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Abstract: Poly(ether ether ketone) (PEEK) was found to form gels in the benign solvent 1,3-diphenylac-
etone (DPA). Gelation of PEEK in DPA was found to form an interconnected, strut-like morphology
composed of polymer axialites. To our knowledge, this is the first report of a strut-like morphology
for PEEK aerogels. PEEK/DPA gels were prepared by first dissolving PEEK in DPA at 320 ◦C.
Upon cooling to 50 ◦C, PEEK crystallizes and forms a gel in DPA. The PEEK/DPA phase diagram
indicated that phase separation occurs by solid–liquid phase separation, implying that DPA is a
good solvent for PEEK. The Flory–Huggins interaction parameter, calculated as χ12 = 0.093 for the
PEEK/DPA system, confirmed that DPA is a good solvent for PEEK. PEEK aerogels were prepared
by solvent exchanging DPA to water then freeze-drying. PEEK aerogels were found to have densities
between 0.09 and 0.25 g/cm3, porosities between 80 and 93%, and surface areas between 200 and
225 m2/g, depending on the initial gel concentration. Using nitrogen adsorption analyses, PEEK
aerogels were found to be mesoporous adsorbents, with mesopore sizes of about 8 nm, which formed
between stacks of platelike crystalline lamellae. Scanning electron microscopy and X-ray scattering
were utilized to elucidate the hierarchical structure of the PEEK aerogels. Morphological analysis
found that the PEEK/DPA gels were composed of a highly nucleated network of PEEK axialites
(i.e., aggregates of stacked crystalline lamellae). The highly connected axialite network imparted
robust mechanical properties on PEEK aerogels, which were found to densify less upon freeze-drying
than globular PEEK aerogel counterparts gelled from dichloroacetic acid (DCA) or 4-chlorphenol
(4CP). PEEK aerogels formed from DPA were also found to have a modulus–density scaling that was
far more efficient in supporting loads than the poorly connected aerogels formed from PEEK/DCA
or PEEK/4CP solutions. The strut-like morphology in these new PEEK aerogels also significantly
improved the modulus to a degree that is comparable to high-performance crosslinked aerogels
based on polyimide and polyurea of comparable densities.

Keywords: aerogel; semicrystalline polymer aerogel; solvents; poly(ether ether ketone); Hansen
solubility parameters; X-ray scattering; hierarchical morphology; axialite

1. Introduction

Polymer gels are substantially dilute materials containing a continuous polymer
network that exhibits solid-like behavior, while physically retaining liquids or gases within
their three-dimensional macromolecular framework. The gel network can be held together
with covalent chemical bonds, as in the case of crosslinked gels, or by physical interactions,
in the case of physical gels. The physical interactions that compose a physical gel network
include hydrogen bonding, helix formation, phase separation, polymer entanglements,
ionic aggregation, π–π interactions, and polymer crystallites [1–7]. Physical gels are also
known as thermoreversible, as their physical interactions are thermally labile.

Semicrystalline polymers can form thermoreversible gels from suitable solvents,
where polymer crystallites form the physical network. Thermoreversible gelation has
been reported for numerous semicrystalline polymers including poly(vinyl chloride) [7,8],
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polyethylene [9–11], isotactic polypropylene [12,13], syndiotactic polystyrene [4,14–17],
poly(L-lactic acid) [18], polyoxymethylene [19], polyamide-6 [20], poly(vinylidene fluo-
ride) [21,22], poly(ethylene terephthalate) [23], poly(phenylene oxide) [24,25], syndiotactic
poly(methyl methacrylate) [26,27], and poly(phenylene sulfide) [28]. The choice of solvent
can also lead to differences in the gel morphology and properties [29–31]. Previously, our
group has reported the thermoreversible gelation of poly(ether ether ketone) (PEEK) in
dichloroacetic acid (DCA) [32–34] and 4-chlorophenol (4CP) [34]. The gelation of PEEK
from DCA or 4CP was found to form gels with a mass-fractal globular morphology consist-
ing of lamellar stacks with limited lateral dimension.

DPA is of particular interest as a gel-forming solvent for PEEK since it is non-hazardous
and benign, even being a flavoring additive approved by the U.S. Food and Drug Admin-
istration [35]. In contrast, 4CP and DCA are both acutely toxic, corrosive, and environ-
mentally hazardous. Using DPA, we have previously reported the gelation of two other
aromatic semicrystalline polymers: poly(phenylene sulfide) [28] (PPS) and poly(ether ke-
tone ketone) [36] (PEKK). PPS and PEKK gels from DPA were found to contain fibrillar
morphologies composed of crystalline axialites.

Thermoreversible gelation of semicrystalline polymers can be viewed as a thermally
induced phase separation (TIPS) process [37]. TIPS is a widely utilized technique to yield
porous membranes [38–40], hollow fibers [41–43], and foams [44–46]. In this process, a
polymer is dissolved in a solvent at an elevated temperature. Cooling down this solution
reduces the polymer miscibility, inducing phase separation and subsequent solidification.
In the case of a semicrystalline polymer system, the polymer can additionally crystallize
during cooling. Solvent quality largely informs if phase separation is induced through
spinodal decomposition (liquid–liquid phase separation) or by a direct crystallization
(solid–liquid phase separation) route [37]. Liquid–liquid phase separation tends to have
considerable composition dependence and can lead to morphologies such as powders [47]
and bicontinuous structures [48,49]. Solid–liquid phase separation can lead to crystalline
textures, such as spherulites [50–53] and axialites [28,52,53]. Porous PEEK systems have
been prepared using solvents including 4-phenylphenol [54], diphenyl sulfone [55,56], and
benzophenone [57]. Interestingly, TIPS of PEEK in diphenyl sulfone has been shown to
yield fibrillar foams [56] or powders [55], depending on the preparation. TIPS of PEEK
in 4-phenylphenol or benzophenone appear to form fibrillar morphologies composed
of thin fibers. Removal of solvents from TIPS foams is often executed by evaporative
drying, whereas to prepare a highly porous aerogel, gentler solvent extraction methods are
often required.

