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Abstract: This study investigated six-month outcomes of first models of ascending aortic replacement.
The molds used to produce the Biotube were implanted subcutaneously in goats. After 2–3 months,
the molds were explanted to obtain the Biotubes (inner diameter, 12 mm; wall thickness, 1.5 mm).
Next, we performed ascending aortic replacement using the Biotube in five allogenic goats. At
6 months, the animals underwent computed tomography (CT) and histologic evaluation. As a
comparison, we performed similar surgeries using glutaraldehyde-fixed autologous pericardial rolls
or pig-derived heterogenous Biotubes. At 6 months, CT revealed no aneurysmalization of the Biotube
or pseudoaneurysm formation. The histologic evaluation showed development of endothelial cells,
smooth muscle cells, and elastic fibers along the Biotube. In the autologous pericardium group,
there was no evidence of new cell development, but there was calcification. The histologic changes
observed in the heterologous Biotube group were similar to those in the allogenic Biotube group.
However, there was inflammatory cell infiltration in some heterologous Biotubes. Based on the above,
we could successfully create the world’s first Biotube-based ascending aortic replacement models.
The present results indicate that the Biotube may serve as a scaffold for aortic tissue regeneration.

Keywords: in-body tissue architecture technology; tissue engineering; Biotube; vascular prosthesis;
regenerative medicine; cardiovascular surgery

1. Introduction

A vascular prosthesis made of polyester fiber is used in aortic surgery worldwide.
Given the stable durability and clinical results of these grafts, they are commonly used for
aortic replacement. However, once a vascular prosthesis becomes infected, it can cause
serious problems such as sepsis [1,2]. In contrast, grafts made of biological materials have
the potential to prevent infectious complications. Despite previous efforts aiming to develop
tissue-engineered grafts [3], the use of these materials has not yet been clinically tested.

In-body tissue architecture (iBTA) technology is a technology for the production of
biogenic grafts based on the tissue encapsulation of foreign material. iBTA technology
can produce autologous tissue grafts by subcutaneously implanting the mold into the
body. Biotubes are formed by collagen fibers produced by fibroblasts invading the gap
between a cylindrical outer tube with multi-holes and a core rod. The graft shape and
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size depend on the mold. At our institution, we have used iBTA technology to create
aortic valve replacement material and peripheral vascular grafts and reported our results
in animal models [4–7]. iBTA technology has potential applications in aortic surgery. This
study aimed to evaluate the in vivo performance of aortic Biotubes, which are tubular
grafts made using iBTA technology. An autologous pericardium was used as a biogenous
graft for comparison. In addition, Biotube formation was observed ~1 month after mold
implantation under the skin and required >2 months to achieve sufficient collagen fiber
density [5,7]. We do not expect that Biotubes are indicated in urgent surgery due to their
unfavorable formation time. Therefore, we also experimented with transplantation of a
heterologous Biotube.

2. Materials and Methods
2.1. Biotube Production

The molds were assembled by inserting a silicone tube (outer diameter, 12 mm; length,
60 mm) with an acryl rod into a stainless-steel pipe (outer diameter, 15 mm; length, 60 mm)
with multiple small round holes (Figure 1a). Both edges were capped to ensure that the
silicone tube was centered. The gap between the tube and pipe was 1.0 mm. Fibroblasts
will penetrate the gap between the outer cylinder and inner rod, as shown in Figure 1c.
This tissue-engineered graft is formed by collagen filling in the gap. Next, the molds were
embedded in the abdominal subcutaneous pouch of adult Saanen goats (≥12 months;
weight, 53.7 ± 6.1 kg) under general anesthesia (induced with 2 mg/kg of ketamine and
maintained with 2–3% sevoflurane; Figure 1b). After 2–3 months, the molds were explanted,
and the Biotube formed within was extracted. Then, the Biotube was dehydrated with 70%
ethanol to increase the collagen density. This process resulted in a Biotube with an inner
diameter of 12 mm, a wall thickness of 1.5 mm, and a length of 60 mm (Figure 1c). The
Biotube was kept in ethanol until the aortic surgery. Heterogeneous Biotubes were prepared
using the same procedure in adult pigs and decellularized to avoid immune reactions.
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along the previous wound. After exposing the aorta, a direct aortic echography was per-
formed to assess the shape and lumen of the graft. After collecting data, heparin (100 U/kg) 
was administered, and the animal was euthanized by injection of pentobarbital sodium 
(120 mg/kg) and KCL (2 mEq/kg). Finally, the heart and aorta, including the replacement 
site, were extracted. 

