separately.

When evaluating the clean test cases, the proposed model with a Score Encoding ap-
proach demonstrated the highest performance across all the evaluated metrics. It achieved
a precision of 0.921, an accuracy of 0.921, an AUPRC of 0.971, an AUROC of 0.973, a sensi-
tivity of 0.92, a specificity of 0.921, an F1 score of 0.921, and an MCC of 0.840. The model
that utilized the Separate Encoding method achieved the same level of performance, while
using the Combined Encoding approach showed slightly inferior results. Comparing the
proposed models with the Linear Probing and Fine Tuning methodologies, the proposed
models showed a 1% increase in the AUROC and AUPRC, an around 7% increase in MCC,
and a 3–4% improvement on the other metrics. In addition, the Linear Probing and Fine
Tuning approaches exhibited similar levels of performance, with differences of less than 1%.
The Confusion Estimation model performed on par with or slightly worse than TRAM with
thresholding. For the TRAM models that used the thresholding mechanism, those utilizing
the Separate Encoding method achieved the highest performance on the clean test cases
compared to the other two ways of encoding. However, their overall performance was
1% to 2% lower than that of the proposed models across most metrics, and they exhibited
higher standard deviations.

When considering the equivocal test cases, the Confusion Estimation approach achieved
the highest AUPRC at 0.737, as well as an AUROC of 0.728. A TRAM approach with
thresholding and the Separate Encoding methodology demonstrated the best performance in
terms of accuracy, sensitivity, F1 score, and MCC. The proposed model with a Score Encoding
approach achieved the highest precision and specificity. Overall, the proposed model did not
consistently outperform the other models in cases of label ambiguity.

It is important to note that, in the context of equivocal test cases that are potentially
being assigned with incorrect labels, higher values could indicate overfitting to the noisy
labels. Therefore, we were more concerned with the performances on the clean test cases
as they can provide a more accurate reflection of how each model performs. Interestingly,
although the Confusion Estimation model achieved the best AUPRC overall, as shown in
Table 4, its performances on the clean test cases were worse than the proposed method.
Another interesting observation was that the performances on the equivocal test cases
were generally worse compared to the clean cases, whereby a decrease of approximately
25% was exhibited. Additionally, the standard deviations were generally larger for the
equivocal test cases. These findings indicated that the presence of uncertainty in test cases
can significantly impact model performance and increase variability in the results.

3.3. Qualitative Results Using the Score-CAM Approach on Test Images

Visualizations of the CXR images and their corresponding ScoreCAM heat maps from
the proposed method are presented in Figure 5. The highlighted areas signify regions of
interest during the model’s decision-making process for relevant classes. The upper panel
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exhibits the true positive cases, the middle panel displays true negative predictions, and the
lower panel showcases highlighted regions when the model produces false positive or
false negative predictions. In instances of true positive predictions, the areas of interest
predominantly focus on lung regions that exhibit consolidations. True negative predictions
see the model emphasizing the overall lung region and its corners. For incorrectly predicted
cases, the model either concentrates on the region of interest but fails to make the correct
prediction or is unable to highlight the correct region of interest. In addition, despite the
existence of various medical devices, the model has not erroneously emphasized them in
its predictions. This indicates the model’s robustness against confounding structures.

Figure 5. Image pair featuring the original CXR alongside ScoreCAM heatmap-overlaid CXRs.
The text below each image pair indicates the ground truth ARDS label and the probability of ARDS
as predicted by the target model.