When the solvent in a gel network is replaced with air, it becomes an aerogel. Evapo-
rative drying, freeze-drying, and supercritical fluid extraction are commonly employed
methods for removing a solvent from a gel [58,59]. Evaporative drying can induce a
significant collapse of aerogel structures due to strong capillary forces and is not often
used in aerogel preparation [58]. While freeze-drying is preferred as a gentler route to
aerogel preparation, solvent crystallization can disrupt the gel morphology [60]. Super-
critical fluid extraction requires considerable setup but is the gentlest route for preserving
the gel structure [58]. Aerogels have many fascinating properties, including low density,
high porosity, high surface area, and low thermal conductivity [61,62]. These properties
make aerogels suitable for many applications such as thermal insulation [63–66], chemical
adsorbents [46,67–70], catalyst supports [71,72], air filtration [73,74], and heterogeneous
platforms for blocky copolymer functionalization [36,75,76].

This work reports the gelation of PEEK in a new, benign gelation solvent, 1,3-diphenyl
acetone (DPA). The gelation of PEEK in DPA yields a strut-like morphology consisting
of polymer axialites. To our knowledge, this is the first report of PEEK gelation in DPA
and the first report of a strut-like PEEK aerogel morphology. Building on our previous
work on PEEK gels formed from dichloroacetic acid (DCA) [32–34] and 4-chlorophenol
(4CP) [34], this work highlights structure–property comparisons between the strut-like
morphology of PEEK aerogels formed from DPA and the globular morphologies of PEEK
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aerogels gelled in DCA and 4CP. In this work, we investigate the gelation mechanism
of the PEEK/DPA system by constructing a phase diagram and investigating melting
point depression. Furthermore, we perform a thorough morphological analysis including
scanning electron microscopy and X-ray scattering analysis. In our scattering analysis, we
are able to assign scattering features to the hierarchical structure of PEEK aerogels. Finally,
we investigate the effects of polymer composition and selection of the gelation solvent
on network morphology, mechanical properties, and mesoporosity. The broader scope of
this work is to emphasize the role of phase separation route and morphology on aerogel
properties for the field of semicrystalline polymer aerogels.

2. Results and Discussion
2.1. Gelation of PEEK in DPA

Previously, our group has reported the gelation of PEEK from solutions in DCA [32,33]
and 4CP [34]. Using a similar TIPS procedure, we have now found that PEEK also under-
goes gelation when cooled after dissolution in DPA at elevated temperatures. PEEK/DPA
solutions with polymer concentrations from 8 to 22 wt.% were found to form monolithic,
thermoreversible gels when cooled from 320 ◦C to 50 ◦C. In order to understand the process–
morphology relationships in forming PEEK aerogels, the phase separation process over a
range of temperatures and polymer concentrations must be evaluated.

A polymer solution may undergo thermally induced phase separation (TIPS) upon
cooling. TIPS for semicrystalline polymers can either occur through solid–liquid (S–L)
phase separation or liquid–liquid (L–L) phase separation [37]. For S–L phase separation
upon cooling, the polymer crystallizes from the solution and organizes into crystalline
lamellae, which tend to stack in large lamellar aggregates called axialites. Given sufficient
room to grow (i.e., low nucleation density), the lamella can branch, splay, and induce
the formation of large spherulites. However, if the nucleation density is high, the lateral
growth of the lamella is limited, resulting in a dense collection of axialites (i.e., immature
spherulites). The lamellar aggregates (axialites or spherulites) are large relative to the
wavelength of light and thus scatter light. Upon cooling the polymer solution from an
elevated temperature, crystallization and turbidity will occur at approximately the same
temperature for S–L phase separation. In L–L phase separation, when the polymer solution
is cooled, it becomes unstable and undergoes spinodal decomposition and separates into
polymer-rich and polymer-poor phases. This phase separation is observed as upper critical
solution temperature (UCST) behavior. For L–L phase separation, turbidity occurs as the
temperature is lowered into the unstable region below the spinodal curve once the different
phases (having different refractive indices) become large relative to the wavelength of light.
Following this L–L phase separation, crystallization within the polymer-rich phase may
occur at a lower temperature or later time (depending on crystallization kinetics) as cooling
continues. Thus, turbidity generally precedes crystallization in the L–L process, while
turbidity and crystallization are concurrent in the S–L process. In addition, L–L phase
separation generally occurs when polymer–solvent interactions are poor, whereas S–L
phase separation is expected when polymer–solvent interactions are favorable [37,45,77].

To determine the phase separation mechanism, a phase diagram was constructed.
The phase diagram (Figure 1) shows the crystallization temperature and the cloud point
for PEEK/DPA solutions at various PEEK compositions. With increasing PEEK content,
both the cloud point temperature and crystallization temperature increase. There is good
agreement between PEEK crystallization temperature and cloud point across the PEEK com-
positions investigated. Since turbidity coincides with PEEK crystallization, the PEEK/DPA
system undergoes S–L phase separation, where PEEK crystallizes from the PEEK/DPA
solution without ever undergoing spinodal decomposition. Phase separation occurring
through a S–L phase separation mechanism suggests that DPA has favorable interactions
with PEEK.
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Figure 1. Poly(ether ether ketone) (PEEK)/1,3-diphenylacetone (DPA) phase diagram, showing cloud
point and PEEK crystallization temperature for PEEK/DPA solutions. Each data point represents the
average of 3 measurements with corresponding error bars (sample standard deviation).