Figure 1. (a) Mold appearance. (b) Molds were implanted subcutaneously in animals for 2–3 months.
(c) Biotube after removal from the mold. (d) Fibroblasts penetrating the gap between the outer
cylinder and inner rod as shown in the mold schema. The tissue-engineered graft is formed by
collagen according to gap shape.
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2.2. Aortic Replacement Procedure

Young Saanen goats (6–7 months old; weight, 27.1 ± 3.6 kg) underwent left thoraco-
tomy under general anesthesia. The anesthesia was induced with 2 mg/kg ketamine and
maintained with 2–3% sevoflurane. The heart was exposed by incising the pericardium. A
cardiopulmonary bypass was established by cannulating the distal aortic arch and right
atrium after administering heparin (400 U/kg). After aortic cross-clamping, the heart was
arrested by antegrade cold crystalloid cardioplegia. Then, the ascending aorta was exposed
by approximately 2.0 cm. After rinsing the Biotube in 70% ethanol with saline, the Biotube
was anastomosed to the aorta through continuous sutures on the posterior wall and nodal
sutures on the anterior wall using 5-0 monofilament sutures (Figure 2a,b). When the animal
was weaned from cardiopulmonary bypass, the wound was closed after ensuring lack of
bleeding in the thoracic cavity.
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Figure 2. Intraoperative images of aortic replacement. Prereplacement picture (a) with Biotube (b)
and autologous pericardial roll (c). The aorta was resected between the blue lines shown in (a). The
length of replacement was approximately 20 mm.

As controls, some goats underwent aortic replacement using heterogeneous Biotubes
or autologous pericardial rolls. In the pericardial roll group, the pericardium was harvested
after the left thoracotomy and treated with a 0.6% glutaraldehyde solution for 10 min. Then,
the treated pericardium was rinsed thrice with saline for 6 min, and a 12 mm diameter
pericardial roll was formed using a 5 cc syringe as a core with 5-0 monofilament nodal
sutures (Figure 2c). The aortic replacement procedure in both control groups was as
described above for the allogenic Biotube group.

In all groups, no medication was required after postoperative recovery. Contrast-
enhanced computed tomography (CT) was performed under general anesthesia 6 months
postoperatively. The heart and aorta were then exposed by performing a left thoracotomy
along the previous wound. After exposing the aorta, a direct aortic echography was
performed to assess the shape and lumen of the graft. After collecting data, heparin
(100 U/kg) was administered, and the animal was euthanized by injection of pentobarbital
sodium (120 mg/kg) and KCL (2 mEq/kg). Finally, the heart and aorta, including the
replacement site, were extracted.

2.3. Imaging and Histologic Tests

We examined the presence of tears or perforations, aneurysms, thrombosis, and visible
calcification in the harvested Biotube. Next, the harvested tissues were fixed in a 4%
paraformaldehyde saline solution (FUJIFILM Wako Pure Chemical Co., Osaka, Japan).
These specimens were cut into strips every 1 cm, including the anastomosis, embedded
in paraffin, sliced into 5 µm sections, and stained with hematoxylin–eosin (HE), Masson’s
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trichrome, Elastica van Gieson, and von Kossa at the Institute of Frontier Science and
Technology, Okayama University of Science. Further, immunohistochemical staining was
performed using anti-α-smooth muscle actin (α-SMA) mouse monoclonal antibodies (1:200;
904601, BioLegend, San Diego, CA, USA). Alexa Fluor® 594 donkey anti-mouse secondary
antibodies (1:1000; ab150108, Abcam, Cambridge, UK) were used to assess myofibroblast
localization. CD31 rabbit polyclonal antibodies (1:50; ab28364, Abcam) and goat secondary
antibodies to rabbit immunoglobulin G (Alexa Fluor® 488) were used to confirm vascular
endothelial cell localization. DAPI (ProLongTM Gold Antifade Mountant with DAPI,
Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used as a nuclear counterstain.

