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Abstract: The contributions of magnetohydrodynamic (MHD) vortexes to chiral electrodeposition
in a vertical magnetic field were theoretically examined based on the three-generation model of
the 2D nucleus, 3D nucleus, and screw dislocation; for the vortexes to rotate in the second and
third-generation, the kinematic viscosity must be at least 10−18 and 10−30 times lower than the
ordinary value in the first generation, i.e., almost equal to zero. This implies that the ionic vacancy
created on the electrode surface works as an atomic-scale lubricant. At the same time, the vortexes
played three roles: promotion and suppression of nucleation, and transport of the chirality from the
upper generation to the lower generation through precessional motion. Then, the rule of the chirality
transfer was established, and finally, the relationship between the chiral activity and magnetic field
was clarified in the presence and absence of chloride ions.

Keywords: chirality; chiral electrodeposition; magnetic field; nucleation; micro-MHD vortex; nano-
MHD vortex

1. Introduction

In an electrode reaction under a vertical magnetic field, a tornado-like macroscopic
rotation called vertical magnetohydrodynamic (MHD) flow (VMHDF) appears on a disk
electrode (vertical MHD electrode (VMHDE)). On the electrode surface under a VMHDF,
numerous microscopic vortexes called micro- and nano-MHD flows are formed, accompa-
nied by the rotations of microbubble clusters originating from ionic vacancies produced by
electrode reactions [1–3].

Ionic vacancies are created for conserving the linear momentum and electricity in
the electron transfer of an electrode reaction, and initial naked vacancies, i.e., embryo
vacancies, are formed in a free space [4,5]. Charged particles such as embryo vacancies
are energetically unstable in a solvent, so they are quickly solvated by emitting solvation
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energy and enveloped by ionic clouds. Using the energy, ionic vacancies make their cores
become enlarged, so the solvation energy is stored in them without entropy production. As
shown in Figure 1, a vacancy core of about 0.1 nm is composed of a free space surrounded
by polarized solvent molecules. An ionic vacancy migrates among solvent molecules by
repeating shrinking and expanding reversibly without entropy production. This means
that an ionic vacancy does not interact with surrounding solvent molecules, working as
an atomic-scale lubricant. In other words, there is no energy dispersion in this diffusional
motion. This is experimentally validated because the natural lifetime of an ionic vacancy
is about 1 s [6,7], which is extraordinarily long compared with the collision frequency
of solvent molecules of 10−10 s. Therefore, a vacancy layer formed under a VMHDF is
expected to have superfluidity similar to that of liquid helium.
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Copper electrodeposition under a vertical magnetic field gives rise to chiral screw
dislocations with remarkable chiral activity caused by a VMHDF [1]. However, for the
formation of chiral screw dislocations of the order of 0.1 nm from a VMHDF with a diameter
of 1 cm, size control over eight figures was directly required, which seemed impossible. To
solve such a difficulty, the three-generation model of chiral screw dislocation was proposed
in Part 1 [1]; chiral two-dimensional (2D) nuclei arise from chiral vortexes of micro-MHD
flows (~0.1 mm) as the first generation, then chiral three-dimensional (3D) nuclei are formed
by chiral vortexes of nano-MHD flows (~0.1 µm) as the second generation, and finally,
chiral screw dislocations are created by chiral ultra-micro vortexes (~0.1 nm) as the third
generation. As shown in Figure 2, all three steps constitute a nesting box structure. The
validity of this model was proven by the fact that a measure of the chiral activity, i.e., the
enantiomeric excess (ee) ratio, cannot exceed a limiting value of 0.125 [1].
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Figure 2. The three-generation model of chiral screw dislocation in a nesting box structure [1].
→
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magnetic flux density.

Chiral vortexes in each generation are, as shown in Figure 3a, produced by a two-layer
system; the upper layer rotates around a vertical axis, driven by the bottom of a vortex on
a rigid-surface nucleus of the upper generation, which, in the present second generation,
corresponds to the bottom of the micro-MHD vortex on a rigid-surface of the 2D nucleus. In
contrast, the lower layer is kept stationary by the pinning effect of the frictions of the rigid-
surface vortexes, i.e., nano-MHD vortexes on the rigid-surface 3D nuclei. The lower-layer
vortexes are reproduced with the same rotations as the upper-layer vortexes through the
boundary between the two layers. Some upper-layer vortexes revolve with the upper layer,
receiving precession from the upper-layer rotation. Such precessional motion transfers back
to the vortexes in the lower layer. As a whole, they form a positive feedback cycle between
the two layers.
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Figure 3. The two-layer system for chirality transfer and two kinds of nano-MHD vortexes formed on
the electrode surface. (a) Chiral transfer from the upper-layer vortex of the upper generation to the
lower-layer vortexes of the lower generation. An unstable case in an upward magnetic field. (b) An
upward free-surface vortex (FV). (c) A downward rigid-surface vortex (RV). (d) Pair formation of
upward anticlockwise (ACW) and downward clockwise (CW) vortexes. I: rotating upper layer; II:
stationary lower layer; III: electrode; light-blue sphere: ionic vacancy.

Here, the vortexes in the lower layer are composed of a pair of vortexes with rigid and
free surfaces, which, due to local linear momentum conservation, correspond to downward
and upward flows, respectively. As shown in Figure 3b,c, an upward flow gathers ionic
vacancies produced at the electrode, making a free surface covered with ionic vacancies
without friction, whereas a downward flow blows off the ionic vacancies, exposing a bare
surface with friction. At the same time, due to the continuity of vortexes, i.e., the local
conservation of angular momentum, they have anticlockwise (ACW) and clockwise (CW)
rotations, and vice versa. Figure 3d represents the case of upward (free-surface) ACW and
downward (rigid-surface) CW vortexes.

Which vortexes, ACW or CW, receive the precession depends on whether they are
unstable or not; if they are unstable, the vortex without friction on the free surface develops
faster than the vortex with friction on the rigid surface, so the free-surface vortex (FV) will
receive the precession. The rigid-surface vortex (RV) subordinately rotates in the opposite
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direction. On the contrary, when they are stable, though the vortex without friction on the
free surface quickly disappears, due to friction, the vortex on the rigid surface dwindles
more slowly. This time, the rigid surface vortex will gain the precessional motion. The
chirality transfer of the vortexes between the two layers shown in Figure 3a represents the
unstable case under an upward magnetic field, i.e., the ACW rotation of the upper-layer
provided by a rigid-surface micro-MHD vortex transfers to a free-surface nano-MHD vortex
in the lower layer, so a rigid-surface nano-MHD vortex obtains a CW rotation, forming a
CW 3D nucleus of the second generation.

As discussed above, chiral nuclei of the lower generation are created by the rigid-
surface vortexes of the same generation under a rigid-surface vortex of the upper generation.
Namely, chirality transfers from the upper generation to the lower generation through
rigid-surface vortexes. Under the free-surface vortexes, the nucleation proceeds with the
revolution of the vacancy layer on the electrode surface, so that no chiral nuclei emerge due
to the lack of relative rotation. In the unstable case, the chiral rotations of the rigid-surface
vortexes of the upper generation are transferred to the free-surface vortexes of the lower
generation. However, the chirality of the lower-generation nucleus is determined by the
rigid-surface vortex of the same generation, so the chirality is changed. On the contrary, in
the stable case, the chirality of the rigid-surface vortexes of the upper generation directly
transfers to the rigid-surface ones of the lower generation, i.e., the chirality is preserved.

In chiral deposition, vortexes in various scales play important roles. Here, we come
up against a serious problem; the smaller the vortex is, the more difficult it is to rotate. In
short, much smaller vortexes cannot exist due to increasing effective viscosity. However,
fortunately, since ionic vacancies work as atomic-scale lubricants and form a vacancy layer
with a thickness of around 1 µm, 3D nuclei with a size of about 0.1 µm are prepared by
rigid-surface nano-MHD vortexes in a liquid with extremely low viscosity. As will be
discussed later, theoretical calculation allows us to expect that the vortexes over 3D nuclei
can rotate in a liquid with a kinematic viscosity less than 10−18 m2 s−1, which is 10−12 times
smaller than the ordinary one (~10−6 m2 s−1). This means that the ultra-micro vortexes for
chiral screw dislocations require almost zero viscosity.

Chiral magnetoelectrodeposition was first found by Mogi [8]; he and his coworkers
have been experimentally clarifying the various aspects of the chirality evolution under
magnetic fields [9–21], e.g., the dependence on magnetic field intensity, the effect on the
presence and absence of chloride ions, and even the application in rotating systems. Based
on these experimental results, in this paper, we theoretically examine the mechanism
through which chiral activity arises from the various microscopic vortexes under a vertical
magnetic field. As for magneto-electrochemistry, for about five decades, many researchers
have been making great efforts to establish its foundations; electrode reactions under
magnetic fields inevitably induce Lorentz forces, leading to many characteristic applications.
For example, in calorimetry experiments, it is critically important to keep an experimental
system iso-thermal. In this point, magneto-electrochemistry has a great advantage because
the Lorentz force induces an MHD flow, in which mixing motion easily accomplishes
a uniform distribution of temperature. Recently, using an electrode with a rectangular
channel for an MHD flow called an MHD electrode, we succeeded in measuring the excess
heat arising from the pair annihilation of ionic vacancies with opposite charges created
at the cathode and anode [22–24]. The measured heat amounts were in good agreement
with the theoretical calculation. In those cases, the Lorentz force not only mixes the ionic
vacancies but also guides them to collision.

Several useful tools have been also developed for reaction analyses in magnetic
fields [25–32]. Fahidy commented that an MHD flow decreases the thickness of a dif-
fusion layer, enhancing mass transfer in an electrode reaction [29–31]. Olivier theoreti-
cally examined the MHD effect on microelectrodes [32–35] and conducted electrochemical
impedance spectroscopy in a magnetic field [36,37]. White studied the MHD flow of ultra-
micro-disk-electrodes in non-aqueous systems containing organic reactants [38–40]. Using
flow visualization techniques in a magnetic field, Mutschke and co-workers examined
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electrodeposition in cuboid cells under magnetic fields accompanied by 3D convections
affected by a gravitational field, which were compared with numerical simulations [41,42].
The contributions of the MHD flow to the phase compositions of composite metals have
been investigated by many researchers (Oliver, Alemany, Daltin, Chopart, Hinds, Coey,
and Zabiński) [43–51]. As a remarkable magneto-electrochemical effect, we can cite the
magneto-convection by the gradient field force under a heterogeneous magnetic field,
which promotes the mass transfer process in an electrode reaction [52–54]. Tschulik, Uhle-
mann, and Mutshchke, as well as Dunne and Coey, clarified that a superimposed Lorentz
force donates more complicated effects to deposit patterns and compositions [55–59]. As
mentioned above, effective MHD flows under parallel magnetic fields are provided by the
MHD electrode (MHDE) [60–62]. The velocity and concentration distributions of the elec-
trode are expressed by simple equations of velocity and the limiting diffusion current. As
Fahidy said, the agreement between the theory and the experimental result is excellent [29].

In recent days, various studies on the transport of microscopic materials in solutions
by using MHD forces have been reported. Kuhn et al. proposed an efficient alternative
mechanism with which to power self-electrophoretic Mg/Pt Janus swimmers based on
the Lorentz force and designed a self-propelled bimetallic Janus rotor and a wireless
magnetoelectrochemical rotor [63–65]. Celzard et al. proposed self-propelled particles
based on the MHD acceleration of the surrounding fluid [66]. Fritsch et al. designed analysis
systems with microfluidics based on the redox MHD concept and proposed a method for
combining dark-field microscopy with self-contained redox MHD microfluidics to facilitate
single-particle analysis in mixtures of dispersion single-nanoparticle populations [67,68].