In order to verify that DPA is a good solvent for PEEK, the Flory–Huggins interaction
parameter, χ12, was calculated. When χ12 is large, it indicates poor interactions between
the polymer and solvent, whereas when χ12 is small, it indicates favorable solvent–polymer
interactions [78]. The Hansen solubility parameters (HSPs) quantify the dispersive, polar,
and hydrogen-bonding contributions to intermolecular interactions and may be used to
probe the compatibility of polymer and solvent mixtures. For example, the Flory–Huggins
interaction parameter can be calculated knowing the HSP as [79]:

χ12 =
VA1,2

RT
, (1)

with
A1,2 =

[
(δD2 − δD1)

2 + 0.25(δP2 − δP1)
2 + 0.25(δH2 − δH1)

2
]

(2)

where V is the molar volume of the solvent; R is the universal gas constant; T is the absolute
temperature; and δDi, δPi, and δHi are the dispersive, polar, and hydrogen-bonding partial
solubility parameters for either the polymer or solvent, respectively. While the customary
form of equation 1, utilizing the Hildebrand solubility parameter, adds an empirical term
β = 0.34 that is proposed to correct for combinatorial entropy, Hansen argues that it instead
corrects primarily for neglected polar and hydrogen-bonding terms [79]. As these terms
are already considered through the use of the HSP, β is excluded from equation 1.

The partial Hansen solubility parameters for PEEK or DPA are not readily available, so
they are calculated using group contribution methods. The details on the HSP calculations
can be found in the Supplementary Materials. The solubility parameters for PEEK were
calculated using the group contribution method of van Krevelen [80] as δD1 = 18.8 MPa1/2,
δP1 = 4.3 MPa1/2, and δH1 = 5.9 MPa1/2. Similarly, the solubility parameters for DPA were
previously calculated by our group [28] using the group contribution method of Stefanis and
Panayiotou [81]. The solubility parameters of DPA are δD2 = 19.6 MPa1/2, δP2 = 3.5 MPa1/2,
and δH2 = 4.7 MPa1/2. Using the calculated solubility parameters for PEEK and DPA, at
25 ◦C, χ12 is calculated to be 0.093. As this χ12 is low, DPA is confirmed to be a good solvent
for PEEK, in agreement with the experimental result of S–L phase separation.
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Knowing that PEEK and DPA have favorable interactions, the melting point depres-
sion for the PEEK/DPA system can be calculated using Flory’s melting point depression
equation [82]:

1
Tm

− 1
Tm,b

=
RVp

∆H f Vs

[
(ϕs)− χ12(ϕs)

2
]

(3)

where Tm is the melting temperature of the mixture, Tm,b is the bulk melting temperature of
the pure polymer, Vp is the molar volume of the polymer repeat unit (Vp = 205.8 cm3/mol), Vs
is the molar volume of the solvent (Vs = 196.7 cm3/mol), ∆Hf is PEEK’s enthalpy of fusion per
mol repeat unit (37.48 kJ/mol) [83], and φs is the volume fraction of the solvent. Considering
the temperature dependence of χ12, an initial input of χ12 = 0.047 (at T = 320 ◦C) was used.
Then, Tm was calculated using χ12, and this Tm value was used to find χ12 again. Using the
experimentally determined melting temperature of pure PEEK (Figure S1), Tm,b = 343 ◦C,
χ12 was found to range from 0.045 to 0.051 over the temperature range 343–269 ◦C.

Figure 2 shows the experimental melting temperatures for PEEK/DPA solutions
at different PEEK compositions. The prediction from Flory’s melting point depression
equation is plotted for comparison. The melting point depression curve is in excellent
agreement with the experimental data. This agreement is further confirmation that DPA
is a good solvent for PEEK and that the calculation of χ12 using the calculated Hansen
solubility parameters for PEEK and DPA is valid.
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Figure 2. Melting temperature of PEEK in DPA versus PEEK volume fraction. Each data point
represents the average of 3 measurements with corresponding error bars (sample standard deviation).

2.2. Morphology of PEEK Aerogels

In order to prepare PEEK aerogels, DPA is removed from the gel structure with ethanol,
and the ethanol is replaced with water. The water is frozen and subsequently freeze-dried
to yield the solvent-extracted aerogels. To investigate the internal morphology of these
PEEK aerogels, microscopy was performed on freeze-fractured aerogels. SEM micrographs
of a 15 wt.% PEEK aerogel are shown in Figure 3. PEEK aerogels gelled in DPA consist
of a network of struts of a relatively uniform size. The struts are elongated and have
branching and splaying at the ends, which is consistent with premature spherulites, or
axialites. The layered texture of the axialites implies that they consist of stacks of crystalline
polymer lamellae. As S–L phase separation is driven by polymer crystallization, it is not
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unexpected to observe axialite morphologies when nucleation density is high. Indeed,
axialites [28,52,53] or spherulites [50–53] have been observed as a product of solid–liquid
phase separation for other polymer systems.
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Figure 3. Scanning electron microscopy (SEM) micrographs of a 15 wt.% PEEK aerogel gelled in DPA
at (a) 10 kx magnification and (b) 20 kx magnification. The location of (b) is shown in the red box
in (a).

Axialite dimensions were quantified using SEM image analysis. Figure 4 compares the
size distribution for axialite thickness (Figure 4a) and axialite length (Figure 4b) across dif-
fering PEEK concentrations. SEM micrographs are shown for each PEEK concentration in
Figure 4c. Across all the polymer concentrations investigated, PEEK aerogels gelled in DPA
display strut-like morphologies consisting of PEEK axialites. SEM image analysis is sum-
marized in Table 1. The axialite width remains consistent across all PEEK concentrations,
while the axialite length tends to increase slightly with increasing PEEK concentrations.
It is interesting that the axialite dimensions only vary minimally with changing PEEK
content. These axialite PEEK morphologies have not been observed in other PEEK aerogel
systems. Only globular morphologies [32–34] or open cellular structures [44,54,56] have
been reported previously.

Table 1. SEM image analysis.