4. Discussion

CXRs are commonly used for ARDS diagnosis, but their interpretation can be challeng-
ing and subjective. Previous studies have utilized traditional machine learning and deep
learning approaches to detect ARDS from CXR images. However, these approaches have
not adequately addressed label uncertainty and noise, which can affect model performance.
In this study, inspired by the TRAM network, we proposed a deep learning model that
leverages label uncertainty from multiple annotators as privileged information to improve
ARDS detection in CXR images. We introduced three different encoding methods and a sim-
ple, but effective, measure of uncertainty to supply the model with privileged information
when necessary. Additionally, we applied ordinal regression to the privileged branch of the
model to encourage knowledge transfer across branches. Our proposed model achieved an
AUROC of 0.873, an AUPRC of 0.868, an F1 score of 0.797, and an MCC of 0.591 on the test
examples. Moreover, it achieved an AUROC of 0.973, an AUPRC of 0.971, an F1 score of
0.921, and an MCC of 0.84 on cases with more certain and cleaner labels; meanwhile, fine
tuning the encoder only produced an AUROC of 0.956, an AUPRC of 0.956, an F1 score
of 0.890, and an MCC of 0.773. In comparison to the two previous studies of [8,9], which
primarily focused on developing models for ARDS detection and used ARDS datasets that
have similar attributes to ours, our work specifically addresses the challenge of leveraging
multi-annotator label uncertainty to enhance performance.

This study also presents findings and insights regarding the TRAM mechanism. As the
first application of the TRAM method in medical image analysis, our experiments high-
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lighted its utility in the identification of ARDS from CXR images, while also validating
previous findings [28] that excessive privileged information can hinder model generaliz-
ability. Specifically, we demonstrated the critical role of the thresholding mechanism in
the success of our proposed model. Although we used a median value of the uncertainty
measurements in the training set as the determined threshold, this value can be regarded
as a hyperparameter when using the proposed method on other datasets. In Appendix B,
we explore the impact of different threshold values on cross-validation and testing perfor-
mance. It was observed that increasing the threshold from 0 to 4 in increments of 0.5 initially
enhances testing performance but subsequently leads to a decline. Another interesting ob-
servation was that, despite the maximum measurement of uncertainty being 3.96 and that
applying a threshold of 4 results in the TRAM network receiving no privileged information,
the results presented in Table 4, Appendix B, and Table A1 showed that using a threshold
of 4 outperforms both the approach of supplying extensive privileged information without
thresholding and fine tuning the network. This performance improvement when using the
TRAM mechanism, even in the absence of additional information, could be attributed to
two key factors. First, the privileged prediction head in our experimental setup exhibits
a stronger learning capability. While the base network employs a single-layer prediction
head, the privileged branch incorporates a larger prediction head with enhanced learning
capacity. Consequently, knowledge from the prediction head, rather than privileged infor-
mation itself, can be learned and transferred to the base network. Second, the presence
of two branches and the stop-gradient operation in a TRAM approach may contribute to
mitigating overfitting tendencies. We observed more stable training loss behavior and less
overfitting when employing the TRAM-based network compared to fine tuning.

While fine tuning a supervised pretrained feature encoder is the most common ap-
proach for transfer learning in medical imaging tasks, recent studies [35–38] have explored
the effectiveness of self-supervised pretraining in CXR image analysis; in addition, some
studies [35,38] have shown that self-supervised pretrained feature encoders generate more
informative embeddings compared to their supervised counterparts. To assess if our
proposed model consistently achieves a superior performance with different pretrained
encoders, and to explore whether self-supervised pretraining can yield better encoders for
ARDS detection than their supervised counterparts, we conducted additional experiments
using Boost Your Own Latent (BYOL) [39] and DINO [40] pretrained encoders. Detailed
information regarding the background, training protocol, and results of these experiments
can be found in Appendix C. In summary, our findings demonstrate that utilizing DINO
pretrained encoders can enhance the performance of ARDS detection compared to super-
vised pretrained encoders. Moreover, while the quality of the pretrained encoder and its
architecture are crucial factors influencing downstream fine tuning performance, the meth-
ods proposed in this paper consistently yielded matching or superior test performance
compared to other baselines, regardless of the specific pretrained encoder employed.