In the present paper, we first examine the similarity of the various MHD vortexes in
the three generations, and derive the relationship between the representative length and
the kinematic viscosity, determining the effective values of viscosity in each generation.
Then, we establish the instability equations of 3D nucleation under nano-MHD vortexes
in the second generation. Finally, using the equations, we present a general method to
determine the chirality under a VMHDF in the absence and presence of chloride ions.

2. Theory

Briefly, 3D nuclei grow on a 2D nucleus formed in an electric double layer, developing
the diffusion layer outside the electric double layer [69–71]. As the reaction proceeds, the
physical quantities concerned change, approximately expressed by symmetrical fluctua-
tions, i.e., changes around their average values [71].

For example, the concentration fluctuation of the metallic ion is defined by the following:

cm(x, y, z, t)s ≡ Cm(x, y, z, t)− ⟨Cm(x, y, z, t)⟩ (1)

where superscript “s” implies a symmetrical fluctuation. Cm(x, y, z, t) and ⟨Cm(x, y, z, t)⟩
are the molar concentration and its average value, respectively. The sign “⟨ ⟩” means the
average over the electrode surface. As shown in Figure 4a, at the equilibrium potential,
E = Eeq, the concentration itself and the concentration gradient fluctuate toward the posi-
tive and negative sides of their equilibrium values. However, when the electrode potential
deviates to a cathodic direction, E < Eeq, as shown in Figure 4b, the electrodeposition pro-
ceeds on 3D nuclei and they one-sidedly fluctuate. Only negative and positive components
of the fluctuations survive. This means that in a non-equilibrium state, either side of the
amplitude of the equilibrium fluctuation is cut off, which depends on whether the cathodic
or anodic phase cutting of symmetrical fluctuations occurs. The phase cutting is, as will be
shown later in computer graphics, important for creating a cut surface on the 3D nucleus
without roughening via diffusion.
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s: symmetrical concentration fluctuation at the electrode
surface; (∂cm

s/∂z)z=0: symmetrical concentration gradient fluctuation at the electrode surface.

As for vortexes, as exhibited in Figure 3, vortexes having downward and upward
flows correspond to rigid- and free-surface vortexes, respectively. That is, the signs of the
z-components of the velocities of the rigid- and free-surface vortexes are fixed as ws

r < 0
and ws

f > 0, respectively, where the subscripts “r” and “f” indicate rigid- and free-surfaces.
Figure 3d indicates that to conserve the local angular momentum, a pair of vortexes with
upward and downward flows rotate in opposite directions to each other, which means
that the z-components of the vorticities of a vortex pair must have different signs, ωs

z,r < 0
and ωs

z,f > 0 or ωs
z,r > 0 and ωs

z,f < 0. Adopting a right-handed system with an upward
magnetic field, we can define the negative and positive z-components of the vorticities as
CW and ACW rotations. As a result, as shown in Figure 5, the vortexes in the lower layer
are simply classified into two sets, where the phase-cutting quantities in the x-direction are
schematically exhibited.
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Figure 5. Two sets of the nano-MHD vortex pairs formed on the rigid and free surfaces. (a) Clockwise
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z,r: z-vorticity component of the RV, ws

f :
z-velocity component of the FV, ωs

z,f: z-vorticity component of the FV.
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2.1. Similarity of the MHD Vortexes in the Three Generations
2.1.1. Vorticity Coefficient Functions (VCF)

The motion of MHD vortexes under a VMHDF is described by the vorticity coefficient
function (VCF) established in Part 1 [1], which works as the characteristic function of
the lower generation vortexes, controlling vortex instability. Using the functions, we
can examine the similarity of each generation of vortexes. From now on, for similarity,
we use the nondimensional wavenumber as “a” without superscript a and s, implying
asymmetrical and symmetrical fluctuations in the first and second generations.

For rigid-surface vortexes, we have the three-generation functions:

fi
r(a) ≡

16Q∗ig4(a)
16Q∗ig5(a) + R∗iS∗iT∗i−1g6(a)

for i = 1st, 2nd and 3rd (2)

The function is expressed by the ratio of the torque component from the Lorentz force
to the total torque of the vortexes. Here, the coefficients S∗i, T∗i, Q∗i and R∗i are defined by
the following:

S∗i ≡ B0di

ρνi (3a)

T∗i ≡ 2Ω̃
j
di

νi for j = non, a and s (3b)

Q∗i ≡ σ*B0
2di2

ρνi (> 0) (3c)

and

R∗i ≡ Lmdi2

Dm
(> 0) (3d)

where for i = 1st, νi denotes the ordinary kinematic viscosity of the electrolyte solution
( νi ≈ 10−6 m2 s−1), and for i = 2nd and 3rd, νi denotes the effective kinematic viscosity of
a vacancy layer formed on the electrode. As has been discussed in the introduction, due to

atomic-scale lubricants, for ionic vacancies, the value greatly decreases down to zero. Ω̃
j
is

the representative angular velocity of the rigid-surface vortexes of the upper generation,
i.e., j = non, a and s indicate VMHDF, micro-MHD vortexes, and nano-MHD vortexes,
respectively. B0 is the external magnetic flux density, Lm is the concentration gradient,
and Dm is the diffusion coefficient of metallic ions. σ* is the electric conductivity, ρ is the
solution density, and di is the representative length of the i-generation.

Then, from Part 1 [1], g4(a), g5(a) and g6(a) are given by the following:

g4(a) ≡ a4
(

sinh2 a + a2
)

(4a)

g5(a) ≡ a3
(

sinh2 a + a2
)

(4b)

g6(a) ≡ zmFDmea
[
2Q∗ia2{5cosh a + 2a sinh a + (1 + a)ea}+ di2T*i2(1 + a)(3sinh a + 2a cosh a + a ea)

]
(4c)

where zm is the charge number of the deposit ion, and F is the Faraday constant.
For free-surface vortexes, we obtain the following:

fi
f(a) ≡

16Q∗ig1(a)

16Q∗ig2(a) + R∗iS∗iT∗i−1g3(a)
(5)

where g1(a), g2(a) and g3(a) are given by the following:

g1(a) ≡ a3(sinh a cosh a + a) (6a)
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g2(a) ≡ a2(sinh a cosh a + a) (6b)

g3(a) ≡ zmFDmea
{

2Q∗ia (5sinh a + 2a cosh a) + di2T*i2(3cosh a + 2a sinh a)
}

(6c)

The vortex rotations are controlled by the second terms of the denominators of
Equations (2) and (5) arising from the precession by an upper-generation rigid-surface
vortex, and the similarity of the vortexes of the three generations depends on the represen-
tative length, di, and the kinematic viscosity, νi.

In the following, to examine chiral similarity, we extract di and νi from
Equations (2) and (5). For simplicity, except for the sign, the angular velocity of the

upper-generation rigid-surface vortex, Ω̃
j
, is equalized to that of a VMHDF, Ω̃

j
= Ω̃. Then,

the following parameters are rewritten as follows:

S∗i = S∗ξi (7a)

T∗i = T∗ξi (7b)

Q∗i = Q∗diξi (7c)

R∗i = R∗di2 (7d)

where ξi is defined by

ξi ≡ di

νi (7e)

and the parameters S∗, T∗, Q∗ and R∗ are defined by

S∗ ≡ B0

ρ
(8a)

T∗ ≡ 2Ω̃ (8b)

Q∗ ≡ σ*B0
2

ρ
(8c)

R∗ ≡ Lm

Dm
(8d)

Therefore, we obtain the relationship:

R∗iS∗iT∗i−1
= R∗S∗T∗−1di2 (9)

For rigid-surface vortexes, the function controlling vortex rotations g6(a) is expressed
by the following:

g6(a) = zmFDmea
[

2Q∗hmr(a)diξi + T*2
hpr(a)

(
diξi

)2
]

(10)

The function hmr(a) corresponds to the torque component of the rigid-surface MHD
vortexes activated by the applied magnetic field, whereas hpr(a) is the torque component
of the precession from the upper-generation rigid-surface MHD vortexes.

hmr(a) ≡ a2{5cosh a + 2a sinh a + (1 + a)ea} (11a)

and
hpr(a) ≡ (1 + a)(3sinh a + 2a cosh a + a ea) (11b)

As a result, the function in Equation (2) is rewritten as follows:

fi
r(a) =

16Q∗g4(a)

16Q∗g5(a) + R∗S∗T∗−1g̃6(a)i (12)
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Namely, the similarity of vortex rotations between the three generations is concen-
trated to g̃6(a)i, which determines the lower-generation vortex motion, expressed by the
following:

g̃6(a)i ≡ zmFDmea
[
2Q∗hmr(a)di2 + T*2

hpr(a)
(

di4/νi
)]

(13)

As di decreases with lower generations, Equation (13) reveals that the contribution
from the magnetic activation of the vortexes also decreases. To maintain a similar vortex
motion though decreasing di, g̃6(a)i in Equation (12) must therefore be kept in the same

function form, i.e., the value of di4/νi must be almost the same in any generation.
For free-surface vortexes, the function of the vortex rotation, g3(a), in Equation (6c) is

expressed as follows:

g3(a) = zmFDmea
[

2Q∗hmf(a)diξi + T*2
hpf(a)

(
diξi

)2
]

(14)

The function hmf(a) is the magnetic field component of the free-surface vortex torque,
and hpf(a) is the precession component. Namely, we have the following:

hmf(a) ≡ a (5sinh a + 2a cosh a) (15a)

and
hpf(a) ≡ 3cosh a + 2a sinh a (15b)

As a result, the function in Equation (5) is rewritten as follows:

fi
f(a) =

16Q∗g1(a)

16Q∗g2(a) + R∗S∗T∗−1g̃3(a)i (16)

In the same way as Equation (13), the similarity is concentrated to g̃3(a)i, i.e.,

g̃3(a)i ≡ zmFDmea
[
2Q∗hmf(a)di2 + T*2

hpf(a)
(

di4/νi
)]

(17)

For free-surface vortexes to keep the similarity, the term di4/νi must be almost the
same in all generations. The characteristic functions, VCFs of the MHD vortexes in
Equations (12) and (16), indicate the ratio of the Lorentz force–torque component to the
total torque. The total torques of the denominators in Equations (12) and (16) are composed
of Lorentz force torque and induced vortex torques. Concerning the vortex torques, as
shown in Equations (13) and (17), the MHD vortexes are induced via magnetic activation
and the precession by the rotation of the upper-generation rigid-surface MHD vortex.

The induced vortex-torque component on the rigid surface with friction is larger than
that on the free surface without friction. Namely, we have the following relationship:[

R∗S∗T∗−1g̃3(a)i
]
<

[
R∗S∗T∗−1g̃6(a)i

]
(18)

This relationship leads to the difference between the rigid- and free-surface vortex motion.

2.1.2. Occurrence of Chiral Symmetry

The induced vortex torques change the sign depending on the rotational direction
of the upper-generation rigid-surface vortex, Ω̃, which is more generally expressed by
B0Ω̃ > 0 for a right-handed system and B0Ω̃ < 0 for a left-handed system. Namely, because

the term S∗T∗−1 is proportional to B0Ω̃
−1

, the functions in Equations (12) and (16) are
continuous for wavenumber a for the right-handed system, B0Ω̃ > 0, whereas they have
singular points of a for the left-handed system, B0Ω̃ < 0.
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However, considering the case where the induced vortex torques are dominant over
the Lorentz force torque, we can make the singular point disappear. Equations (12) and (16)
are therefore expressed as follows:

fi
r(a) ≈

16Q∗g4(a)

R∗S∗T∗−1g̃6(a)i (19)

and

fi
f(a) ≈

16Q∗g1(a)

R∗S∗T∗−1g̃3(a)i (20)

Therefore, for the right-handed system, we obtain

fi
r(a) > 0 and fi

f(a) > 0 (21a)

and for the left-handed system, we obtain

fi
r(a) < 0 and fi

f(a) < 0 (21b)

From Equation (18), the following relationship is satisfied:∣∣∣fi
r(a)

∣∣∣ < ∣∣∣fi
f(a)

∣∣∣ (21c)

2.1.3. Conservation of Chiral Vortex Motion in the Three Generations

The representative length, di, decreases with each generation. Under a constant
kinematic viscosity, νi, in Equations (13) and (17), the induced vortex torque compo-
nents R∗S∗T∗−1g̃6(a)i and R∗S∗T∗−1g̃3(a)i converge to zero with decreasing di. This is
because the effective viscosity increases with decreasing representative length. Actually, in
Equations (12) and (16), under a constant νi, as di approaches zero, we have

fi
r(a) →

16Q∗g4(a)
16Q∗g5(a)

= a (22a)

and

fi
f(a) →

16Q∗g1(a)
16Q∗g2(a)

= a (22b)

These results indicate that at the lower limit of di, as will be shown later, the induced
vortexes vanish.