PEEK Concentration (wt.%) Average Strut Thickness (µm) Average Strut Length (µm)

8 0.471 ± 0.094 2.57 ± 0.38
10 0.499 ± 0.110 3.12 ± 0.49
15 0.418 ± 0.083 2.39 ± 0.31
20 0.470 ± 0.111 3.07 ± 0.59
22 0.476 ± 0.089 3.48 ± 0.70

To further investigate the hierarchical morphology of PEEK aerogels, X-ray scattering
experiments were performed. Aerogels often exhibit a hierarchical structure, where small
primary particles form larger aggregates. Performing X-ray scattering experiments across
a wide range of length scales can allow for the evaluation of each structural level sepa-
rately. Merged ultra-small angle X-ray scattering (USAXS)/small angle X-ray scattering
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(SAXS)/wide angle X-ray scattering (WAXS) profiles for PEEK aerogels gelled in DPA are
shown in Figure 5. Multiple structural features are observed across the length scales probed,
indicating the presence of a hierarchical morphology. A knee is observed below 0.03 nm−1.
Based on our recent studies of PPS aerogels with similar morphologies [28], this feature is
assigned to the thickness of the axialites. This assignment is reasonable, as both the pore
size between the lamellar aggregates and the strut length are far too large to correspond
to this feature. Between 0.2 nm−1 and 0.8 nm−1, another knee is observed. This feature is
associated with the scattering of PEEK crystalline lamellae [34], as the long period of PEEK
lamellae is commonly observed at these scattering vectors [84–86]. Following the lamellar
knee, oscillations are observed beginning around 0.7 nm−1 and persist to 4 nm−1. These
oscillations are likely due to the structure factor that arises due to the periodic spacing of
PEEK lamellae within the axialites.
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Figure 4. SEM analysis of PEEK aerogels. Histograms of (a) strut thickness and (b) strut length, taken
from 50 measurements of strut dimensions from the SEM images. Orange, green, red, yellow, and
blue histograms correspond with PEEK aerogels gelled in DPA at PEEK concentrations of 8 wt.%,
10 wt.%, 15 wt.%, 20 wt.%, and 22 wt.%, respectively. (c) SEM images of PEEK aerogels showing the
strut-like nature of PEEK aerogels gelled in DPA.
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To differentiate the oscillations from the power-law scattering, the scattering profiles
are plotted in a Porod plot (Figure 6b). In the Porod plots, peaks are observed at values of
q*, 2 q*, 3 q*, 4 q*, and 5 q*. These values are consistent with a lamellar morphology and
confirm the periodic ordering of the stacks of chain-folded lamellae within the axialitic
aggregates. The Bragg spacing of this feature can be calculated by d* = 2 π/q*, where
q* ≈ 0.47 nm−1, yielding d* = 13 nm. This Bragg spacing is consistent with the long
period reported for melt crystallized PEEK, which is on the order of 12–16 nm [84,87].
This agreement strengthens the argument that the oscillations originate from a structure
factor contribution of the stacked PEEK lamellae. Above 7 nm−1, Bragg reflections are
observed, corresponding to specific families of planes associated with the orthorhombic
crystal structure of PEEK [85,86,88]. Representative WAXS profiles with Bragg reflection
assignments are found in Figure S2.

The USAXS/SAXS curves were fit with the unified function [89] in order to quantify
the hierarchical morphology of the PEEK aerogels. The unified function is used to analyze
each structural level of a complex, hierarchical scattering pattern and extract structural
parameters: the radius of gyration (Rg) and Porod exponent (P). Details on the analysis of
scattering data using the unified function can be found in the Supplementary Materials.

The radius of gyration (Rg2) and the Porod exponent (P2) were obtained for the feature
observed below 0.03 nm−1, which is assigned to the axialite thickness. Strut thickness is
obtained by the relation t2 = 2

√
4/3Rg2, assuming that the axialites are approximately

rod-shaped [89]. Tabulated values for Rg2, P2, and t2 can be found in Table S2. Axialite
thickness is relatively consistent across all PEEK contents. Axialite thickness determined
from the unified function is in excellent agreement with thickness from SEM image analysis
(Table 1), confirming the assignment of the SAXS feature to axialite thickness. Aggregate
size, or, specifically, axialite thickness, for PEEK aerogels gelled in DPA was found to be
on a comparable length scale to the aggregate size of the other PEEK aerogels gelled in
DCA or 4CP [34]. PEEK aerogels gelled in DPA were found to have Porod exponents, or
P2, greater than 3, which is consistent with a surface fractal. In our previous work, it was
found that PEEK aerogels gelled in DCA or 4CP had Porod exponents, or P2, associated
with surface fractals (P > 3) or mass fractals (3 > P > 1) [34].
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Figure 6. (a) USAXS/SAXS/WAXS profile for a 20 wt.% PEEK aerogel gelled in DPA presented as I
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lamellar morphology. The inset is an SEM image of an axialite at high magnification, showing its
texture, which is associated with lamellar stacking.

The radius of gyration (Rg1) and Porod exponent (P1) were obtained for the feature
observed between 0.2 nm−1 and 0.8 nm−1, which is assigned to the lamellar thickness.
Lamellar thickness is obtained using the relation t1 = 2Rg1 [89]. Tabulated values for Rg1,
P1, and t1 can be found in Table S2. The lamellar thickness tends to slightly increase with
increasing PEEK content. P1 was found to be 4.0 for all PEEK aerogels gelled in DPA.
Previously, it was found that P1 was 4.0 for all PEEK aerogels gelled in DCA or 4CP [34]. A
Porod exponent of 4 is characteristic of smooth surfaces, which is consistent with the flat
interface between crystalline lamellae and amorphous material [90].