Our work has certain limitations that should be acknowledged, with the primary
limitation relating to interpretability. Firstly, the proposed models do not provide insights
into how different annotators contribute to label noise or how their annotations impact the
final results, whereas the Confusion Estimation model [17] offers a potential solution by
estimating the skill level of each annotator based on their confusion matrix’s average diag-
onal elements. Furthermore, the encoding methods that performed best in testing for the
proposed models favored the Score Encoding and Separate Encoding approaches, which do
not rely on the correspondence between the scale and its annotator. This observation sug-
gests that the model’s performance may not be dependent on this correspondence, and the
mechanism by which it utilizes multi-annotator information still lacks interpretability.

In a recent study by Farzaneh et al. [41], who investigated collaborative strategies
between physicians and an artificial intelligence (AI) model in ARDS diagnosis, it was
discovered that AI and physician expertise complement each other. The AI model exhibited
higher and more consistent accuracy on less challenging CXRs, while physicians demon-
strated higher accuracy on difficult CXRs. These findings endorse the strategy of having
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the AI model review CXRs initially and involve clinicians when uncertainty arises, thus
highlighting the need to identify uncertain cases that will guide the future direction of our
work. Specifically, our focus will be on enhancing the interpretability of the uncertainty
level associated with each case and integrating strategies to handle noisy labels at both the
annotator and sample levels. By doing so, we aim to further support the early identification
of ARDS to enhance evidence-based care.

5. Conclusions

In conclusion, this study introduces a DL model that effectively utilizes label uncer-
tainty from multiple annotators as privileged information to improve the detection of ARDS
in CXR images. By employing ordinal regression on the privileged branch and implement-
ing a threshold mechanism, we observed improvements in the testing performance across
various evaluation metrics, including AUROC, AUPRC, accuracy, sensitivity, specificity,
precision, and F1 score, while also achieving lower standard deviations. These results
highlight the critical role of considering label uncertainty and noise in ARDS diagnosis
and reinforce the value of incorporating a thresholding mechanism in a TRAM-based
approach. The advancements made in this work have the potential to enhance patient
care and decision-making processes in ARDS by providing healthcare professionals with
accurate and dependable support.
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Appendix A. Reviewer Assignment and Review Distribution

Figure A1 depicts the distribution of the number of reviewers assigned to each image.
Approximately 55.6% (1698) of the images were reviewed by two independent reviewers,
while 27.5% (840) were reviewed by three reviewers. The remaining 16.9% (517) of the
images underwent review by four reviewers. And, based on Figure A2, the reviewer with
the highest number of review cases examined 1558 chest X-ray images, while the reviewer
with the fewest number of images reviewed examined 95 records. Reviewers 1, 2, 3, 9, 14,
and 6 individually reviewed over 500 images, thereby collectively accounting for more
than 50% of the total reviews.

https://github.com/kayvanlabs/Uncertainty-TRAM
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Figure A1. The distribution of the number of reviewers on each image.

Figure A2. The distribution of the total number of images reviewed by each reviewer.

Appendix B. Impact of Threshold Levels on the Validation and Testing Results

Table A1 presents the results of the proposed models with the Scale Encoding approach
as an example, which also illustrates the impact of threshold levels on validation and testing
outcomes. As the threshold level increased from 0 to 4 with a 0.5 basis, the validation
performance initially improved and then declined. The lowest validation loss and highest
F1 score were achieved when thresholding at 3. However, these metrics exhibited large
standard deviations. Considering this trend, a threshold of 2.5 could be an optimal value
as it demonstrates a similar averaged metric and lower standard deviation. The best valida-
tion AUROC and AUPRC values were also achieved at the threshold of 2.5. The testing
performance exhibited a similar trend of initially increasing and then decreasing. The best
precision, sensitivity, specificity, and F1 score were achieved with a threshold of 1.5, while
the best AUPRC and AUROC values were obtained when thresholding at 2.5. These
findings suggest that providing the model with more privileged information relative to
non-privileged information initially enhances performance, but beyond a certain threshold,
the performance begins to deteriorate. Furthermore, the results indicate that the threshold
used in our experiments may not be the optimal choice, but they can be deemed valid and
appropriate within the context of our study.