2.4. Statistical Analysis

Data are presented as mean ± standard deviation.

2.5. Ethical Approval

The animals were cared for in accordance with the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of Health (NIH Publication No.
85-23, revised 1996). The Oita University Animal Ethics Committee approved all animal
studies (Protocol No. 232201).

3. Results
3.1. Procedural Results

A total of 14 molds were implanted in three adult goats; Biotubes were successfully
obtained from all molds after 2–3 months. The Biotubes were inspected for holes and
damage and stored in 10% ethanol after a material durability test. The tensile test confirmed
22.18 ± 6.26 N. This showed that the Biotubes were strong enough to withstand >5 N, the
standard strength for vascular prosthesis.

Six young goats in the allogenic Biotube group, three goats in the heterogeneous
Biotube group, and three goats in the autologous pericardium group survived six months
without health issues. In the allogenic Biotube group, the operating time was 251.8 ± 36.1 min,
the cardiopulmonary bypass time was 105.7 ± 14.9 min, and the aortic clamping time was
64.2 ± 11.9 min. In the heterogeneous Biotube group, the operating time was 292.0 ± 39.6 min,
the cardiopulmonary bypass time was 145.5 ± 20.5 min, and the aortic clamping time was
84.5 ± 12.0 min. In the autologous pericardial group, the operating time was 271.0 ± 7.0 min,
the cardiopulmonary bypass time was 107.0 ± 11.5 min, and the aortic clamping time was
62.3 ± 11.4 min. No animal experienced an aortic event, including aortic rupture, during
the observation period.

3.2. Image Evaluation

Contrast-enhanced CT and echography were performed before tissue harvesting. No
animals showed formation of a graft aneurysm or pseudoaneurysm. The graft diameter
was 18.6 ± 2.6 mm as measured by CT in the allogenic Biotube group. In the heterogeneous
Biotube group, the diameter was 20.7 ± 2.3 mm, and in the autologous pericardium group,
it was 18.7 ± 2.7 mm. Figure 3 shows the CT images in each group.

Figure 4 shows the macroscopic findings of harvested grafts in each group. The
Biotubes showed a smooth luminal surface similar to a native aorta without tears, atrophy,
hypertrophy, or calcification in the allogenic Biotube group. Further, there was no evidence
of graft damage or rupture in either the heterogeneous Biotube or autologous pericardium
groups. However, ulcer-like lesions were observed on the surface of the Biotube lumen in
the heterogeneous Biotube group. In addition, in the autologous pericardium group, the
surface around the suture line of the pericardial roll was rough and calcified. In contrast,
the remaining pericardial surface was smooth and uncalcified.
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Figure 4. Biotubes harvested after 6 months. In the allogenic Biotube group (a), the luminal surface
of the graft was smooth, and there was no evidence of thrombi. In the heterogeneous Biotube group
(b), there was ulcer-like damage over the whole luminal surface but no evidence of thrombus. In
the autologous pericardium group (c), most of the luminal surface of the graft was smooth, but the
luminal surface of the roll’s suture line (yellow arrow) was rough. However, there was no evidence
of thrombus.
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3.3. Histologic Evaluation