At wide angles, PEEK aerogels display diffraction peaks associated with the or-
thorhombic unit cell characteristic of PEEK crystals. Absolute crystallinity is determined
through the use of Vonk’s procedure [91]. Figure 7 shows the crystallinity of PEEK
aerogels gelled in DPA versus PEEK content, and tabulated values for crystallinity can be
found in Table S3. Figure 7 also compares crystallinity determined through integrating
DSC melting endotherms (shown in Figure S1) to absolute crystallinity determined
by WAXS. While the absolute crystallinity was found to be slightly higher than DSC
crystallinity for all PEEK aerogels, it is clear that the degree of crystallinity (about 40%)
is typical for melt crystallized PEEK [92–94] and independent of the PEEK content in
the gels. The crystallinity values for the PEEK aerogels gelled in DPA are also similar
to those reported for PEEK aerogels gelled in DCA but were about 10% higher than
the crystallinity of aerogels gelled in 4CP [34]. Crystalline imperfection factor k versus
PEEK content is shown in Figure S4. A decreasing value (from about 1.7 to 1) suggests
that crystalline order generally tended to increase with increasing PEEK content. All
values of k found here are comparable to values previously reported for melt crystallized
PEEK [92,93].
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2.3. Porosity and Surface Area of PEEK Aerogels

Nitrogen adsorption is particularly powerful in characterizing nanometer-size pores
which are otherwise difficult to characterize. Figure 8a shows nitrogen adsorption isotherms
for PEEK aerogels gelled in DPA at different PEEK concentrations. The shapes of the
isotherms are characteristic of the pore size and shape. All nitrogen adsorption isotherms
collected on PEEK aerogels have a knee at low relative pressure (below p/po = 0.05)
which is associated with the transition between monolayer and multilayer adsorption.
Also present is a sickle-shaped hysteresis between 0.4 and 1.0 p/po, which is associated
with capillary condensation in mesopores [95]. Both of these features are indicative of a
IUPAC type IV isotherm, which is characteristic of a mesoporous adsorbent with 2–50 nm
pores [95]. Additionally, the hysteresis of the isotherms can be characterized as IUPAC
type H3 hysteresis, which is characteristic of slit-like mesopores formed from aggregates of
platelike particles [95]. These slit-like mesopores are likely attributed to the nanometer-scale
spacing between lamella within the stacks of platelike crystallites of the axialitic aggregates,
observed in the PEEK aerogels (Figure 3b).
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Pore size distribution can be calculated from nitrogen adsorption isotherms by ap-
plying the Barrett–Joyner–Halenda (BJH) method [96]. Figure 8b shows the pore size
distributions for PEEK aerogels gelled in DPA. The pore size distributions for all PEEK
aerogels gelled in DPA all have a maximum at about 7.5 nm. This pore width is on a similar
length scale as what is expected for the amorphous thickness, reported as 4–5 nm in melt
crystallized PEEK [84,87]. As the amorphous thickness is the average distance between
lamellar surfaces, these pore size measurements are consistent with the pores originating
from stacks of lamella.

The application of the Brunauer–Emmett–Teller (BET) theory to nitrogen adsorption
isotherms yields the specific surface area of porous materials [97]. The BET surface areas
for the PEEK aerogels are shown in Figure 9a. Tabulated values for the surface area can
be found in Table S3. PEEK aerogels were found to have high surface areas between 200
and 225 m2/g, which tend to decrease somewhat as the PEEK content increases. Figure 9b
compares the BET surface area for each PEEK aerogel system to the aerogel density. PEEK
aerogels gelled in DPA were found to have surface areas that were consistently lower than
values around 325 m2/g reported previously for PEEK aerogels gelled in DCA or 4CP [34].
The PEEK aerogels gelled in DCA or 4CP have a higher surface area due to a finer aggregate
size and mass fractal structure [34] compared to those of the PEEK aerogels gelled in DPA,
as seen in supplemental Figure S3.
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Figure 9. (a) Surface area of PEEK aerogels gelled in DPA vs. PEEK content. (b) Surface area of PEEK
aerogels gelled in DPA, dichloroacetic acid (DCA), or 4-chlorophenol (4CP) [34]. Aerogels prepared
by freeze-drying (FD) are indicated by a filled symbol, whereas aerogels prepared by extraction with
supercritical CO2 (SC) are indicated by an open symbol. Each data point represents the average of
3 measurements with corresponding error bars (sample standard deviation).

The density of PEEK aerogels formed over a range of PEEK/DPA contents is compared
to the density of PEEK aerogels formed from DCA and 4CP in Figure 10a. As expected for
all aerogels and solvents, an increase in PEEK content yielded a near-linear increase in the
bulk density of the aerogels. For PEEK aerogels gelled in DPA, the densities were found
to increase from 0.09 to 0.25 g/cm3 with increasing concentrations (Table S3). The strong
correlation between PEEK concentration and density indicates that there is good control of
aerogel density for the PEEK/DPA system.
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Figure 10. Comparison of density and porosity between aerogels prepared from PEEK/DPA,
PEEK/DCA [34], and PEEK/4CP [34] solutions. (a) Density versus PEEK content for PEEK aerogels.
Each data point represents the average of 6 density measurements. (b) Porosity versus density for
PEEK aerogels. Each data point represents the average of porosity calculated using average density
and average crystallinity. Aerogels prepared by freeze-drying (FD) are indicated by a filled symbol,
whereas aerogels prepared by extraction with supercritical CO2 (SC) are indicated by an open symbol.

To compare the effects of gel network morphology on density, strut-like PEEK aerogels
prepared from DPA are compared to the globular aerogels prepared from DCA or 4CP
(Figure 10a). Freeze-dried PEEK aerogels gelled in DPA tend to have a lower density
at a given PEEK content than the freeze-dried PEEK aerogels prepared in DCA or 4CP.
When PEEK aerogels gelled in DCA or 4CP are dried using an extraction with supercritical
CO2, lower densities are achieved, and these densities are comparable to the densities of
freeze-dried PEEK aerogels gelled in DPA at similar PEEK compositions.

The comparison of the solvent extraction methods suggests that the strut-like morphol-
ogy of the PEEK aerogels formed from DPA resists densification during solvent extraction
and thus is more stable to less-rigorous extraction methods (i.e., freeze-drying versus
supercritical CO2 extraction). While freeze-drying is regarded as a relatively gentle ex-
traction route compared to the capillary stresses exerted during evaporative drying, the
growth of crystals during freezing can exert stress on the gel structure [60]. Meanwhile,
extraction with supercritical CO2 is the gentlest method for preparing aerogels, since the
supercritical route transforms the liquid phase into gas without experiencing the capillary
forces associated with a direct transformation between liquid and gas [58]. Apparently, the
globular structure of PEEK aerogels prepared from DCA and 4CP is not robust enough
to avoid densification caused by the forces exerted during freeze-drying. However, the
strut-like morphology of PEEK aerogels prepared from DPA appears to be considerably
more stable to the freeze-drying process, as they have similar densities and porosities to
the supercritically extracted PEEK aerogels at comparable PEEK contents. This focus on
comparing solvent extraction methods will be the subject of a subsequent study.