In Equations (13) and (17), the induced vortex torque components are further separated
by the magnetic activation and precession components, which decrease with di2 and di4/νi,
respectively. For the induced vortexes to survive though decreasing di, the kinematic
viscosity, νi, must also decrease in proportion to di4.

In the case of the first-generation (i = 1st), for di = 10−4 m, an ordinary value for
kinematic viscosity, νi ≈ 10−6 m2 s−1 is assumed, so we have the following:

di4

νi ≈ 10−10m2s (23)

According to this situation, in the second-generation (i = 2nd) of di = 10−7 m, assum-
ing νi ≈ 10−18 m2 s−1, we obtain di4/νi ≈ 10−10 m2 s. In the third generation (i = 3rd) of
di = 10−10 m, with νi ≈ 10−30 m2 s−1, we derive the same value of di4/νi ≈ 10−10 m2 s. As
shown here, the actual high chiral activity obtained via copper deposition strongly requires
a non-viscous vacancy layer to be formed on the electrode. In Figure 6, the VCFs in the
three generations are plotted against the nondimensional wavenumber, a. As discussed
in Equations (21a) and (21b), for the right-handed system, the VCFs take positive values,
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whereas the VCFs of the left-handed system become negative. Then, as pointed out in
Equation (21c), the absolute value of the VCF on the free surface is larger than that of the
VCF on the rigid surface. Under the present condition of Equation (23), the VCFs of the
second and third generations are consistent with each other.
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Figure 6. Vorticity coefficient functions (VCFs) in the three generations under condition
di4/νi = 10−10 m2 s. (a) For the right-handed system. A: the 1st generation. Blue solid line:
fr(a); blue break line: ff(a). B: the 2nd and 3rd generations. Red solid line: fr(a); red break
line: ff(a). (b) For the left-handed system. C: the 1st generation. Blue solid line: fr(a);
blue break line: ff(a). D: the 2nd and 3rd generations. Red solid line: fr(a); red break line:
ff(a). Here, fr(a) and ff(a) in the 3rd generation are consistent with fr(a) and ff(a) in the
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the 2nd generation, di = 10−7 m and νi = 10−18 m2 s−1; and for the 3rd generation, di = 10−10 m
and νi = 10−30 m2 s−1. Other data: B0 = 5 T, Ω̃ = 6.28 s−1, ⟨δc⟩ = 3.6 × 10−4 m, zm = 2,
Dm = 6.0 × 10−10 m2 s−1, C∗

m(z = ∞) = 50.0 mol m−3, F = 96,485 C mol−1, R = 0.8312 J K−1 mol−1,
T = 300 K, ρ = 1.073 × 103 kg m−3, and σ∗ = 10.0 Ω−1 m−1.

2.2. Characteristic Equations of 3D Nucleation under Nano-MHD Vortexes

In the second generation, the characteristic equations of 3D nucleation under nano-
MHD vortexes control the instability of the 3D nucleation and nano-MHD vortexes, which
are, as will be mentioned later, described by the characteristic equation of 3D nucleation in a
stationary solution multiplied by the VCFs of the rigid-surface and free-surface nano-MHD
vortexes. Therefore, we first examine the 3D nucleation in a stationary solution.

2.2.1. Surface Height Equation in 3D Nucleation

In Figure 7, the 3D nucleation process on the surface of a 2D nucleus in a stationary
solution is exhibited. Assuming that the mass transfer is rate-determining, we will treat
the electron transfer process in a quasi-equilibrium state. The mass balance between the

adatoms and the metallic ions comes from the mass flux density,
→
j

s

flux, of the metallic ion

from the solution phase to the electrode surface, the mass flux density of the adatom,
→
j

s

surf,

by the surface diffusion and the mass flux density,
→
j

s

inc, of the adatom by the incorporation
into the crystal lattice [72–75].

∂

∂t
cad(x, y, t)s +∇⊥·

→
j

s

surf =
→
n ·

→
j

s

flux −
→
n ·

→
j

s

inc (24)

where cad(x, y, t)s denotes the symmetrical fluctuation of the adatom concentration,
→
n is

the unit normal vector of the electrode surface, and ∇⊥ is defined by (∂/∂x, ∂/∂y).
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Using the surface diffusion coefficient, Dad, and the equilibrium surface concentration
of the adatom, C∗

ad, we can write the mass flux density of the adatom along the surface
as follows:

→
j

s

surf = −Dad
RT

C∗
ad∇⊥ψ(x, y, t)s (25)

where R and T are the universal gas constant and absolute temperature, respectively.
ψ(x, y, t)s expresses the fluctuation of the chemical potential of the adatoms by the change
in surface height, i.e.,

ψ(x, y, t)s = −Ωmγ∗∇⊥
2ζ(x, y, t)s (26)

where ∇⊥
2 ≡ ∂2/∂x2 + ∂2/∂y2, Ωm is the molar volume of the depositing metal, γ∗ is the

isotropic surface free energy, and ζ(x, y, t)s is the surface height fluctuation of the deposit
surface. The flux density of the metallic ion at the interface is given as follows:

→
n ·

→
j

s

flux = Dm

{→
n ·∇cm(x, y, z, t)s

}
(27)

where ∇ indicates (∂/∂x, ∂/∂y, ∂/∂z). The sign of the flux density is defined as a plus sign
in the case of deposition.

Finally, the surface deformation rate is determined by the deposition rate and mass
flux density of the adatom as follows:

∂

∂t
ζ(x, y, t)s = Ωm

{
∂

∂t
cad(x, y, t)s +

→
n ·

→
j

s

inc

}
(28)

The substitution of Equations (25) to (28) into Equation (24) leads to the surface–height
equation.

1
Ωm

∂

∂t
ζ(x, y, t)s = −Ωmγ∗ Dad

RT
C∗

ad∇⊥
4ζ(x, y, t)s + Dm

{→
n ·∇cm(x, y, z, t)s

}
(29)

where ∇⊥
4 represents

(
∂2/∂x2 + ∂2/∂y2)2.

2.2.2. Electrochemical Boundary Conditions

As has been discussed above, the electron transfer is assumed to be in quasi-equilibrium.

M(ad) ⇆ Mzm(IHP) + zme−(metal) (30)
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where M(ad) and Mzm(IHP) are the adatom and the metallic ion at the inner Helmholtz
plane (IHP), respectively. e−(metal) is a free electron in the electrode, and zm is the charge
number of the metallic ion.

According to Equation (30), their chemical and electrochemical potentials are related
to the following:

µad(x, y, t) = µm(x, y, ζs, t) + zmµe(x, y, t) (31)

where µad is the chemical potential of the adatoms, µm is the electrochemical potential
of the metallic ions, and µe is the electrochemical potential of the electrons. ζs denotes
ζ(x, y, t)s, i.e., the surface height fluctuation via 3D nucleation.

Here, if a minute projection by the electrodeposition accidentally happens in the
diffusion layer, the concentration of the metallic ions fluctuates around it, as expressed
by Equation (1). The fluctuation of the free electrons in the metal phase is neglected due
to their large mobility in light speed, so the fluctuation of the chemical potential of the
adatoms is expressed by the fluctuation of the electrochemical potential of the metallic ions.

δµad(x, y, t)s = δµm(x, y, ζs, t)s (32)

At the top of the projection, the chemical potential of the adatoms also fluctuates
according to Equation (26):

δµad(x, y, t)s = ψ(x, y, t)s (33)

On the other hand, the fluctuation of the electrochemical potential of the metallic ions
induces the fluctuation of the concentration overpotential arising from the projection.

δµm(x, y, ζs, t)s = zmFδH(x, y, ζs, t)s (34)

where F is the Faraday constant, and δHs denotes the fluctuation of the concentration
overpotential, expressed by the following Nernst-type equation:

H(x, y, z, t) =
RT

zmF
ln
{

Cm(x, y, z, t)
C∗

m(z = ∞)

}
(35)

where C∗
m(z = ∞) is the bulk concentration.

The fluctuation is explicitly written as follows:

δH(x, y, ζs, t)s =
RT

zmF
cm(x, y, ζs, t)s

⟨Cm(x, y, 0, t)⟩ (36)

where ⟨Cm(x, y, 0, t)⟩ represents the average surface concentration equal to C∗
m(z = 0),

where the asterisk means electrostatic equilibrium. To derive Equation (36), we assumed
the condition

∣∣cm(x, y, ζs, t)s∣∣ ≪ ⟨Cm(x, y, 0, t)⟩. The concentration fluctuation at the top of
the projection is expanded in the first order for ζs.

cm(x, y, ζs, t)s = cm(x, y, 0, t)s + Lmζ(x, y, t)s (37a)

where Lm represents the average concentration gradient in the diffusion layer.

Lm ≡ θ∗∞
⟨δc⟩

(> 0) (37b)

where θ∗∞ is the concentration difference between the bulk and surface, i.e.,

θ∗∞ ≡ C∗
m(z = ∞)− C∗

m(z = 0) (37c)

and ⟨δc⟩ is the average diffusion layer thickness.
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Substituting Equations (26) and (33) into Equation (32), and inserting
Equations (34), (36), and (37a) into the resulting equation, we obtain the electrochemical
boundary condition for the symmetrical fluctuations.

cm(x, y, 0, t)s = −Lmζ(x, y, t)s − Ωmγ∗

RT
⟨Cm(x, y, 0, t)⟩∇⊥

2ζ(x, y, t)s (38)

2.2.3. Characteristic Equations of the Nano-MHD Vortexes and 3D Nuclei

Equations (29) and (38) are transformed via Fourier transformation concerning x- and
y-coordinates into the following amplitude equations:(

d
dt

+ Ω2
mγ∗ Dad

RT
C∗

adk4
)

Z0
j (t)

s = ΩmDmDΘ0
j (0, t)s for j = r and f (39a)

and (
Lm − Ωmγ∗

RT
⟨Cm(x, y, 0, t)⟩k2

)
Z0

j (t)
s = −Θ0

j (0, t)s for j = r and f (39b)

where Z0
j (t)

s and Θ0
j (0, t)s denote the amplitudes of ζ(x, y, t)s and cm(x, y, 0, t)s on the

rigid surface (j = r) and the free surface (j = f), respectively, and DΘ0
j (0, t)s indicates{

(d/dz)Θ0
j (z, t)s

}
z=0

. k denotes the wavenumber defined by
(

k2
x + k2

y

)1/2
, and kx and ky

are the x- and y-components of the wavenumber, respectively.
Substituting Z0

j (t)
s from Equation (39b) into Equation (39a), we obtain the amplitude

equation of the concentration fluctuation:(
d
dt

+ Ω2
mγ∗ Dad

RT
C∗

adk4
)

Θ0
j (0, t)s= −ΩmDm

(
Lm − Ωmγ∗

RT
⟨Cm(x, y, 0, t)⟩k2

)
DΘ0

j (0, t)s for j = r or f (40a)

Here, using the representative length, ds, of 3D nucleation in the second generation, we
introduce the nondimensional wavenumber, as, as well as the nondimensional coordinates
x, y, and z. Equation (40a) is therefore revised as follows:(

d
dt + Ωm

2γ∗ Dad
ds4RT

C∗
adas4

)
Θ0

j (0, t)s = −ds−1ΩmDm

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
DΘ0

j (0, t)s

for j = r and f
(40b)

where the nondimensional parameters are defined by as ≡ kds, D ≡ Dds, x ≡ x/ds and
y ≡ y/ds. In the following, introducing the vorticity coefficient functions, VCFs, of the
rigid- and free-surface nano-MHD vortexes, we obtain the characteristic equations of rigid-
and free-surface nucleation with nano-MHD vortexes in the second generation.