Table A1. The validation and testing outcomes for the proposed model using the Scale Encoding
approach with different thresholds.

Validation Outcomes Test Outcomes

Loss AUROC AUPRC F1 Score Precision AUPRC AUROC Sensitivity Specificity F1 Score

w/o Thred. 0.468 ± 0.003 0.952 ± 0.010 0.946 ± 0.010 0.884 ± 0.007 0.790 ± 0.007 0.852 ± 0.017 0.861 ± 0.014 0.789 ± 0.008 0.790 ± 0.007 0.789 ± 0.007
Thred. 0.5 0.449 ± 0.006 0.958 ± 0.010 0.954 ± 0.013 0.901 ± 0.015 0.792 ± 0.007 0.857 ± 0.013 0.867 ± 0.009 0.791 ± 0.006 0.792 ± 0.008 0.791 ± 0.006
Thred. 1.0 0.445 ± 0.003 0.960 ± 0.009 0.956 ± 0.011 0.902 ± 0.013 0.796 ± 0.006 0.863 ± 0.009 0.870 ± 0.008 0.793 ± 0.007 0.797 ± 0.005 0.794 ± 0.006
Thred. 1.5 0.442 ± 0.008 0.958 ± 0.013 0.953 ± 0.016 0.899 ± 0.012 0.797 ± 0.006 0.865 ± 0.012 0.871 ± 0.010 0.796 ± 0.007 0.798 ± 0.005 0.797 ± 0.006
Thred. 2.0 0.439 ± 0.008 0.960 ± 0.011 0.955 ± 0.014 0.901 ± 0.015 0.796 ± 0.007 0.868 ± 0.012 0.873 ± 0.010 0.795 ± 0.006 0.796 ± 0.007 0.795 ± 0.006
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Table A1. Cont.

Validation Outcomes Test Outcomes

Loss AUROC AUPRC F1 Score Precision AUPRC AUROC Sensitivity Specificity F1 Score

Thred. 2.5 0.435 ± 0.007 0.961 ± 0.011 0.956 ± 0.014 0.903 ± 0.014 0.794 ± 0.005 0.871 ± 0.011 0.875 ± 0.010 0.793 ± 0.005 0.795 ± 0.005 0.794 ± 0.005
Thred. 3.0 0.437 ± 0.010 0.960 ± 0.013 0.955 ± 0.016 0.901 ± 0.014 0.792 ± 0.007 0.869 ± 0.010 0.873 ± 0.009 0.790 ± 0.005 0.793 ± 0.008 0.791 ± 0.006
Thred. 3.5 0.433 ± 0.019 0.959 ± 0.019 0.954 ± 0.023 0.904 ± 0.022 0.794 ± 0.010 0.869 ± 0.014 0.873 ± 0.011 0.791 ± 0.009 0.795 ± 0.011 0.793 ± 0.010
Thred. 4.0 0.443 ± 0.014 0.958 ± 0.017 0.952 ± 0.024 0.903 ± 0.016 0.789 ± 0.004 0.864 ± 0.013 0.870 ± 0.010 0.787 ± 0.004 0.790 ± 0.005 0.788 ± 0.004

Notes: The best performances under different metrics are highlighted in bold.