To determine the effects of aerogel morphology on porosity, porosity is compared to
solvent content for the different aerogel systems (Figure S6). PEEK aerogels gelled in DPA
were found to be highly porous with porosities ranging between 80 and 93% (Table S3).
Generally, aerogel porosity tends to increase with increasing solvent content. Freeze-dried
PEEK aerogels prepared from DPA tended to have higher porosity at a given PEEK content
than the freeze-dried PEEK aerogels prepared from DCA or 4CP. When aerogels prepared
from DCA or 4CP were dried using an extraction with supercritical CO2, higher porosities
were achieved, and these porosities are comparable to the porosity of freeze-dried PEEK
aerogels prepared from DPA at similar PEEK compositions.
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The relationship between porosity and density was compared to determine if there
were significant differences between the different aerogel morphologies. Figure 10b shows
aerogel porosity versus aerogel density for aerogels prepared from DPA, DCA, and 4CP. As
expected, porosity tends to decrease with increasing aerogel density. All aerogels follow the
same linear relationship between density and porosity despite the different aerogel mor-
phologies and the different drying methods. The slight differences in crystallinity and thus,
skeletal density, between the systems also appear to have little effect on this relationship.

2.4. Mechanical Properties of PEEK Aerogels

As evidenced above, the strut-like morphology of PEEK aerogels prepared from DPA
is believed to lead to robust mechanical properties that resist deformation. To verify this,
compression testing was performed on the PEEK aerogels gelled in DPA. Figure 11 shows
the modulus versus density plot for PEEK aerogels. Tabulated values for the modulus can
be found in Table S3. The strut-like PEEK aerogels formed from DPA had a significantly
higher modulus than the globular PEEK aerogels formed from DCA across the investigated
densities. At the lowest densities, PEEK aerogels gelled in DPA had a modulus an order of
magnitude greater than the PEEK aerogels gelled in DCA. Thus, the strut-like morphology
of PEEK aerogels gelled in DPA appears to be more efficient at distributing mechanical
stress than the globular morphology of PEEK aerogels prepared in DCA. This behavior may
be attributed to a higher inter-particle connectivity of the strut-like morphology compared
to weaker network connections in the globular morphology. With greater connectivity, a
more efficient stress transfer is produced during compressive deformation.
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As reported in many other porous systems, PEEK aerogels display a power–law
relationship between modulus and density. This relationship is commonly represented as:

E
Esolid

∼
(

ρ

ρsolid

)n
(4)

where E is the modulus of the porous material, Esolid is the modulus of the non-porous
solid material (Esolid,PEEK = 3600 MPa) [98], ρ is the density of the porous material, ρsolid
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is the density of the non-porous solid material (ρsolid,PEEK = 1.3 g/cm3) [98], and n is the
scaling exponent. For cellular materials, Gibson and Ashby found that the scaling exponent
was dependent on the mechanism of stress distribution [99]. For cellular materials where
bending is the primary deformation mode, n = 2. Aerogels commonly have a scaling
relationship that deviates from this ideal behavior due to low mechanical connectivity
causing inefficiencies in stress distribution [100,101]. For aerogels, n has been reported to be
between 3 and 4. Strut-like PEEK aerogels prepared from DPA were found to have a scaling
relationship of 3.08, whereas globular PEEK aerogels prepared from DCA were found to
have a scaling relationship of 4.70. Interestingly, fibrillar PPS aerogels had a similar scaling
relationship of about three [28]. A smaller n indicates that changes in density have a lesser
effect on modulus. Indeed, as the density decreases compared to the bulk density, the
modulus of the strut-like aerogels decreases from the modulus of PEEK less quickly than
for the globular aerogels. It is likely that this improvement in network efficiency imparts
strut-like PEEK aerogels prepared from DPA with the ability to better resist the forces of
freeze-drying compared to the globular PEEK aerogels prepared from DCA.

This new strut-like morphology greatly improves the mechanical properties of PEEK
aerogels. To contextualize the effects of the strut-like morphology, the mechanical properties
of PEEK aerogels are compared to those of other aerogels found in the literature. Figure 12
shows the modulus versus density of PEEK aerogels gelled in DPA compared to those of
other aerogels in the field. Compared to our previous work on PEEK aerogels formed from
DCA and 4CP solutions, the strut-like morphology created by gelation in DPA now elevates
PEEK aerogels into a similar modulus and density range as that of the crosslinked polyimide
and polyurea aerogels formed by complex chemistry and solvent extraction methods.
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Figure 12. Modulus versus density for strut-like PEEK aerogels prepared in DPA compared to other
aerogels from the literature on PEEK aerogels prepared in DCA [32], silica aerogels [102], polyamide
(PA) aerogels [103], polyimide (PI) aerogels [104], polyurea (PU) aerogels [105], and polyphenylene
sulfide (PPS) aerogels [28].