Figure 5 shows the histologic findings of grafts harvested at 6 months in the allogenic
Biotube and autologous pericardium groups. No inflammatory cells were observed. Mas-
son’s trichrome staining revealed that the collagen layer of the Biotube was preserved. No
pericardial degradation was observed in the autologous pericardium group. There were
layers of neoplastic cells along both the internal and external surfaces of the Biotubes. Simi-
lar results were observed in the autologous pericardium group. Further, cellular neoplasia
was observed between the collagen fibers in the Biotube group.
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Figure 5. Histologic findings in the allogenic Biotube and autologous pericardium groups. (a) HE-
stained images showing the neoplastic cell layer on the luminal side in both groups. No inflammatory
cells were observed around the graft. (b) Masson’s trichrome staining showed the Biotube layer
formed by collagen was preserved. Cells on the luminal surface were stained with CD31 immunos-
taining in both groups. The neoplastic cell layer was stained with α-SMA immunostaining in both
groups. The Biotube layer is surrounded by yellow dashed lines. Elastica van Gieson staining showed
the development of elastic fibers in the neoplastic cell layer. The Biotube group had a higher elastic
fiber density. (c) von Kossa staining showed calcification around the suture lines in the autologous
pericardium group. No calcification was observed in the Biotube group.
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Immunostaining for CD31 showed the presence of endothelial cells on the luminal
side along the entire Biotube and pericardium. Furthermore, immunostaining revealed that
α-SMA-positive cells developed in the neoplasia cell layer of cells in both groups. There
was greater development of neoplasia cell layers in the vicinity of the anastomosis. Elastica
van Gieson staining showed the development of elastic fibers in the neoplastic cell layer.
Elastic fiber development was also observed in the autologous pericardium group. Elastic
fiber density was higher in the Biotube group. In addition, elastic fibers developed on
the outside in the Biotube group. Calcification was present around the anastomosis and
suture line in the autologous pericardium group. No calcification was observed in the
Biotube group.

Figure 6 shows the histologic findings of the allogenic and heterogeneous Biotubes.
In the heterogeneous group, the histologic changes in most areas were similar to the
allogenic Biotube findings described above. However, in the heterogeneous Biotube group,
there was infiltration of inflammatory cells into the Biotube layer. Significant immune cell
infiltration was observed in areas of macroscopic ulcer-like lesions. The development of
the smooth muscle cell layer remains unaffected. However, Masson’s trichrome staining
showed destruction of the Biotube layer due to inflammatory cells in the heterogeneous
Biotube group.

Bioengineering 2024, 11, x FOR PEER REVIEW 8 of 12 
 

elastic fiber density. (c) von Kossa staining showed calcification around the suture lines in the au-
tologous pericardium group. No calcification was observed in the Biotube group. 

Figure 6 shows the histologic findings of the allogenic and heterogeneous Biotubes. 
In the heterogeneous group, the histologic changes in most areas were similar to the allo-
genic Biotube findings described above. However, in the heterogeneous Biotube group, 
there was infiltration of inflammatory cells into the Biotube layer. Significant immune cell 
infiltration was observed in areas of macroscopic ulcer-like lesions. The development of 
the smooth muscle cell layer remains unaffected. However, Masson’s trichrome staining 
showed destruction of the Biotube layer due to inflammatory cells in the heterogeneous 
Biotube group. 

 
Figure 6. Histologic findings in the allogenic and heterogeneous groups. No immune cell infiltration 
in the allogenic Biotube group was observed. However, immune cell infiltration into the Biotube 
layer was observed in the heterogeneous Biotube group (arrows). Development of neoplastic cell 
layers positive for α-SMA was observed in both groups. Masson’s trichrome staining showed de-
struction of the Biotube layer due to inflammatory cells in the heterogeneous Biotube group. 

4. Discussion 
While the vascular prosthesis has excellent durability, retreatment due to infection is 

a problem in the long term. In general, reoperation is required in cases of graft infection 
but with a poor prognosis [1,2,8]. Aortic replacement with an aortic allograft can be effec-
tive but only in a limited number of cases due to issues with donation, as donated grafts 
are not always of sufficient quality and there are limited grafts available for surgery 
[2,9,10]. An ideal graft does not cause infection, immune reaction, or rejection. In addition, 
physical properties, such as ease of sewing, resistance to bending and rupture, resistance 
to aneurysm development and rupture, and resistance to high arterial pressure, are also 
required. Biotubes have the potential to serve as an alternative graft in cases of infection 
as they are autologous, tissue-engineered grafts that can be generated in vivo. In addition, 
the incidence of postoperative graft infection may be lower than with a vascular prosthe-
sis; future research should focus on this issue. 