Appendix C. Results with Self-Supervised Pretrained Encoders

Self-supervised learning (SSL) [42] is a powerful approach that utilizes large unlabeled
datasets to train models in a task-agnostic manner. Unlike traditional supervised learning,
which relies on labeled data, SSL derives its supervisory signal from the inherent structure
and patterns within the data themselves. SSL can be broadly categorized into two main
types: contrastive and non-contrastive methods. Both aim to capture meaningful and
discriminative features that are valuable for downstream tasks. Contrastive SSL involves
training the model to bring similar images closer together in the embedding space while
pushing dissimilar images apart. By optimizing the embeddings based on similarity,
the model learns to extract informative visual representations. On the other hand, non-
contrastive SSL, which is represented by self-distillation methods, encourages the model
to learn consistent embeddings from different views of the same image. This process
of learning from the model’s own predictions fosters the development of robust and
informative embeddings. Notable works in the realm of non-contrastive SSL include
BYOL [39] and DINO [40].

BYOL utilizes two networks, the “online” and the “target”, where each network
is presented with a different view of the same image through image transformations.
During training, the online network is updated using the gradient descent method, and it
is based on its predictions of the representation for the differently augmented view. At the
same time, the target network, serving as a reference, is updated using exponential moving
average updates of the weights from the online network. This process encourages the
encoder to learn meaningful embeddings that are robust to different data augmentations,
thus enabling it to capture useful features in the desired image domain. In DINO, two
networks with identical Vision Transformer (ViT) models are employed: one acts as the
student network and the other as the teacher network. These networks receive input
from two sets of views obtained by cropping the same image, thus allowing them to
capture the semantic relationship between the local and global crops through self-attention
mechanisms. Both BYOL and DINO have shown promising results in learning powerful
visual representations without the need for manual annotations and contrastive examples,
and they have recently been applied as pretraining methods for chest disease classification
in CXRs [35–37].

In the following section, we provide details of the experiments conducted using BYOL
and DINO pretrained encoders. Unless stated otherwise, the implementation details
closely follow those described in Section 2.

Appendix C.1. BYOL Pretrained Encoder

Appendix C.1.1. Dataset

The CheXpert [26] dataset consists of 224,316 chest radiographs from 65,240 patients,
with both frontal and lateral projections available. For the self-supervised pre-training in this
study, only frontal projections with either anteroposterior (AP) or posteroanterior (PA) chest
views from the original training set were retained, thus resulting in n = 191,010 chest X-rays
from N = 64,534 patients. The dataset was then split patient-wise, with 80% (N = 51,628,
n = 153,813) of the patients assigned to the training set and the remaining 20% (N = 12,906,
n = 37,197) assigned to the validation.
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Appendix C.1.2. The Pre-Training Protocol

The ResNet50 network was employed as the encoders and was pretrained using the
BYOL framework. The projectors and the predictor followed the original BYOL implemen-
tation, in which the linear layer comprised an output size of 4096, a batch normalization
layer, a ReLU activation function, and a linear layer with an output size of 256. By referenc-
ing [43], we used a random resized cropping of scale (3/4, 4/3), as well as random contrast
and brightness adjustments as the augmentation strategy for BYOL training. The image
augmentation was carried out using the Kornia library [44].

In addition, the pre-training utilized a batch size of 128, where the SGD optimizer was
employed with a learning rate of 0.03, a momentum of 0.9, and a weight decay of 0.0004.
To facilitate the training process, a linear warm-up cosine annealing scheduler was applied
for the initial 5 epochs. Subsequently, the training continues for a total of 20 epochs, and the
epoch that yielded the lowest validation loss was selected for the downstream task.

The implementation of BYOL was based on a publicly available code repository
(https://github.com/lucidrains/byol-pytorch (accessed on 23 April 2023)), which was
made avalaible by [39]. However, certain modifications were made by removing the hook
registration while leaving the remaining code unchanged.

Appendix C.2. DINO Pretrained Encoder

For the DINO pretrained encoder, we utilized the implementation from the paper
of [37], and the weights were obtained from the official code repository (https://github.
com/sangjoon-park/AI-Can-Self-Evolve (accessed on 23 April 2023)). According to above-
mentioned paper, the encoder architecture was a small ViT model with 12 layers and
6 heads, which used a patch size of 8 × 8. The pretraining dataset was still CheXpert.
During the pretraining process, an Adam optimizer with a learning rate of 0.0001 was
utilized. The encoder was pretrained for a total of 5 epochs, and a step decay scheduler
was employed. The batch size for the pretraining phase was set to 16. In terms of data
augmentation, weak transformations such as random flipping, rotation, and translation
were applied to enhance the training diversity. For more detailed information on the image
preprocessing and implementation of the DINO method, we recommend referring to the
method section of the original paper [37].