3. Conclusions

The gelation of PEEK in the benign solvent, DPA, and the preparation of PEEK aerogels
composed of crystalline axialites have been demonstrated. The construction of a phase
diagram confirmed solid–liquid phase separation as the gelation mechanism, where PEEK
crystallization on cooling induces gelation. Solid–liquid phase separation implies that
DPA is a good solvent for PEEK. The Flory–Huggins interaction parameter was calculated
as χ12 = 0.093 for PEEK/DPA, which confirmed that DPA is a good solvent for PEEK.
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The evidence from microscopy, X-ray scattering, and nitrogen adsorption was consistent
with the aerogel having a hierarchical structure consisting of a network of PEEK axialites,
which are composed of stacks of crystalline lamellae. The high connectivity of the axialite
network leads to robust PEEK aerogels, which appear to have low densification on freeze-
drying and an improved compressive modulus compared to the poorly connected globular
aerogels derived from PEEK/DCA and PEEK/4CP systems. The low density, high modulus,
high surface area, and high porosity of PEEK aerogels prepared from DPA indicate their
suitability for lightweight structural applications. The axialite morphology was consistent
across all PEEK compositions, displaying similar axialite dimensions and crystallinity,
while the density, porosity, surface area, and modulus are able to be tuned by changing
the PEEK composition. The gelation of PEEK in DPA leads to strong, low-density aerogels
with properties that rival those of high-performance crosslinked aerogels, while utilizing a
simpler preparation pathway. This work emphasizes that solvent selection has a significant
impact on process–morphology–property relationships in semicrystalline polymer aerogels.
Future work will involve a deeper investigation into the effects of the solvent extraction
process and a deeper scattering analysis.

4. Materials and Methods
4.1. Materials

PEEK (Victrex 150P) was provided by Solvay Specialty Polymers (Alpharetta, GA,
USA). The 1,3-diphenylacetone (DPA) was purchased from Oakwood Chemical (Estill,
SC, USA). Ethanol (200 proof, 100% USP, Decon Labs, King of Prussia, PA, USA) was pur-
chased from Fisher Scientific Company LLC (Suwanee, GA, USA). Water-based conductive
graphene carbon paint was purchased from Electron Microscopy Sciences (Hatfield, PA,
USA). All polymers and chemicals were used as received.

4.2. PEEK Gel Preparation

PEEK and DPA were loaded into a three-neck round-bottomed flask equipped with an
argon inlet, an overhead stirrer, and a condenser. The flask was placed in a metal bath set
at 320 ◦C. Argon was allowed to purge the flask during dissolution. Dissolution of PEEK in
DPA took place for between 1 and 5 h, depending on PEEK concentration. The solution was
stirred using a mechanical stirrer for the final 20 min of dissolution. The hot PEEK solution
was poured into open-ended cylindrical glass tubes, which were held in a well heater (Hart
Scientific 9122, Everett, WA, USA) set at 50 ◦C. The tubes had a nominal inner diameter
of 9 mm and a length of 100 mm, and to prevent solvent leakage, the bottom end of each
tube was closed with a rubber septum. Gelation of the PEEK solution was allowed to occur
for over 20 min. Gelation of the solution occurred within 5 min. Samples of the solidified
PEEK/DPA gel were taken to measure cloud point and crystallization temperature.

4.3. PEEK Aerogel Preparation

After 20 min of gelation in the tubes, the PEEK/DPA gels, still within the tubes, were
placed in an ethanol bath to exchange the DPA with ethanol. The ethanol bath was set
to 50 ◦C to prevent DPA crystallization. The ethanol was exchanged with fresh ethanol
after 24 h, and the gels were pushed out of the tubes. After an additional 24 h in the
ethanol bath, the gels were moved to a Soxhlet extractor to replace any residual DPA with
ethanol. Soxhlet extraction was allowed to occur over 4 days. The ethanol-soaked gels were
exchanged with deionized water for 4 days in a water bath. The water was replaced with
fresh deionized water daily. The hydrogels were frozen overnight at −18 ◦C and were then
lyophilized (Labconco Corporation, Kansas City, MO, USA) over 24 h to yield freeze-dried
PEEK aerogels.

4.4. Characterization

Cloud point measurements were performed on a Nikon Eclipse LV100 optical mi-
croscope (Nikon Corporation, Tokyo, Japan) equipped with a Linkam HFSX350-CAP
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temperature stage (Linkam Scientific Instruments, Salfords, UK) with a 1.7 mm diameter
capillary port. The turbidity of PEEK/DPA solutions was recorded using an AmScope
MU503B digital CMOS camera (AmScope, Irvine, CA, USA) and AmScope software version
4.11.20671.20220413. Solidified PEEK/DPA gels were packed into 1.5 mm diameter Pyrex
capillaries, which were sealed with a torch. Capillaries were heated in the hot stage to
320 ◦C at 60 ◦C/min, held isothermally for 3 min, and cooled at 10 ◦C/min to 50 ◦C. Images
of the capillary were taken once per second. Images were processed in ImageJ image
analysis software version 1.53q to yield the average brightness of each image. Average
brightness versus temperature was plotted (see Figure S7), and the cloud point temperature
was taken as the temperature where brightness was reduced 50%.

Differential scanning calorimetry (DSC) experiments were performed on the solidified
PEEK/DPA gels using a TA Instruments Q1000 DSC (TA Instruments, New Castle, DE,
USA). The PEEK/DPA gels were sealed in hermetic pans to prevent solvent evaporation.
Samples were heated at 10 ◦C/min to 320 ◦C, where they were isothermally held for 1 min.
Samples were then cooled at 10 ◦C/min to 50 ◦C, where they were isothermally held for
20 min. Crystallization temperature (Tc) was recorded as the minimum of the crystallization
exotherm during this cooling scan. Samples were again heated at 10 ◦C/min to 320 ◦C,
where they were isothermally held for 1 min. Melting temperature (Tm) was recorded as
the maximum of the melting endotherm during this heating scan.

The morphology of PEEK aerogels was evaluated with scanning electron microscopy
(SEM) using a LEO (Zeiss, Jena, Germany) 1550 field-emission scanning electron microscopy
(FE-SEM) with in-lens detection. Samples were freeze-fractured by immersing them in
liquid nitrogen for 15 min followed by shattering with a hammer to reveal internal aerogel
surfaces of small fragments. These aerogel fragments were mounted on a stub using
conductive graphene carbon paint. The paint was allowed to dry prior to sputter-coating.
Mounted samples were sputter-coated with a 5 nm thick layer of iridium with a Leica EM
ACE600 sputter coater (Leica, Wetzlar, Germany). SEM images were analyzed using the
image analysis software ImageJ to measure the structural features of the PEEK aerogels. To
ensure statistical significance of measurements, 50 features were measured.