The development of tissue-engineered vascular grafts has been reported from nu-
merous institutions [3,11,12]. However, most are small-diameter grafts designed for pe-
ripheral vessels. In this study, we successfully performed ascending aortic replacement 
using Biotubes in the world’s first goat models. Biotube production requires no special 
equipment, materials, or facilities other than molds, and the process is simple. In addition, 
the Biotube diameter and wall thickness can be adjusted to create the required grafts by 
adjusting the mold size and gap. In peripheral vascular bypass models, to achieve flexi-
bility, the mold was designed to obtain a graft thickness of approximately 0.8 mm [5]. In 

Figure 6. Histologic findings in the allogenic and heterogeneous groups. No immune cell infiltration
in the allogenic Biotube group was observed. However, immune cell infiltration into the Biotube layer
was observed in the heterogeneous Biotube group (arrows). Development of neoplastic cell layers
positive for α-SMA was observed in both groups. Masson’s trichrome staining showed destruction of
the Biotube layer due to inflammatory cells in the heterogeneous Biotube group.

4. Discussion

While the vascular prosthesis has excellent durability, retreatment due to infection is a
problem in the long term. In general, reoperation is required in cases of graft infection but
with a poor prognosis [1,2,8]. Aortic replacement with an aortic allograft can be effective
but only in a limited number of cases due to issues with donation, as donated grafts are
not always of sufficient quality and there are limited grafts available for surgery [2,9,10].
An ideal graft does not cause infection, immune reaction, or rejection. In addition, phys-
ical properties, such as ease of sewing, resistance to bending and rupture, resistance to
aneurysm development and rupture, and resistance to high arterial pressure, are also
required. Biotubes have the potential to serve as an alternative graft in cases of infection as
they are autologous, tissue-engineered grafts that can be generated in vivo. In addition,
the incidence of postoperative graft infection may be lower than with a vascular prosthesis;
future research should focus on this issue.

The development of tissue-engineered vascular grafts has been reported from numer-
ous institutions [3,11,12]. However, most are small-diameter grafts designed for peripheral
vessels. In this study, we successfully performed ascending aortic replacement using Bio-
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tubes in the world’s first goat models. Biotube production requires no special equipment,
materials, or facilities other than molds, and the process is simple. In addition, the Biotube
diameter and wall thickness can be adjusted to create the required grafts by adjusting the
mold size and gap. In peripheral vascular bypass models, to achieve flexibility, the mold
was designed to obtain a graft thickness of approximately 0.8 mm [5]. In this aortic replace-
ment model, the Biotube thickness was 1.5 mm because the graft must be durable enough
to withstand aortic pressure. Optical coherence tomography was required to evaluate the
Biosheet thickness because of the uneven thickness reported in a previous aortic valve
study [4]. The thicker wall design stabilized the formation of the Biotube. In addition,
the Biotube was permeated with 70% ethanol for dehydration before implantation. This
process increases the collagen density of the Biotube. Previous studies have indicated that
the Biotube becomes more durable than before treatment [13]. The Biotube designed in
this study had a tensile strength of 22.18 ± 6.26 N. This is more than twice as strong as
the previous Biotube used for peripheral vascular bypass [7]. In fact, the durability of this
Biotube caused no failures during the 6-month observation period.

Collagen, the main component of Biotubes, is useful as a biomaterial for tissue-
engineered grafts because of its low antigenicity and high biocompatibility [14–17]. The
pericardium is a commonly used restorative material in clinical aortic surgery today [18,19].
In this study, we compared the Biotube with autologous pericardium. We observed neo-
genesis of endothelial cells, smooth muscle cells, and elastic fibers from the native aorta
along the Biotube at 6 months. Neoplastic cells, mainly smooth muscle cells, developed
more around the anastomosis of the native aorta and the Biotube. These findings suggested
that smooth muscle cells and fibroblasts are regenerated on the Biotube scaffold from the
transection of the native aorta (Figure 7). The regeneration process of the Biotubes was no
less favorable than in the autologous pericardium group. Similarly, the development of
these neoplastic cells was observed in aortic valve neocuspidization models [4]. In contrast,
there were endothelial cells on the luminal surface, even in the areas where smooth muscle
cells were poorly developed. As for the development of endothelial cells, it is suggested
that they occur not only from transection of the native aorta but also from blood. Endothe-
lization has been reported from other tissue-engineered grafts [20,21]. At 6 months, there
was insufficient smooth muscle cell neogenesis far from the anastomosis. However, we
expect that the regenerative process will continue beyond 6 months, forming the vascular
structure, based on our previous aortic valve study.
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group (a). There were more neoplastic cells around the anastomosis. This was also observed in
the heterogeneous Biotube group. (b) Neoplastic cells, mainly smooth muscle cells, are expected to
develop from the native aorta along the Biotube.