Appendix C.3. Results

Table A2 presents the results obtained when using a BYOL pre-trained encoder.
Among all the listed models, the proposed model with a Scale Encoding approach achieved
the highest precision, accuracy, AUROC, specificity, and F1 score, while the best AUPRC
and sensitivity values were attained by the proposed model with a Separate Encoding
method. TRAM with a Threshold Mechanism approach demonstrated similar levels of
performance as one with the Fine Tuning methodology, except for it producing a higher
sensitivity, F1 score, and lower specificity. The Confusion Estimation method achieved
slightly lower performance than the proposed models. On the other hand, the Linear
Probing approach performed significantly worse compared to the other models.

When evaluating on the clean cases, the proposed method with a Scale Encoding
methodology demonstrated the highest values on almost all metrics, while the Confusion
Estimation approach also achieved the same level of performance, but also exhibited the
best AUPRC. The TRAM with thresholding showed a 2–4% lower performance compared
to the proposed methods and the Confusion Estimation approach across almost all metrics.
And it did not perform as well as the Fine Tuning method in terms of overall performance.

https://github.com/lucidrains/byol-pytorch
https://github.com/sangjoon-park/AI-Can-Self-Evolve
https://github.com/sangjoon-park/AI-Can-Self-Evolve
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Table A2. Testing performance with a BYOL pretrained encoder on all test cases and clean test cases.

(a). All Test Cases, n = 1005 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score

Linear Probing 0.670 ± 0.006 0.694 ± 0.008 0.764 ± 0.005 0.770 ± 0.005 0.766 ± 0.018 0.622 ± 0.011 0.714 ± 0.009
Fine-tuning 0.743 ± 0.007 0.754 ± 0.007 0.835 ± 0.010 0.838 ± 0.009 0.777 ± 0.010 0.731 ± 0.008 0.759 ± 0.007

Confusion Estimation 0.747 ± 0.007 0.762 ± 0.007 0.840 ± 0.011 0.841 ± 0.010 0.794 ± 0.008 0.730 ± 0.007 0.770 ± 0.007

TRAM w/Thresh. + Scale. E. 0.727 ± 0.009 0.750 ± 0.010 0.833 ± 0.007 0.836 ± 0.006 0.799 ± 0.011 0.700 ± 0.010 0.761 ± 0.010
TRAM w/Thresh. + Separ. E. 0.732 ± 0.009 0.753 ± 0.009 0.837 ± 0.005 0.839 ± 0.005 0.800 ± 0.012 0.707 ± 0.011 0.764 ± 0.009
TRAM w/Thresh. + Comb. E. 0.741 ± 0.005 0.755 ± 0.003 0.839 ± 0.005 0.842 ± 0.002 0.785 ± 0.010 0.725 ± 0.010 0.762 ± 0.004

Proposed + Scale. E. 0.755 ± 0.009 0.770 ± 0.007 0.838 ± 0.008 0.850 ± 0.004 0.798 ± 0.003 0.741 ± 0.012 0.776 ± 0.006
Proposed + Separ. E. 0.739 ± 0.005 0.761 ± 0.006 0.843 ± 0.009 0.849 ± 0.006 0.808 ± 0.009 0.715 ± 0.005 0.772 ± 0.007
Proposed + Comb. E. 0.749 ± 0.002 0.766 ± 0.001 0.838 ± 0.010 0.848 ± 0.005 0.801 ± 0.003 0.731 ± 0.004 0.774 ± 0.001