As was shown initially, since a symmetrical fluctuation is essentially one among
the asymmetrical fluctuations, from the general amplitude equation of the asymmetrical
concentration fluctuation based on the two-layer system formulated in Part 1 [1], we can
derive the amplitude equation of the symmetrical concentration fluctuation on the rigid
and free surfaces as follows:

Θ0
j (0, t)s = −fs

j (as)−1 2asβs
i

zmFDmS∗s for j = r, i = 1 and j = f, i = 0 (41a)

where βs
i is the vorticity coefficient of the rigid-surface (i = 1) and free-surface (i = 0)

vortexes, and fs
j (as) is the vorticity coefficient function, VCF, of the rigid-surface (j = r)

and free-surface (j = f) nano-MHD vortexes. In Part 1 [1], they were generally used in the
equations of the amplitudes, Ω0

j (z, t), of the z-components of the vorticity fluctuations,
ωz,j, i.e., Ω0

r (z, t) = β1zeaz and Ω0
f (z, t) = β0(1 − az)eaz. From Part 1, the gradient of the

amplitude of the symmetrical concentration fluctuation is also obtained via the following:

DΘ0
j (0, t)s =

2asβs
i

zmFDms∗s for j = r(i = 1) and f(i = 0) (41b)
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Substituting Equations (41a) and (41b) into Equation (40b), we have the characteristic
equation of the vorticity coefficient, βs

i :

d
dt

βs
i =

{
ds−1ΩmDm

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
fs
i (as)− Ωm

2 γ∗ Dad

ds4RT
C∗

adas4
}

βs
i (42a)

Here, as shown in Equations (22a) and (22b), the VCFs converge to fs
i (as) = as with

decreasing representative length, ds. This result indicates that the activated MHD vortexes
vanish as ds decreases with the lower generation.

When the average surface concentration ⟨Cm(x, y, 0, t)⟩ is regarded as constant, i.e.,
under a potentiostatic condition, Equation (42a) is solved as follows:

βs
i (t) = βs

i (0)exp
{

ps
j (as)t

}
for j = r and f (42b)

where ps
j (as) denotes the amplitude factor of the rigid- and free-surface vortexes. As will

be shown later, if the amplitude factor, ps
j (as), is positive for some of the wavenumber as,

the vortex coefficient, βs
i (t), increasing with time gives rise to unstably growing nano-MHD

vortexes. However, when ps
j (as) is kept negative for all as values, all of the βs

i (t) values
decreasing with time lead to stably dwindling vortexes. The instability of the nano-MHD
vortexes depends on the sign of the amplitude factor, ps

j (as).
A similar relationship to that in Equation (42a) concerning the surface height fluctua-

tion is also obtained; from Equations (41a) and (41b), we have the following:

Θ0
j (0, t)s = −fs

j (as)−1DΘ0
j (0, t)s for j = r and f (43)

Substituting Equation (43) into Equations (39a) and (39b), and adding the resulting
equations together, we obtain the amplitude equation of the surface height fluctuation:

d
dt

Z0
j (t)

s =

{
ds−1ΩmDm

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
fs
j (as)− Ωm

2γ∗ Dad

ds4RT
C∗

adas4
}

Z0
j (t)

s (44a)

Equation (44a) is similar to Equation (42a), so we also obtain the following equation:

Zs
j (t) = Zs

j (0)exp
{

ps
j (as)t

}
for j = r and f (44b)

Namely, the surface height fluctuation is also controlled by the same amplitude factor,
ps

j (as), which is defined by the following:

ps
j (as) ≡ ds−1ΩmDm

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
fs
j (as)− Ωm

2γ∗ Dad

ds4RT
C∗

adas4 for j = r and f (45a)

Under limiting diffusion, i.e., ⟨Cm(x, y, 0, t)⟩ ≈ 0, Equation (45a) is simplified via the
following:

ps
j (as) = ds−1ΩmDmLmfs

j (as)− Ωm
2γ∗ Dad

ds4RT
C∗

adas4 (45b)

The first term on the right-hand side of Equation (45b) is the main part of the amplitude
factor, and the second term is the additional one expressing the suppression by surface diffu-
sion [76]. Therefore, the sign of ps

j (as) is mainly determined by the first term. As mentioned
above, inserting the stationary-solution condition, fs

j (as) = as, in Equations (22a) and (22b)
into Equations (45a) and (45b), we can make the amplitude factor exist in a stationary
solution [69–71]. In the case of cathodic deposition, the concentration gradient, Lm, is
positive and considered to consist of the main part, so ps

j (as) becomes positive for a certain
wavenumber range. Namely, 3D nucleation in a stationary solution is always unstable. On
the other hand, the vorticity coefficient function, VCF, fs

j (as), indicates the contribution
of the nano-MHD vortexes to 3D nucleation. As shown in Figure 6, it takes positive and
negative values for right- and left-handed systems of the upper generation, respectively,
so the MHD vortexes sometimes promote and sometimes suppress the instability. This
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behavior of MHD vortexes is different from the behavior under a parallel magnetic field;
the MHD vortexes under a parallel magnetic field only give rise to suppression [72].

Therefore, in general, the instability of the nucleation under MHD vortexes is deter-
mined by the sign of the product of the main part of the amplitude factor in a stationary
solution of the VCF, i.e., positive and negative correspond to unstable and stable for the
MHD vortexes and nucleation in each generation. This process is simply expressed in a
schematic form:

[NI under MHDVs] = [NI in a S.S.]× [VCF ] (46)

where NI denotes nucleation instability, MHDV represents the MHD vortex, and S.S.
represents a stationary solution. “[ ]” expresses the sign of each term. It should be noted
that Equation (46) also expresses the instability of the MHD vortexes themselves.

3. Results and Discussion

As was shown in Part 1 [1], in the first generation, the micro-MHD vortexes unstably
develop with 2D nuclei under a VMHDF. Since the rotation of the VMHDF forms a right-
handed system with the external magnetic field, B0Ω̃ > 0, as shown in Equation (21a),
the VCFs of the micro-MHD vortexes are defined as positive functions, fa

j (aa) > 0 for
j = r and f. In the absence of chloride ions, 2D nucleation is unstable in a stationary
solution [65], so the main part of the amplitude factor in a stationary solution is positive.
BY Equation (46), the instability of 2D nucleation under micro-MHD vortexes is therefore
defined by the sign of the product of the stationary-solution main part of the VCF, i.e., due
to the derived positive values, the micro-MHD vortexes unstably develop together with 2D
nuclei. Namely, the instability of 2D nucleation in a stationary solution is promoted by the
micro-MHD vortexes.

Since the value, as well as the sign of the amplitude factor under MHD vortexes is
approximately determined by the same product, the difference in the instability strength be-
tween the rigid-surface and free-surface vortexes results from the values of the correspond-
ing VCFs. As has been discussed in Equation (21c), they generally have the relationship∣∣∣fi

r(a)
∣∣∣ < ∣∣∣fi

f(a)
∣∣∣ in every generation “i”, i.e., the absolute value of the free-surface VCF is

larger than that of the rigid-surface VCF. This means that in the unstable case, the positive
free-surface amplitude factor is larger than the positive rigid-surface amplitude factor.
Namely, the free-surface micro-MHD vortexes grow faster than the rigid-surface ones, so
the free-surface ones preferentially receive the precession from the upper generation vortex,
VMHDF, rotating in the same direction.

As mentioned initially, chiral nucleation occurs only on the rigid surfaces because
the free surfaces rotating with the vortexes yield no chirality. Then, to conserve a local
angular momentum, as shown in Figure 3d, a pair of rigid- and free-surface vortexes rotate
oppositely. Therefore, following the precessional rotation of the free-surface micro-MHD
vortexes, the rigid-surface micro-MHD vortexes rotate in the opposite direction, forming
a left-handed system, B0Ω̃ < 0, with the external magnetic field. As a result, the first-
generation 2D nuclei under the rigid-surface micro-vortexes are created with opposite
chirality to that of the VMHDF.

At the same time, the left-handed system of a rigid-surface micro-MHD vortex leads
to negative VCFs of the nano-MHD vortexes in the second generation, i.e., fs

j (as) < 0 for
j = r and f in Equation (21b). As discussed above, 3D nucleation in a stationary solution
is always unstable, i.e., the main part of the amplitude factor, the concentration gradient
Lm > 0 in Equation (45b), is kept positive so that the products of the main part of the VCFs,
i.e., the main parts of the amplitude factors under nano-MHD vortexes, become negative,
Lmfs

j (as) < 0. This time, the unstable 3D nucleation in a stationary solution is stabilized
by the nano-MHD vortexes. From Equation (21c), the relationship fs

f (as) < fs
r(as) < 0 is

derived, so concerning the main parts of the nano-MHD vortexes under the rigid-surface
micro-MHD vortexes, the relationship, Lmfs

f (as) < Lmfs
r(as) < 0 is derived. According

to Equations (42b) and (45b), the rigid-surface nano-MHD vortexes dwindle more slowly
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than the free-surface ones. Therefore, the precession from the rigid-surface micro-MHD
vortex directly transfers to the rigid-surface nano-MHD vortexes, forming a left-handed
system again in the third generation. From these discussions, it is concluded that in stable
nucleation, lower-generation rigid-surface vortexes obtain the same chirality as upper-
generation rigid-surface vortexes, whereas they receive the opposite chirality in the unstable
case. Figure 8 exhibits the amplitude factors of 3D nucleation in a stationary solution and
the amplitude factors under nano-MHD vortexes in the right-handed and left-handed
systems. Though the left-handed system is derived from the case without chloride ions, as
will be discussed later, the right-handed system corresponds to the case with chloride ions.
As shown in Figure 8b,c, the former and latter lead to stable and unstable 3D nucleation,
changing chirality.
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Figure 8. The amplitude factors of the 3D nuclei in a stationary solution and under nano-MHD
vortexes in the absence and presence of chloride ions in the 2nd generation. (a) The case of a
stationary solution. ps

ss(as) of 3D nuclei in a stationary solution. (b) The case of a right-handed
system (corresponding to the absence of chloride ions). Blue line: ps

r(as) of 3D nuclei under rigid-
surface vortexes. Red line: ps

f (as) of 3D nuclei under free-surface vortexes. (c) The case of a left-
handed system (corresponding to the presence of chloride ions). Blue line: ps

r(as) of 3D nuclei
under rigid-surface vortexes. Red line: ps

f (as) of 3D nuclei under free-surface vortexes. Calcu-
lation data: for the 2nd generation, di= 10−7 m and νi = 10−18 m2 s−1. Other data: B0 = 5 T,
Ω̃ = 6.28 s−1, ⟨δc⟩ = 3.6 × 10−4 m, zm = 2, Dm = 6.0 × 10−10 m2 s−1, C∗

m(z = ∞) = 50.0 mol m−3,
F = 96,485 C mol−1, R = 0.8312 J K−1 mol−1, T = 300 K, ρ = 1.073 × 103 kg m−3, σ∗ = 10.0 Ω−1 m−1.
γ∗ = 0.3 J m−2, Dad = 1.0 × 10−10 m s−1, C∗

ad= 1.0 × 10−6 mol m−2, and ⟨H⟩ = −0.4 V.
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In the third generation, though the detailed mechanism has been not yet established,
screw dislocations were created by some instability based on the mass transfer and elec-
trode reaction, which we could discuss in the same way: In the absence of chloride ions,
because the screw dislocation process in a stationary solution is unstable [77], the main part
of its amplitude factor must be positive. However, due to the left-handed system of the
rigid-surface nano-MHD vortex, the VCFs of the ultra-micro-MHD vortexes forming the
screw dislocations become negative functions. As a result, the main part of the amplitude
factors of the screw dislocations under the ultra-micro-MHD vortexes are determined as
negative, i.e., they are stable, so the rigid-surface ultra-micro-MHD vortexes show the same
chirality of the left-handed system as that of the rigid-surface nano-MHD vortexes. This
result represents that, as shown in the experimental results obtained by Mogi and cowork-
ers [8–21], the CW activity (D-activity) and ACW activity (L-activity) of the deposit surface
appear under antiparallel (upward) and parallel (downward) magnetic fields, respectively.