In addition, no calcification was observed in the Biotubes. The autologous pericardium
was calcified near the suture line as in the previous aortic valve model. Although the au-
tologous pericardium had adequate durability, calcification remains one of the long-term
problems. Glutaraldehyde, which is used as a pretreatment for pericardial reinforcement,
is a well-known calcification factor [22–24]. The induction of regeneration without calcifica-
tion is an excellent feature for a tissue-engineered graft. Thus, due to their favorable tissue
affinity, Biotubes could be an effective scaffold for vascular regeneration.

Thrombus formation is one of the major problems in the development of vascular
grafts [3,25,26]. Since Biotubes are formed only from collagen fibers, there are no endothelial
cells on the surface immediately after implantation. There is also no heparin coating process,
which is performed with vascular prostheses. These are unfavorable conditions for vascular
grafts with respect to the prevention of thrombosis. However, as fibroblasts infiltrate
through the pores, a high-density collagen layer forms on the Biotube luminal surface (core
surface of the mold). The high-density collagen layer may have antithrombotic effects by
decreasing blood component penetration [7]. However, we observed thrombus formation in
the grafts with small-diameter Biotubes. Grafts for bypass are longer and, therefore, at risk
of bending. We suspect that stagnant blood flow is a trigger for thrombus formation. Thus,
we previously administered anticoagulants or antiplatelet agents to prevent early graft
occlusion due to thrombus in the graft in our peripheral bypass study [5]. In contrast, there
was no evidence of thrombus formation on the graft surface or of thrombo-embolization
despite the nonuse of anticoagulation therapy in this aortic surgery. This may be due to
inhibition of thrombus formation due to the high blood flow in the graft. In addition,
the ascending aorta has a straight structure, less prone to turbulence and stagnation,
which may decrease the potential damage to the intimal structures formed. If thrombus
formation can be avoided in the following postoperative months during the development
of endothelial cells, we believe that thrombus formation can be suppressed by endothelial
cell function. Therefore, anticoagulation therapy is not considered necessary for straight
aortic replacement.

The Biotubes were durable enough not to rupture under aortic pressure >6 months,
as did the autologous pericardial rolls. In the heterogeneous Biotube group, although
no rupture was observed during the observation period, there were numerous ulcer-like
lesions on the lumen surface. A histologic evaluation showed infiltration of inflammatory
cells in the area of ulceration. Possibly, the Biotube tissue was damaged due to an immune
response to the heterogeneous collagenous tissue. In general, treatment with 70% ethanol
should remove all cellular components [13]. However, the antigenicity was not completely
eliminated, and the immune response was not suppressed in this model. Although we
did not observe Biotube tearing or rupture due to tissue damage, it is possible that this
damage could influence long-term Biotube durability. The duration of Biotube formation is
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disadvantageous in aortic surgery, as there are often urgent cases. In aortic surgery, iBTA
technology would be more versatile if they could be transferred between species. For this
purpose, further research into decellularization that does not affect the properties of the
Biotube is required [27,28].

This study is limited by the small number of cases and the short observation period.
Although no Biotube fracture was observed during the 6-month observation period, long-
term durability (1 year) needs to be evaluated in the future. We are also interested in
examining the changes in the physical properties of Biotubes and the progression of the
regeneration process during long-term observation. In addition, the diameter of the graft
produced by this mold is 12 mm, which is smaller compared with the diameter of an adult
aorta. It is difficult to evaluate larger diameters to match the graft diameter to the goat
aortic diameter. We considered that the current graft diameter would be difficult to use
in adult aortic surgery. However, we believe it is appropriate for pediatric large vessel
surgery. The development of large-diameter Biotubes is still in its early stages, and there is
still plenty of room for improvement.

5. Conclusions

We successfully performed the world’s first ascending aortic replacement using a Bio-
tube, an iBTA graft. Accordingly, Biotubes could be useful scaffolds for tissue regeneration
in the aorta.
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