(b). Clean Test Cases, n = 477 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score

Linear Probing 0.733 ± 0.013 0.765 ± 0.016 0.857 ± 0.006 0.858 ± 0.008 0.834 ± 0.027 0.695 ± 0.017 0.780 ± 0.017
Fine Tuning 0.854 ± 0.009 0.867 ± 0.007 0.943 ± 0.003 0.944 ± 0.005 0.885 ± 0.004 0.849 ± 0.010 0.869 ± 0.006

Confusion Estimation 0.872 ± 0.010 0.886 ± 0.007 0.952 ± 0.006 0.953 ± 0.007 0.906 ± 0.003 0.867 ± 0.012 0.889 ± 0.006

TRAM w/Thresh. + Scale. E. 0.819 ± 0.018 0.846 ± 0.019 0.929 ± 0.015 0.932 ± 0.012 0.887 ± 0.018 0.804 ± 0.020 0.852 ± 0.018
TRAM w/Thresh. + Separ. E. 0.831 ± 0.016 0.855 ± 0.016 0.930 ± 0.015 0.933 ± 0.012 0.891 ± 0.018 0.818 ± 0.018 0.860 ± 0.016
TRAM w/Thresh. + Comb. E. 0.839 ± 0.009 0.853 ± 0.010 0.936 ± 0.005 0.938 ± 0.003 0.873 ± 0.013 0.832 ± 0.010 0.855 ± 0.010

Proposed + Scale. E. 0.873 ± 0.007 0.887 ± 0.007 0.951 ± 0.003 0.954 ± 0.001 0.906 ± 0.010 0.868 ± 0.008 0.889 ± 0.007
Proposed + Separ. E. 0.849 ± 0.001 0.872 ± 0.006 0.948 ± 0.007 0.949 ± 0.004 0.905 ± 0.014 0.839 ± 0.002 0.876 ± 0.007
Proposed + Comb. E. 0.860 ± 0.008 0.878 ± 0.010 0.948 ± 0.005 0.949 ± 0.004 0.904 ± 0.013 0.853 ± 0.009 0.881 ± 0.010

Notes: The best performances under different metrics are highlighted in bold for test results in panels (a) and (b),
separately.

Table A3 presents the results of the DINO pretrained encoders. The proposed meth-
ods with separate encoding achieved the highest accuracy, AUROC, and F1 score, while
the Confusion Estimation appraoch obtained the optimal AUPRC, AUROC, sensitivity,
and F1 score values. TRAM with thresholding and the Scale Encoding approach exhibited
the best precision and specificity. However, there was no single model that consistently
outperformed the others across all metrics. Overall, the Confusion Estimation method
and the proposed methods with a Separate Encoding approach demonstrated the best
performances. When tested on the clean cases, TRAM with thresholding and a Scale Encod-
ing methodology achieved the highest precision and specificity. The proposed methods
covered the optimal performance in the remaining metrics, thereby achieving an F1 score
of 0.931 with the Separate Encoding method and an AUPRC of 0.974 together with an
AUROC of 0.974 for the Combined Encoding approach. It is worth noting that TRAM with
thresholding models tended to have higher precision and specificity but lower F1 scores
and sensitivity compared to the proposed models and Confusion Estimation models.

Table A3. Testing performance with a DINO pretrained encoder on all test cases and clean test cases.

All Test Cases, n = 1005 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score

Linear Probing 0.672 ± 0.000 0.672 ± 0.000 0.609 ± 0.002 0.682 ± 0.002 0.672 ± 0.000 0.672 ± 0.000 0.672 ± 0.000
Fine Tuning 0.792 ± 0.007 0.789 ± 0.004 0.871 ± 0.006 0.872 ± 0.004 0.783 ± 0.002 0.794 ± 0.010 0.788 ± 0.003

Confusion Estimation 0.802 ± 0.006 0.795 ± 0.003 0.873 ± 0.004 0.873 ± 0.003 0.783 ± 0.005 0.806 ± 0.008 0.792 ± 0.002