On the contrary, in the presence of chloride ions, as has been shown in Part 1 [1],
due to the specific adsorption of chloride ions in the electric double layer, the micro-MHD
vortexes and 2D nucleation turn stable, so the rigid-surface micro-MHD vortexes in the
first generation directly progress toward the chirality of the VMHDF, i.e., the rotation
of the right-handed system of the VMHDF with the external magnetic field is inherited
in the first generation. The VCFs of the micro-MHD vortexes therefore become positive
functions in the second generation. However, as mentioned above, whether chloride ions
are present or not, 3D nucleation in a stationary solution is always unstable, so the main
part of the amplitude factor in a stationary solution is kept positive. This time, due to the
positive products of the positive main part of the positive VCFs, the nano-MHD vortexes
and 3D nucleation become unstable, so the rigid-surface nano-MHD vortexes of the second
generation obtain the opposite chirality to that of the rigid-surface micro-MHD vortexes
of the first generation, i.e., the left-handed-system’s chirality. Therefore, the VCFs of the
ultra-micro vortexes of the third generation become negative functions. Here, as for screw
dislocation, chloride ions are well-known leveling reagents for copper deposition, which
make copper screw dislocations vanish and become stabilized in a stationary solution [77].
This implies that the main part of the amplitude factor of screw dislocation in a stationary
solution takes a negative value. The positive products of the negative main part of the
negative VCFs lead to the instability of screw dislocation and ultra-micro MHD vortexes.
At the same time, this instability gives rise to the change in chirality from the left-handed
system to that of the right-handed system; the chiral activity of screw dislocations is
reversed via the addition of chloride ions.

In the three-generation model without chloride ions, the chiral activity of screw
dislocations in the third generation is therefore consistent with that of the rigid-surface
2D nucleus shown in the first generation: For a positive magnetic field, B0 > 0, i.e., for
an upward antiparallel magnetic field, ACW (VMHDF) → CW (2D nucleus) → CW (3D
nucleus) → CW (screw dislocation). For a negative magnetic field, i.e., for a downward
parallel magnetic field, B0 < 0, CW (VMHDF) → ACW (2D nucleus) → ACW (3D nucleus)
→ ACW (screw dislocation). Namely, under an upward (anti-parallel) magnetic field
B0 > 0, D-activity emerges, whereas under a downward (parallel) magnetic field B0 < 0,
screw dislocations with L-activity are produced. In the presence of chloride ions, the
chiral activity of screw dislocations in the third generation is changed to reverse one:
For an upward antiparallel (positive) magnetic field, B0 > 0, ACW (VMHDF) → ACW
(2D nucleus) → CW (3D nucleus) → ACW (screw dislocation). For a downward parallel
(negative) magnetic field, B0 < 0, CW (VMHDF) → CW (2D nucleus) → ACW (3D nucleus)
→ CW (screw dislocation). In the presence of chloride ions, due to specific adsorption
on the electric double layer, we can expect that inversed chirality appears, depending on
the direction of the magnetic field, i.e., for B0 > 0 and B0 < 0, L-activity and D-activity
arise, respectively.

The above discussions are summarized as follows:
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(1) The rigid-surface vortex rotation, Ω̃(rig)(i), of the upper generation, “i” and the
external magnetic field, B0 forms a right-handed system, B0Ω̃(rig)(i) >, 0 or a left-
handed system, B0Ω̃(rig)(i) < 0. The vorticity coefficient function, VCF(i + 1), of
the lower generation, “i+1”, is defined as a positive function, VCF(i + 1) > 0, for
B0Ω̃(rig)(i) > 0 and a negative function, VCF(i + 1) < 0, for B0Ω̃(rig)(i) < 0.

(2) The main part (MP) of the amplitude factor in a stationary solution (S.S.) in the lower
generation, MP(S.S.)(i + 1), is defined as positive, MP(S.S.)(i + 1) > 0 or negative,
MP(S.S.)(i + 1) < 0, depending on whether the nucleation in a stationary solution is
“unstable” or “stable”.

(3) The nucleation under the rigid-surface vortexes is determined to be unstable for
MP(S.S.)(i + 1)·VCF(i + 1) > 0 and stable for MP(S.S.)(i + 1)·VCF(i + 1) < 0.

(4) For the unstable case, MP(S.S.)(i + 1)·VCF(i + 1) > 0, the chirality of the lower
generation, ‘i+1”, is changed from that of the upper generation, “i”, and for the stable
case, MP(S.S.)(i + 1)·VCF(i + 1) < 0, the chirality of the present lower generation,
“i + 1”, preserves that of the upper generation, “i”. In Figure 9, we exhibit the flow
chart for MHD vortexes to obtain chirality in the three generations and the actual
chirality obtained in each generation in the absence and presence of chloride ions.
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climbing up the slope shown in Figure 10a, we turn anticlockwise. However, we must turn 
clockwise to go down it. The nucleus grows under a rigid-surface nano-MHD vortex, 
which has, as shown in Figure 3c, a downward flow. An enantiomeric reagent also ap-
proaches downwards, so the chirality should be defined as a system with a downward 
direction, i.e., for the present case, CW chirality and D-activity are derived. Figure 10b is 
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clei without chirality are developed. 

Figure 9. Flow chart for MHD vortexes to obtain chirality in the three generations. (a) Flow chart of
how to determine the chirality in the three generations. (b) Signs of the main parts of the amplitude
factors in a stationary solution, (MP(S.S.)(i + 1)), in the three generations. (c) Sign of the vorticity
coefficient function (VCF) in the right-handed system (RS) and the left-handed system (LS). (d) Chi-
rality obtained in each generation in the absence and presence of chloride ions. RS: right-handed
system, LS: left-handed system. MP(S.S.): the main part of the amplitude factor in a stationary
solution; MP(MHDV): the main part of the amplitude factor under MHD vortexes. MF: magnetic
field; VMHDF: vertical MHD flow; MHDV: MHD vortex. 1stG: 1st generation; 2ndG: 2nd generation;
3rdG: 3rd generation. D: D-activity; L: L-activity. “i” and “i + 1” indicate the quantities in the upper
and lower generations.
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The experimental result of copper deposition onto a copper electrode with a larger
diameter of 3 mm in a copper sulfate solution from a study by Mogi and coworkers told
us that the reversal of chirality by adding chloride ions is partial, i.e., only in the upward
magnetic field does D-activity change to L-activity, whereas L-activity in the downward
magnetic field keeps the same chirality [14,20,21]. This result strongly suggests disturbance
from magneto-convection by a gradient field force, which is induced from the magnetic field
gradient applied to a paramagnetic material, being dependent on the magnetic field direc-
tion. A copper sulfate solution is paramagnetic, and it is well known that the characteristic
magneto-convection arises through a vertical magnetic field gradient [54].

Finally, following Appendix A, the surface morphology of 3D nuclei in the second
generation was calculated. Figure 10a shows a calculated 3D nucleus formed on a rigid
electrode surface under an antiparallel upward magnetic field (B0 > 0). Under a stable CW
nano-MHD vortex, though not the third generation, a screw dislocation-like 3D nucleus
with chirality is formed. The clear-cut surfaces without obscurity due to diffusion come
from the phase cutting of the symmetrical fluctuation shown in Figure 4. This result
suggests that the chiral screw dislocations of the third generation also evolve from the
formation process, similar to the chiral 3D nuclei of the second generation. At this time,
a question is brought about: how should we determine the chirality of it? Namely, when
climbing up the slope shown in Figure 10a, we turn anticlockwise. However, we must turn
clockwise to go down it. The nucleus grows under a rigid-surface nano-MHD vortex, which
has, as shown in Figure 3c, a downward flow. An enantiomeric reagent also approaches
downwards, so the chirality should be defined as a system with a downward direction,
i.e., for the present case, CW chirality and D-activity are derived. Figure 10b is a deposit
surface of the second generation after 100 rounds of nucleation. In every nucleation, chiral
3D nuclei are formed at fixed points on the rigid surfaces, whereas on the free surfaces
covered with ionic vacancies, due to rotation with the micro-MHD vortexes, nuclei without
chirality are developed.

Magnetochemistry 2024, 10, x FOR PEER REVIEW 22 of 33 
 

 

  
(a) (b) 

Figure 10. Three-dimensional nuclei calculated via complex Fourier transform in the absence of 
chloride ions. (a) A screw dislocation-like 3D nucleus under a CW rigid-surface nano-MHD vortex 
under an antiparallel upward magnetic field. The down arrow indicates a downward direction. The 
rotating arrow indicates a CW rigid-surface nano-MHD vortex. (b) A 3D-nuclei deposit surface un-
der rigid- and free-surface nano-MHD vortexes after 100 rounds of nucleation. The calculation data 
are as follows: 𝐵   = 5 T, Ω  = 6.28 s−1, z   = 2, 𝐷   = 6.0 × 10−10 m2 s−1, 〈𝛿 〉  = 3.74 × 10−4 m, and 𝐶∗ (𝑧 = ∞) = 50 mol m−3. Supporting electrolyte, 500 mol m−3; applied overpotential, −0.4 V; nuclea-
tion period, 1.0 s. 

4. Conclusions 
In the three-generation model, chirality transfers from the upper generation the to 

lower generation via the instability or stability difference between the rigid- and free-sur-
face MHD vortexes rotating in opposite directions. Since the effective viscosity increases 
with lowering generations, for the vortexes to rotate in the second and third generations, 
the kinematic viscosity must decrease to a zero level. Ionic vacancies therefore work as 
atomic-scale lubricants, lowering the viscosity of the vacancy layer on the electrode to al-
most zero. At the same time, the vortexes promote or suppress 3D nucleation, depending 
on whether the system is right-handed or left-handed. 

The addition of chloride ions reverses the chiral activity of the electrode. However, 
in the case of copper deposition, due to magneto-convection from the gradient force to the 
paramagnetic copper sulfate solution, such reversal becomes partial, leading to a break-
down in chiral symmetry. 