Small angle X-ray scattering (SAXS) experiments were performed using a Xeuss
3.0 SAXS/WAXS beamline (Xenocs, Genoble, France), equipped with a GeniX 3D Cu
HFVLF microfocus X-ray source with a wavelength of 0.154 nm (Cu Kα). The sample-to-
detector distance was 1800 mm for extra-small angle X-ray scattering (ESAXS), 900 mm
for SAXS, 370 mm for mid angle X-ray scattering (MAXS), and 43 mm for wide angle
X-ray scattering (WAXS). A Bonse-Hart camera was used to collect ultra-small angle X-
ray scattering (USAXS) data. The q-range was calibrated using a lanthanum hexaboride
standard for WAXS and a silver behenate standard for ESAXS, SAXS, and MAXS. Two-
dimensional scattering patterns were obtained using a Dectris EIGER 4M detector, with
an exposure time of 4 h for USAXS, 4 h for ESAXS, 2 h for SAXS, 1 h for MAXS, and 1 h
for WAXS. The scattering data were reduced and corrected for background, thickness, and
transmission using the XSACT software version 2.10.3. Slit-smeared USAXS data were
desmeared using XSACT, yielding pinhole equivalent data. ESAXS, SAXS, MAXS, and
WAXS data were output on an absolute scale using direct beam intensity. USAXS, ESAXS,
SAXS, MAXS, and WAXS profiles were merged using the XSACT software. The scattering
profiles were vertically shifted to facilitate comparison. Scattering plots are presented as
scattering intensity, I(q), versus scattering vector q, where q = (4π/λ)sin(θ); θ is one half
of the scattering angle, and λ is the X-ray wavelength. Merged USAXS/SAXS/WAXS
scattering profiles were fit to the unified function [89] using Irena [106].

Absolute crystallinity was determined using WAXS data corrected for background,
thickness, transmission, absorption, and polarization using the XSACT software. Excess
power law scattering at low q was subtracted from the WAXS data. This excess scattering,
associated with crystalline lamellae, was found in fitting the USAXS/SAXS/WAXS profiles
to the Unified Function. Vonk’s procedure [91] for determining absolute crystallinity was
used. Corrected WAXS profiles were normalized to electron units, and the incoherent
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scattering intensity was subtracted. Then, absolute crystallinity was determined using
Vonk’s graphical method. Full details on the procedure are found in the Supplementary
Materials. Amorphous PEEK was prepared by melting PEEK at 400 ◦C for 3 min, then
pressing it into a film and quenching it into liquid nitrogen.

DSC experiments were performed on PEEK aerogels using a TA Instruments Q1000
DSC (TA Instruments, New Castle, DE, USA). The PEEK aerogels were sealed in stan-
dard DSC pans. Samples were heated at 10 ◦C/min to 400 ◦C. Crystallinity (%Xc) was
determined by:

%Xc =
∆Hm

∆Ho
m
× 100 (5)

where ∆Hm is the integral of the experimental melting endotherm on first heating, and
∆Ho

m is the melting enthalpy for PEEK, 130 J/g [83].
Nitrogen porosimetry experiments were performed using a Micromeritics 3 Flex gas

adsorption analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA). Samples
were outgassed at 100 ◦C for 24 h. Adsorption and desorption isotherms were collected
using nitrogen as the adsorbent at −196 ◦C (77 K). Surface area was calculated using the
Brunauer–Emmett–Teller (BET) method [97], and pore size distribution was calculated
using the Barrett–Joyner–Halenda (BJH) method [96].

Compression testing experiments were performed on aerogels using an Instron 3340
Universal Testing System (Instron, Norwood, MA, USA) with a 5 kN load cell. Samples
were tested in accordance with ASTM D695-23 [107]. Aerogel samples for compression
testing were cylinders with nominal dimensions of 9 mm diameter to 18 mm length
(Figure S12). Samples for compression testing were cut to length in the hydrogel state, prior
to freeze-drying. Aerogel bulk density, ρb, was calculated as:

ρb =
m

πr2l
(6)

where m is the mass of a cylindrical aerogel, r is the cylinder radius, and l is the cylinder
length. Porosity, Π, was calculated as:

Π =

1
ρb

− 1
ρs

1
ρb

× 100% (7)

where ρb is the bulk density, and ρs is skeletal density, calculated as:

ρs =
%Xcρc + (100 − %Xc)ρa

100
(8)

where %Xc is the crystallinity determined by DSC, ρc is the crystalline density of PEEK
(1.400 g/cm3), and ρa is the amorphous density of PEEK (1.263 g/cm3) [83].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10040283/s1, Details on the HSP group contribution calcu-
lation [108–112]; Figure S1: Representative differential scanning calorimetry curves taken on first
heating of PEEK aerogels; Figure S2: Wide angle X-ray scattering patterns for PEEK aerogels gelled
in DPA and melt crystallized PEEK; Details on the unified function analysis; Table S2: Radius of
gyration (Rg), Porod exponent (P), axialite thickness (t2), and lamellar thickness (t1) derived from
application of the unified function to USAXS/SAXS profiles collected for PEEK aerogels gelled in
DPA; Figure S3: SEM micrographs of freeze dried PEEK aerogels at 15 wt.% PEEK gelled in DPA,
4CP, and DCA; Table S3: Density, porosity, surface area, modulus, and crystallinity of PEEK aerogels
gelled in DPA; Figure S4: Crystalline imperfection factor, k, versus PEEK content; Figure S5: Bulk
density of PEEK aerogels gelled in DPA versus PEEK content; Figure S6: Porosity versus gelation
solvent content for PEEK aerogels; Figure S7: Representative average brightness versus temperature
profile for cloud point determination; Details on absolute crystallinity determination using Vonk’s
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procedure; Figure S12: A PEEK aerogel cylinder for compression testing prepared from a 15 wt.%
PEEK/DPA solution.
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