TRAM w/Thresh. + Scale. E. 0.829 ± 0.011 0.784 ± 0.004 0.864 ± 0.002 0.866 ± 0.003 0.718 ± 0.023 0.851 ± 0.016 0.769 ± 0.009
TRAM w/Thresh. + Separ. E. 0.816 ± 0.010 0.790 ± 0.002 0.868 ± 0.001 0.869 ± 0.002 0.748 ± 0.015 0.832 ± 0.014 0.781 ± 0.004
TRAM w/Thresh. + Comb. E. 0.822 ± 0.005 0.792 ± 0.004 0.861 ± 0.003 0.867 ± 0.003 0.745 ± 0.015 0.838 ± 0.009 0.781 ± 0.007

Proposed + Scale. E. 0.813 ± 0.010 0.790 ± 0.007 0.869 ± 0.001 0.870 ± 0.003 0.753 ± 0.010 0.827 ± 0.011 0.782 ± 0.007
Proposed + Separ. E. 0.811 ± 0.014 0.797 ± 0.004 0.872 ± 0.003 0.873 ± 0.005 0.774 ± 0.013 0.819 ± 0.020 0.792 ± 0.003
Proposed + Comb. E. 0.824 ± 0.007 0.795 ± 0.003 0.868 ± 0.002 0.873 ± 0.004 0.750 ± 0.008 0.839 ± 0.008 0.785 ± 0.004

(b). Clean Test Cases, n = 477 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score

Linear Probing 0.711 ± 0.000 0.711 ± 0.000 0.613 ± 0.003 0.713 ± 0.002 0.711 ± 0.000 0.711 ± 0.000 0.711 ± 0.000
Fine Tuning 0.923 ± 0.009 0.922 ± 0.005 0.969 ± 0.003 0.971 ± 0.003 0.920 ± 0.004 0.923 ± 0.010 0.922 ± 0.004



Bioengineering 2024, 11, 133 21 of 23

Table A3. Cont.

(b). Clean Test Cases, n = 477 Precision Accuracy AUPRC AUROC Sensitivity Specificity F1 Score

Confusion Estimation 0.933 ± 0.008 0.927 ± 0.003 0.972 ± 0.002 0.973 ± 0.001 0.921 ± 0.004 0.934 ± 0.008 0.927 ± 0.003

TRAM w/Thresh. + Scale. E. 0.946 ± 0.004 0.922 ± 0.005 0.970 ± 0.002 0.970 ± 0.002 0.896 ± 0.015 0.949 ± 0.005 0.920 ± 0.006
TRAM w/Thresh. + Separ. E. 0.943 ± 0.005 0.929 ± 0.003 0.972 ± 0.002 0.972 ± 0.002 0.914 ± 0.006 0.945 ± 0.005 0.928 ± 0.003
TRAM w/Thresh. + Comb. E. 0.943 ± 0.003 0.924 ± 0.004 0.968 ± 0.002 0.969 ± 0.002 0.903 ± 0.011 0.945 ± 0.004 0.923 ± 0.005

Proposed + Scale. E. 0.937 ± 0.006 0.923 ± 0.005 0.970 ± 0.001 0.970 ± 0.002 0.908 ± 0.006 0.939 ± 0.007 0.922 ± 0.005
Proposed + Separ. E. 0.938 ± 0.004 0.932 ± 0.002 0.973 ± 0.002 0.973 ± 0.002 0.925 ± 0.009 0.939 ± 0.005 0.931 ± 0.003
Proposed + Comb. E. 0.943 ± 0.003 0.928 ± 0.003 0.974 ± 0.001 0.974 ± 0.002 0.912 ± 0.006 0.945 ± 0.003 0.927 ± 0.003

Notes: The best performances under different metrics are highlighted in bold for test results in panels (a) and (b),
separately.
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