Author Contributions: Conceptualization, R.A.; methodology, A.S., M.M. (Makoto Miura), Y.O. and 
R.A.; software, R.M., M.M. (Miki Miura) and R.A.; validation, A.S., M.M. (Makoto Miura), Y.O. and 
R.A.; formal analysis, R.M., A.S., M.M. (Makoto Miura), Y.O. and R.A.; investigation, R.M., A.S., 
M.M. (Makoto Miura) and Y.O.; resources, Y.O., I.M., and R.A.; data curation, R.M., and R.A.; writ-
ing—original draft preparation, R.A.; writing—review and editing, R.M., A.S., M.M. (Makoto Miura) 
and Y.O.; visualization, R.M., A.S., M.M. (Makoto Miura) and Y.O.; supervision, Y.Y. and R.A.; pro-
ject administration, Y.O. and R.A. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was partially supported by the JSPS KAKENHI Grant-in-Aid for Scientific 
Research (C), no. 19K05230. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 

Acknowledgments: This work was performed in part at the Queensland node of the Australian 
National Fabrication Facility, a company established under the National Collaborative Research 

Figure 10. Three-dimensional nuclei calculated via complex Fourier transform in the absence of
chloride ions. (a) A screw dislocation-like 3D nucleus under a CW rigid-surface nano-MHD vortex
under an antiparallel upward magnetic field. The down arrow indicates a downward direction. The
rotating arrow indicates a CW rigid-surface nano-MHD vortex. (b) A 3D-nuclei deposit surface
under rigid- and free-surface nano-MHD vortexes after 100 rounds of nucleation. The calculation
data are as follows: B0 = 5 T, Ω̃ = 6.28 s−1, zm = 2, Dm = 6.0 × 10−10 m2 s−1, ⟨δc⟩ = 3.74 × 10−4 m,
and C∗

m(z = ∞) = 50 mol m−3. Supporting electrolyte, 500 mol m−3; applied overpotential, −0.4 V;
nucleation period, 1.0 s.
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4. Conclusions

In the three-generation model, chirality transfers from the upper generation the to
lower generation via the instability or stability difference between the rigid- and free-
surface MHD vortexes rotating in opposite directions. Since the effective viscosity increases
with lowering generations, for the vortexes to rotate in the second and third generations,
the kinematic viscosity must decrease to a zero level. Ionic vacancies therefore work as
atomic-scale lubricants, lowering the viscosity of the vacancy layer on the electrode to
almost zero. At the same time, the vortexes promote or suppress 3D nucleation, depending
on whether the system is right-handed or left-handed.

The addition of chloride ions reverses the chiral activity of the electrode. However,
in the case of copper deposition, due to magneto-convection from the gradient force to
the paramagnetic copper sulfate solution, such reversal becomes partial, leading to a
breakdown in chiral symmetry.
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List of Symbols

x x-coordinate (m), or nondimensional x-coordinate defined by x/ds.
y y-coordinate (m), or nondimensional y-coordinate defined by y/ds.
z z-coordinate (m), or nondimensional z-coordinate defined by z/ds.
X nondimensional x-length of the electrode.
Y nondimensional y-length of the electrode.
ds representative length of 3D nucleation in the 2nd generation.
di representative length of the i generation (i = 1st, 2nd and 3rd) (m).
⟨δc⟩ average diffusion layer thickness (m).
cm(x, y, z, t)s symmetrical concentration fluctuation of the metallic ion (mol m−3).
Cm(x, y, z, t) molar concentration of the metallic ion (mol m−3).
C*

m(z = 0) average surface concentration (mol m−3).
C*

m(z = ∞) bulk concentration (mol m−3).
⟨Cm(x, y, z, t)⟩ average value of Cm(x, y, z, t) (mol m−3).
⟨Cm(x, y, 0, t)⟩ average value of Cm(x, y, 0, t) equal to C*

m(z = 0) (mol m−3).
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θ*
∞

concentration difference between the bulk and surface defined by
C*

m(z = ∞)− C*
m(z = 0) in Equation (37c) (mol m−3).

H(x, y, z, t) concentration overpotential (V).
δH(x, y, z, t)s symmetrical fluctuation of concentration overpotential (V).
⟨H⟩ average concentration overpotential (V).
Θ0

j (0, t)s amplitude of cm(x, y, 0, t)s on the rigid surface (j = r) and the free surface (j = f).
E electrode potential (V).
Eeq equilibrium potential (V).
ws

r z-components of the velocity of a rigid-surface vortex (m s−1).
ws

f z-components of the velocity of a free-surface vortex (m s−1).
ωs

z,r z-component of the vorticity of a rigid-surface vortex (s−1).
ωs

z,f z-component of the vorticity of a free-surface vortex (s−1).

fi
r(a)

the vorticity coefficient function (VCF) of the rigid-surface vortexes defined by
Equation (2) (i = 1st, 2nd, and 3rd).

fi
f(a)

the vorticity coefficient function (VCF) of the free-surface vortexes defined by
Equation (5) (i = 1st, 2nd, and 3rd).

g1(a) function of a defined by Equation (6a).
g2(a) function of a defined by Equation (6b).
g3(a) function of a defined by Equation (6c).
g4(a) function of a defined by Equation (4a).
g5(a) function of a defined by Equation (4b).
g6(a) function of a defined by Equation (4c).

S*i magneto-viscosity coefficient in the i generation defined by
Equation (3a) (i = 1st, 2nd and 3rd) (m2 A−1 s−1).

T*i rotation coefficient in the i generation defined by
Equation (3b) (i = 1st, 2nd, and 3rd) (m−1).

Q*i magneto-induction coefficient in the i generation defined by
Equation (3c) (i = 1st, 2nd and 3rd).

R*i mass transfer coefficient in the ith generation defined by
Equation (3d) (i = 1st, 2nd, and 3rd) (mol m−4 s).

S* coefficient of S*i defined by Equation (8a) (m3 A−1 s−2).
T* coefficient of T*i defined by Equation (8b) (m2 s−1).
Q* coefficient of Q*i defined by Equation (8c) (s−1).
R* coefficient of R*i defined by Equation (8d) (mol m−6 s).

νi representative kinematic viscosity of the i generation (i = 1st, 2nd and 3rd)
(m2 s−1).

ξi parameter defined by di/νi (m−1 s).
B0 external magnetic flux density (T).
ρ solution density (kg m−3).
Ω̃ angular velocity of a VMHDF (s−1).

Ω̃
j angular velocity of the upper-generation rigid-surface vortex (j = non, a and s)

(s−1).
σ* electric conductivity (Ω−1m−1).

Lm
concentration gradient, defined by Equation (37b) in the 2nd generation
(mol m−4).

Dm diffusion coefficient of the metallic ion (m2 s−1).

θ*
∞

concentration difference between the bulk and surface defined by
Equation (37c) (mol m−3).

⟨δc⟩ average diffusion layer thickness (m).

hmr(a)
function of the torque component of the rigid-surface MHD vortexes activated
by the applied magnetic field defined by Equation (11a).

hpr(a)
function of the torque component of the precession from the upper-generation
rigid-surface vortexes defined by Equation (11b).

g̃6(a)i rewritten form of g6(a) in the i generation defined by Equation (13).

hmf(a)
function of the torque component of the free-surface MHD vortexes activated by
the applied magnetic field defined by Equation (15a).

hpf(a)
function of the torque component of the precession from the upper-generation
free-surface vortexes defined by Equation (15b).
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g̃3(a)i rewritten form of g3(a) in the i generation defined by Equation (17).
→
j

s

flux

the mass flux density of the metallic ion from the solution phase to the electrode
surface (mol m−3 s−1).

→
j

s

surf the mass flux density of the adatom due to surface diffusion (mol m−2 s−1).
→
j

s

inc

the mass flux density of the adatom due to the incorporation of the crystal lattice
(mol m−3 s−1).

cad(x, y, t)s symmetrical fluctuation of the adatom concentration (mol m−3).
Dad surface diffusion coefficient of the adatom (m2 s−1).
C*

ad equilibrium surface concentration of the adatom (mol m−2).
R universal gas constant, 8.31 (J K−1 mol−1).
T absolute temperature (K).
F Faraday constant (96,485 C mol−1).

ψ(x, y, t)s symmetrical fluctuation of the chemical potential of the adatoms by the change
of surface form (J mol−1).

Ωm molar volume of the depositing metal (m3 mol−1).
γ* isotropic surface free energy (J m−2).
ζ(x, y, t)s surface height fluctuation of the deposit surface of 3D nuclei (m).
ζs abbreviation of ζ(x, y, t)s (m).
ζr(x, y, t)s rigid-surface component of ζ(x, y, t)s (m).
ζf(x, y, t)s free-surface component of ζ(x, y, t)s (m).
⟨ζ(x, y, 0)s2⟩ mean square (ms) value of ζ(x, y, t)s at the initial steady state (m2).
Z0

j (t)
s amplitudes of ζ(x, y, t)s on the rigid surface (j = r) and the free surface (j = f).

Z0
r (0)

s amplitude of the rigid-surface component of the initial surface height fluctuation
ζ(x, y, 0)s.

Z0
f (0)

s amplitude of the free-surface component of the initial surface height fluctuation
ζ(x, y, 0)s.

jz(x, y, 0, t)s diffusion current fluctuation on 3D nuclei (A m−2).
jz,r(x, y, 0, t)s rigid-surface component of jz(x, y, 0, t)s(A m−2).
jz,f(x, y, 0, t)s free-surface component of jz(x, y, 0, t)s(A m−2).
µad(x, y, t) the chemical potential of the adatoms.
δµad(x, y, t)s symmetrical fluctuation of µad(x, y, t).
µm(x, y, ζs, t) the electrochemical potential of the metallic ions.
the symmetrical fluctuation of µm(x, y, ζs, t).
µe(x, y, t) the electrochemical potential of the electrons.
H(x, y, z, t) concentration overpotential (V).
δH(x, y, ζs, t)s fluctuation of the concentration overpotential (V).

k wavenumber defined by
(

k2
x + k2

y

)1/2
(m−1).

kx x-component of the wavenumber (m−1).
ky y-component of the wavenumber (m−1).
a nondimensional wavenumber common in every generation.
as nondimensional wavenumber of the 2nd generation defined by kds.
as

x x-component of the nondimensional wavenumber as.
as

y y-component of the nondimensional wavenumber as.
amax

s the upper limit of the wavenumber as.
as+ autocorrelation distance of the symmetrical fluctuation.
βs

1(t) vorticity coefficient of the rigid-surface vortexes.
βs

0(t) vorticity coefficient of the free-surface vortexes.
ps

r(as) amplitude factor under the rigid-surface vortexes (s−1).
ps

f (as) amplitude factor under the free-surface vortexes (s−1).
ps

ss(as) amplitude factor in a stationary solution (s−1).

P
(

as
x, as

y

)s
the nondimensional spatial spectrum of the surface height fluctuation.

αs
r the ratio of the rigid-surface component,

∣∣∣Z0
r (0)

s
∣∣∣.

αs
f the ratio of the free-surface component,

∣∣∣Z0
f (0)

s
∣∣∣.

βs
1(t) vorticity coefficient of rigid-surface MHD vortexes.

βs
0(t) vorticity coefficient of free-surface MHD vortexes.
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γs
1

vorticity coefficient constant of rigid-surface nano-MHD vortexes defined by
Equation (A6b).

γs
0

vorticity coefficient constant of free-surface nano-MHD vortexes defined by
Equation (A8b).

gs
r(as)

vorticity coefficient function of rigid-surface nano-MHD vortexes defined by
Equations (A6c) and (A11a).

gs
f (as)

vorticity coefficient function of free-surface nano-MHD vortexes defined by
Equations (A8c) and (A11b).

Rs
d unit random complex number defined by Equation (A9).

θs
rand normal random number between 0 and 2π.

F
(
ax

s, ay
s) a general function of ax

s and ay
s.

F
(
ax

s, ay
s)

even even component concerning ax
s and ay

s of the function F
(
ax

s, ay
s).

F
(
ax

s, ay
s)

odd odd component concerning ax
s and ay

s of the function F
(
ax

s, ay
s).

a superscript of the asymmetrical fluctuation in the 1st generation.
s superscript of the symmetrical fluctuation in the 2nd generation.
⟨ ⟩ average over the electrode surface.
[ ] sign of physical quantity.
∇ operator defined by (∂/∂x, ∂/∂y, ∂/∂z).
∇⊥ operator defined by (∂/∂x, ∂/∂y).
∇⊥

2 operator defined by ∂2/∂x2 + ∂2/∂y2.
∇⊥

4 operator defined by
(
∂2/∂x2 + ∂2/∂y2)2.

D operator defined by d/dz, or nondimensional operator defined by D ≡ Dds.
C̃ operator describing a complex function.
Re sign expressing the real part of a complex number or function.
Im sign expressing the imaginary part of a complex number or function.
i unit imaginary number.
even sign expressing the even function.
odd sign expressing the odd function.
NI nucleation and MHD vortex instability.
MHDV MHD vortex.
S.S. stationary solution.
Ω̃(rig)(i) rigid-surface vortex angular velocity of the upper generation, ‘i’.
VCF(i + 1) vorticity coefficient function of the lower generation, ‘i + 1′.

MP(S.S.)(i + 1)
the main part (MP) of the amplitude factor in a stationary solution (S.S.) in the
lower generation, ‘i + 1′.

RS(i) right-handed system in the upper generation, ‘i’.
RS(i + 1) right-handed system in the lower generation, ‘i + 1′.
LS(i) left-handed system in the upper generation, ‘i’.
LS(i + 1) left-handed system in the lower generation, ‘i + 1′.
MF magnetic field
M(ad) adatom of the deposit metal.
Mzm (IHP) metallic ion at the inner Helmholtz plane (IHP).
zm charge number of the metallic ion.
e−(metal) free electron in the electrode.

Appendix A. Calculation of 3D Nucleus Morphology

Appendix A.1. Initial Spectrum of Symmetrical Fluctuation

Different from asymmetrical fluctuations arising from 2D nucleation in an electric
double layer, symmetrical fluctuations are controlled by the surface process of 3D nucleation
in a diffusion layer. A non-dimensional spatial spectrum of the surface height fluctuation
in a steady state should be defined as follows [73]:

P
(
ax

s, ay
s)s ≡ 1

XY
|Z0(0)s|2

⟨ζ(x, y, 0)s2⟩
for j = r and f (A1a)
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where ax
s and ay

s are the x- and y-components of the nondimensional wavenumber as, and

X and Y are the nondimensional x- and y-lengths of the electrode, respectively. ⟨ζ(x, y, 0)s2⟩
is the mean square (ms) value of the surface height of 3D nuclei at the initial steady state.
Z0(0)s is the amplitude of the initial surface height fluctuation. Assuming isotropic white
noise with normalization, we have the actual form of the power spectrum:

P
(
ax

s, ay
s)s

=
1

πamaxs2 (A1b)

where amax
s is the upper limit of the wavenumber as.

Using the representative length, ds, of the symmetrical fluctuation in the 2nd genera-
tion, the nondimensional wavenumber as is defined as follows:

as ≡ kds (A2a)

Assuming that ds is defined by the upper limit of the wavenumber kmax, i.e., as the
lower limit of the wavelength, we obtain the following:

ds ≡ 2π

kmax
(A2b)

Here, ds is equalized to the autocorrelation distance of the symmetrical fluctuation as+.
The upper limit of as is therefore written as follows:

amax
s = kmaxds = 2π (A2c)

The power spectrum Equation (A1b) is simply expressed by the following:

P
(
ax

s, ay
s)s

=
1

4π3 (A2d)

Then, substituting P
(
ax

s, ay
s)s from Equation (A2d) into Equation (A1a), we obtain

the following:

|Z0(0)s|2 =
XY
4π3 ⟨ζ(x, y, 0)s2⟩ (A3a)

Since the total surface height amplitude, Z0(0)s, is composed of the rigid- and free-
surface components, Z0

r (0)
s and Z0

f (0)
s, introducing the ratios of the rigid-surface and

free-surface components, αs
r and αs

f , each surface-height amplitude is expressed as follows:

|Z0
j (0)

s|2 = αs
j
2 XY

4π3 ⟨ζ(x, y, 0)s2⟩ for j = r and f (A3b)

Here, the following relationship is satisfied:

αs
r
2 + αs

f
2 = 1 (A3c)

For a stationary VMHDE without mechanical rotation, ACW and CW vortexes are
equally induced, i.e., αs

r = αs
f = 2−1/2.

Following Part 1, introducing an operator, C̃, describing a complex function, we can
treat both amplitude components at once as the real and imaginary parts of the com-
plex function.

C̃Z0(0)s = ReZ0
r (0)

s
even + i·ImZ0

f (0)
s
odd (A4)

where “i” is the unit imaginary number, and “Re” and “Im” denote the real and imaginary
parts of a complex number. Subscripts ‘even’ and ‘odd’ represent even and odd functions
of the wavenumber, respectively. As an example of a pair of cosine and sine functions, the
even and odd functions, Z0

r (0)
s
even and Z0

f (0)
s
odd, are orthogonal, so they are independent
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of each other. Namely, we can determine the formation processes of rigid-surface and
free-surface 3D nuclei at once via the complex surface-height amplitude, C̃Z0(0)s.

Appendix A.2. Formation Process of 3D Nuclei

The amplitudes of the symmetrical surface height fluctuations are solved as Equation (44b),
where Z0

j (0)
s is the initial value of Z0

j (t)
s defined by Equation (A3b), and ps

j (as) is the
amplitude factor expressed by Equation (45a).

To calculate the concentration gradients in Equation (41b), the explicit expressions of
the vorticity coefficients βs

1 and βs
0 are required. Substituting Θ0

r (0, t)s from Equation (41a)
into Equation (39b), we have the following:

βs
1(t) = −1

2
zmFDmS∗sfs

r(as)

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
Z0

r (t)
s (A5)

The substitution of Equations (44b) and (A3b) into Equation (A5) leads to

|βs
1(t)| =

1
2
|γs

1||gs
r(as)|exp{ps

r(as)t} (A6a)

where

γs
1 ≡ 1

2π
αs

r

√
XY
π

zmFDmS∗s⟨ζ(x, y, 0)s2⟩1/2 (A6b)

and

gs
r(as) ≡ fs

r(as)

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
(A6c)

Then, in the same way as Equation (A5), we obtain

βs
0(t) = − 1

2as zmFDmS∗sfs
f (as)

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
Z0

f (t)
s (A7)

The substitution of Equations (44b) and (A3b) into Equation (A7) leads to

|βs
0(t)| =

1
2as |γ

s
0||gs

f (as)|exp{ps
f (as)t} (A8a)

where

γs
0 ≡ 1

2π
αs

f

√
XY
π

zmFDmS∗s⟨ζ(x, y, 0)s2⟩1/2 (A8b)

and

gs
f (as) ≡ fs

f (as)

(
Lm − Ωmγ∗

ds2RT
⟨Cm(x, y, 0, t)⟩as2

)
(A8c)

The calculation of this system is performed as follows: First, the solution phase
including the electrode surface is virtually divided by 3D grids. Each grid point is defined at
intervals of the autocorrelation distance. Then, to simultaneously deal with two components
on the rigid and free surfaces, it is necessary to assign a single random complex number
to the amplitudes of both components. Because of the stochastic process in multiple
nucleation, the following unit random complex number is introduced to each grid point of
the 3D wavenumber plane.

Rs
d = cosθs

rand + i·sinθs
rand (A9)

where θs
rand is a normal random number between 0 and 2π, which is renewed over all grid

points whenever nucleation is restarted.
Substituting for βs

1 and βs
0 from Equations (A6a) and (A8a) in Equation (41b), respec-

tively, we obtain

DΘ0
r (0, t)s =

γs
1

zmFDms∗s gs
r(as)exp{ps

r(as)t}Rs
d (A10a)
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and

DΘ0
f (0, t)s =

γs
0

zmFDms∗s gs
f (as)exp{ps

f (as)t}Rs
d (A10b)

We also have Equations (A6a) and (A8a) represented as follows:

βs
1(t) =

1
2
|γs

1||gs
r(as)|exp{ps

r(as)t}Rs
d (A11a)

and
βs

0(t) =
1

2as |γ
s
0||gs

f (as)|exp{ps
f (as)t}Rs

d (A11b)

Since 3D nuclei grow independently on rigid and free surfaces, DΘ0
r (0, t)s and DΘ0

f (0, t)s

must distribute independently over the electrode surface without any contradiction, which
mathematically implies that they are orthogonally normally packed. To calculate their
self-organization processes self-consistently, a complex Fourier transform is utilized, e.g.,
the rigid- and free-surface components that are embedded as the real and imaginary parts
in the forms of odd and even functions are normal to each other, the symmetries of which
are preserved in the transformations.

In the same way as the initial amplitude of the surface height fluctuation in Equation (A4)
is introduced, the operator, C̃, is introduced, which embeds odd and even components of a
function into a complex space.

C̃F
(
ax

s, ay
s) ≡ ReF

(
ax

s, ay
s)

odd + i·ImF
(
ax

s, ay
s)

even (A12a)

or
C̃F

(
ax

s, ay
s) ≡ ReF

(
ax

s, ay
s)

even + i·ImF
(
ax

s, ay
s)

odd (A12b)

where F
(
ax

s, ay
s) is generally decomposed into the even and odd functions, F

(
ax

s, ay
s)

even
and F

(
ax

s, ay
s)

odd, about ax
s and ay

s, i.e.,

F
(
ax

s, ay
s) = F

(
ax

s, ay
s)

even + F
(
ax

s, ay
s)

odd (A12c)

The signs Re and Im denote the real and imaginary parts. Even and odd functions
such as cosine and sine functions are orthogonal to each other, so they are embedded as the
real and imaginary parts, and vice versa.

Through the operator C̃, the amplitudes of the concentration gradient fluctuations on
rigid and free surfaces are assigned to real and imaginary parts of a complex amplitude, e.g.,

C̃DΘ0(0, t)s = DΘ0
r Θ0(0, t)s + i· DΘ0

f Θ0(0, t)s (A13)

where the rigid- and free-surface components are defined as even and odd functions
concerning ax

s and ay
s, respectively. As shown in Equation (A9), due to the introduction of

a unit random complex number, Rs
d, the discrimination between even and odd functions is

finally canceled.
The complex function C̃DΘ0(0, t)s is transformed into the complex concentration

gradient via complex Fourier inversion, i.e.,

C̃
{

∂cm(x, y, z, t)s

∂z

}
z=0

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
C̃DΘ0(0, t)sexp

[
i
(
ax

sx + ay
sy
)]

dax
sday

s (A14a)

where ax
s and ay

s are the x and y components of the nondimensional wavenumber as, i.e.,
as2 = ax

s2+ax
s2.

Under Equations (A12a) or (A12b), the complex concentration gradient fluctuation is
expressed as follows:

C̃
{

∂cm(x, y, z, t)s

∂z

}
z=0

=

{
∂cm,r(x, y, z, t)s

∂z

}
z=0

+ i·
{

∂cm,f(x, y, z, t)s

∂z

}
z=0

(A14b)
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where cm,r(x, y, z, t)s and cm,f(x, y, z, t)s are the rigid- and free-surface components of the
symmetrical concentration fluctuation cm(x, y, z, t)s, respectively. As mentioned above, due
to complex random numbers initially introduced, the natures of even and odd functions
disappear in the fluctuations on the x–y plane.

Finally, the symmetrical fluctuation of the concentration gradient is obtained via the
linear combination of both components. Here, the concentration gradient fluctuations are
also asymmetrical, so by Figure 3, their minus parts are cut off (phase cutting).{

∂cm(x, y, z, t)s

∂z

}
z=0

=

{
∂cm,r(x, y, z, t)s

∂z

}
z=0

+

{
∂cm,f(x, y, z, t)s

∂z

}
z=0

(> 0) (A14c)

The diffusion current fluctuation on 3D nuclei is also expressed by the rigid- and
free-surface components.

jz(x, y, 0, t)s = jz,r(x, y, 0, t)s + jz,f(x, y, 0, t)s (< 0) (A15a)

where jz,r(x, y, 0, t)s and jz,f(x, y, 0, t)s are rigid- and free-surface components, respec-
tively. Using the concentration gradient fluctuations in Equation (A14b), we obtain

jz,r(x, y, 0, t)s = −zmFDm

{
∂cm,r(x, y, z, t)s

∂z

}
z=0

(< 0) (A15b)

and

jz,f(x, y, 0, t)s = −zmFDm

{
∂cm,f(x, y, z, t)s

∂z

}
z=0

(< 0) (A15c)

Due to phase cutting, the diffusion current fluctuations are defined as negative. As a
result, the surface morphology of the 3D nuclei is effectively calculated via the symmet-
rical surface height fluctuation, so with the diffusion current fluctuations, we derive the
following equations:

ζr(x, y, t)s = − Ωm

zmF

∫ t

0
jz,r(x, y, 0, t)sdt (> 0) (A16a)

and

ζf(x, y, t)s = − Ωm

zmF

∫ t

0
jz,f(x, y, 0, t)sdt (> 0) (A16b)

Negative current fluctuations lead to positive height fluctuations. The total surface
morphology is the linear combination of both components.

ζ(x, y, t)s = ζr(x, y, t)s + ζf(x, y, t)s (A16c)

The introduction of the complex Fourier transform allows us to separately calculate
the self-organization of 3D nuclei on the rigid and free surfaces.
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51. Chouchane, S.; Levesque, A.; Żabiński, P.R.; Rehamnia, R.; Chopart, J.P. Electrochemical corrosion behavior in NaCl medium of
zinc-nickel alloys electrodeposited under applied magnetic field. J. Alloys Compd. 2010, 506, 575–580. [CrossRef]

52. Kishioka, S.; Yamada, A.; Aogaki, R. Analysis of gas dissolution rate into liquid phase under magnetic field gradient. Phys. Chem.
Chem. Phys. 2000, 2, 4179–4183. [CrossRef]

53. Devos, O.; Aogaki, R. Transport of paramagnetic liquids under nonuniform high magnetic field. Anal. Chem. 2000, 72, 2835–2840.
[CrossRef]

54. Sugiyama, A.; Morisaki, S.; Aogaki, R. Mass transfer process by magneto-convection at a solid-liquid interface in a heterogeneous
vertical magnetic field. Jpn. J. Appl. Phys. 2003, 42, 5322–5329. [CrossRef]

55. Tschulik, K.; Koza, J.A.; Uhlemann, M.; Gebert, A.; Schultz, L. Effects of well-defined magnetic field gradients on the electrodepo-
sition of copper and bismuth. Electrochem. Commun. 2009, 11, 2241–2244. [CrossRef]

56. Dunne, P.; Mazza, L.; Coey, J.M.D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 2011, 107, 024501. [CrossRef] [PubMed]
57. Tschulik, K.; Yang, X.; Mutschke, G.; Uhlemann, M.; Eckert, K.; Sueptitz, R.; Schultz, L.; Gebert, A. How to obtain structural

deposits from diamagnetic ions in magnetic gradient fields? Electrochem. Commun. 2011, 13, 946–950. [CrossRef]
58. Tschulik, K.; Sueptitz, R.; Koza, J.; Uhlemann, M.; Mutschke, G.; Weier, T.; Gebert, A.; Schultz, L. Studies on the patterning effect

of copper deposits in magnetic gradient fields. Electrochim. Acta 2010, 56, 297–304. [CrossRef]
59. Tschulik, K.; Cierpka, C.; Muschke, G.; Gebert, A.; Schultz, L.; Uhlemann, M. Clarifying the mechanism of reverse structuring

during electrodeposition in magnetic gradient fields. Anal. Chem. 2012, 84, 2328–2334. [CrossRef] [PubMed]
60. Aogaki, R.; Fueki, K.; Mukaibo, T. Application of magnetohydrodynamic effect to the analysis of electrochemical

reactions—1. MHD flow of an electrolyte solution in an electrode-cell with a short rectangular channel. Denki Kagaku
(Present. Electrochem.) 1975, 43, 504–508. [CrossRef]

61. Aogaki, R.; Fueki, K.; Mukaibo, T. Application of magnetohydrodynamic effect to the analysis of electrochemical reactions—2. Dif-
fusion process in MHD forced flow of electrolyte solutions. Denki Kagaku (Present. Electrochem.) 1975, 43, 509–514. [CrossRef]

62. Aogaki, R.; Fueki, K.; Mukaibo, T. Diffusion process in viscous-flow of electrolyte solution in magnetohydrodynamic pump
electrodes. Denki Kagaku (Present. Electrochem.) 1976, 44, 89–94. [CrossRef]

63. Salinas, G.; Tieriekhov, K.; Garrigue, P.; Sojic, N.; Bouffier, L.; Kuhn, A. Lorentz Force-Driven Autonomous Janus Swimmers.
J. Am. Chem. Soc. 2021, 143, 12708–12714. [CrossRef]

https://doi.org/10.1149/1.1635829
https://doi.org/10.1149/1.1536996
https://doi.org/10.1021/jp9532024
https://doi.org/10.1021/ac960899w
https://www.ncbi.nlm.nih.gov/pubmed/21639248
https://doi.org/10.1021/ja982540q
https://doi.org/10.1016/j.elecom.2008.01.035
https://doi.org/10.1016/j.electacta.2012.02.110
https://doi.org/10.1149/1.1838276
https://doi.org/10.1023/B:JACH.0000005609.07861.07
https://doi.org/10.1016/j.electacta.2009.05.036
https://doi.org/10.1016/j.elecom.2008.10.057
https://doi.org/10.1016/j.jmmm.2004.04.118
https://doi.org/10.2478/v10172-012-0001-z
https://doi.org/10.2478/v10172-012-0051-2
https://doi.org/10.1016/j.electacta.2012.11.047
https://doi.org/10.1016/j.jallcom.2010.07.099
https://doi.org/10.1039/b003472j
https://doi.org/10.1021/ac9907078
https://doi.org/10.1143/JJAP.42.5322
https://doi.org/10.1016/j.elecom.2009.09.041
https://doi.org/10.1103/PhysRevLett.107.024501
https://www.ncbi.nlm.nih.gov/pubmed/21797609
https://doi.org/10.1016/j.elecom.2011.06.007
https://doi.org/10.1016/j.electacta.2010.08.080
https://doi.org/10.1021/ac2029612
https://www.ncbi.nlm.nih.gov/pubmed/22360304
https://doi.org/10.5796/kogyobutsurikagaku.43.504
https://doi.org/10.5796/kogyobutsurikagaku.43.509
https://doi.org/10.5796/kogyobutsurikagaku.44.89
https://doi.org/10.1021/jacs.1c05589


Magnetochemistry 2024, 10, 25 32 of 32

64. Salinas, G.; Kuhn, A.; Arnaboldi, S. Self-Sustained Rotation of Lorentz Force-Driven Janus Systems. J. Phys. Chem. C 2023, 127,
14704–14710. [CrossRef]

65. Tieriekhov, K.; Sojic, N.; Bouffier, L.; Salinas, G.; Kuhn, A. Wireless Magnetoelectrochemical Induction of Rotational Motion. Adv.
Sci. 2024, 11, 2306635. [CrossRef] [PubMed]

66. Zharov, A.; Fierro, V.; Celzard, A. Magnetohydrodynamic self-propulsion of active matter agents. Appl. Phys. Lett. 2020,
117, 104101. [CrossRef]

67. Anderson, E.C.; Weston, M.C.; Fritsch, I. Investigations of Redox Magnetohydrodynamic Fluid Flow at Microelectrode Arrays
Using Microbeads. Anal. Chem. 2010, 82, 2643–2651. [CrossRef] [PubMed]

68. Sikes, J.C.; Wonner, K.; Nicholson, A.; Cignoni, P.; Fritsch, I.; Tschulik, K. Characterization of Nanoparticles in Diverse Mixtures
Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrody-
namics Microfluidics. ACS Phys. Chem. Au 2022, 2, 289–298. [CrossRef] [PubMed]

69. Aogaki, R.; Kitazawa, K.; Kose, Y.; Fueki, K. Theory of powdered crystal formation in electrocrystallization-Occurrence of
morphological instability at the electrode surface. Electrochim. Acta 1980, 25, 965–972. [CrossRef]

70. Aogaki, R.; Makino, T. Theory of powdered metal formation in electrochemistry-Morphological instability in galvanostatic crystal
growth under diffusion control. Electrochim. Acta 1981, 26, 1509–1517. [CrossRef]

71. Aogaki, R. Instability of nonequilibrium fluctuation in electrochemical nucleation. 1. Occurrence of instability. J. Chem. Phys.
1995, 103, 8602–8615. [CrossRef]

72. Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Theory of microscopic
electrodeposition under a uniform parallel magnetic field-1. Nonequilibrium fluctuations of magnetohydrodynamic (MHD) flow.
J. Electroanal. Chem. 2019, 848, 113254. [CrossRef]

73. Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Theory of microscopic
electrodeposition under a uniform parallel magnetic field-2. Suppression of 3D nucleation by micro-MHD flow. J. Electroanal.
Chem. 2019, 847, 113255. [CrossRef]

74. Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Long-term
Electrodeposition under a uniform parallel magnetic field. 1. Instability of two-dimensional nucleation in an electric double layer.
J. Phys. Chem. B 2020, 124, 11854–11869. [CrossRef] [PubMed]

75. Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Long-term
Electrodeposition under a uniform parallel magnetic field. 2. Flow-mode transition from laminar flow to convection cells with
two-dimensional (2D) nucleation. J. Phys. Chem. B 2020, 124, 11870–11881. [CrossRef] [PubMed]

76. Aogaki, R.; Makino, T. Morphological instability in nonsteady galvanostatic electrodeposition 1. Effect of surface diffusion of
adatoms. J. Electrochem. Soc. 1984, 131, 40–46. [CrossRef]

77. Yanson, Y.I.; Rost, M.J. Structural accelerating effect of chloride on copper electrodeposition. Angew. Chem. Int. Ed. 2013, 52,
2454–2458. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acs.jpcc.3c01597
https://doi.org/10.1002/advs.202306635
https://www.ncbi.nlm.nih.gov/pubmed/38126582
https://doi.org/10.1063/5.0018692
https://doi.org/10.1021/ac9020177
https://www.ncbi.nlm.nih.gov/pubmed/20210341
https://doi.org/10.1021/acsphyschemau.1c00046
https://www.ncbi.nlm.nih.gov/pubmed/35915589
https://doi.org/10.1016/0013-4686(80)87101-5
https://doi.org/10.1016/0013-4686(81)85123-7
https://doi.org/10.1063/1.470119
https://doi.org/10.1016/j.jelechem.2019.113254
https://doi.org/10.1016/j.jelechem.2019.113255
https://doi.org/10.1021/acs.jpcb.0c05903
https://www.ncbi.nlm.nih.gov/pubmed/33379871
https://doi.org/10.1021/acs.jpcb.0c05905
https://www.ncbi.nlm.nih.gov/pubmed/33347294
https://doi.org/10.1149/1.2115539
https://doi.org/10.1002/anie.201207342
https://www.ncbi.nlm.nih.gov/pubmed/23345172

	Introduction 
	Theory 
	Similarity of the MHD Vortexes in the Three Generations 
	Vorticity Coefficient Functions (VCF) 
	Occurrence of Chiral Symmetry 
	Conservation of Chiral Vortex Motion in the Three Generations 

	Characteristic Equations of 3D Nucleation under Nano-MHD Vortexes 
	Surface Height Equation in 3D Nucleation 
	Electrochemical Boundary Conditions 
	Characteristic Equations of the Nano-MHD Vortexes and 3D Nuclei 


	Results and Discussion 
	Conclusions 
	Appendix A
	Initial Spectrum of Symmetrical Fluctuation 
	Formation Process of 3D Nuclei 

	References

