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Abstract: Imaging from optical coherence tomography (OCT) is widely used for detecting retinal
diseases, localization of intra-retinal boundaries, etc. It is, however, degraded by speckle noise. Deep
learning models can aid with denoising, allowing clinicians to clearly diagnose retinal diseases. Deep
learning models can be considered as an end-to-end framework. We selected denoising studies that
used deep learning models with retinal OCT imagery. Each study was quality-assessed through image
quality metrics (including the peak signal-to-noise ratio—PSNR, contrast-to-noise ratio—CNR, and
structural similarity index metric—SSIM). Meta-analysis could not be performed due to heterogeneity
in the methods of the studies and measurements of their performance. Multiple databases (including
Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened
for publications published after 2010, without any limitation on language. From the 95 potential
studies identified, a total of 41 were evaluated thoroughly. Fifty-four of these studies were excluded
after full text assessment depending on whether deep learning (DL) was utilized or the dataset and
results were not effectively explained. Numerous types of OCT images are mentioned in this review
consisting of public retinal image datasets utilized purposefully for denoising OCT images (n = 37)
and the Optic Nerve Head (ONH) (n = 4). A wide range of image quality metrics was used; PSNR
and SNR that ranged between 8 and 156 dB. The minority of studies (n = 8) showed a low risk of bias
in all domains. Studies utilizing ONH images produced either a PSNR or SNR value varying from
8.1 to 25.7 dB, and that of public retinal datasets was 26.4 to 158.6 dB. Further analysis on denoising
models was not possible due to discrepancies in reporting that did not allow useful pooling. An
increasing number of studies have investigated denoising retinal OCT images using deep learning,
with a range of architectures being implemented. The reported increase in image quality metrics
seems promising, while study and reporting quality are currently low.

Keywords: deep learning; ophthalmology; image processing; optical coherence tomography

1. Introduction

Optical coherence tomography (OCT) stands at the forefront of modern medical imag-
ing techniques, harnessing the power of low-coherence infrared light to delve deep into
biological structures with unprecedented clarity and precision [1]. This revolutionary
technology affords longer exposure times due to its inherent biological safety, presenting a
stark departure from the ionizing radiation associated with conventional X-rays. Moreover,
when juxtaposed with Magnetic Resonance Imaging (MRI) and Computerized Tomography
(CT), OCT emerges as a cost-effective alternative, democratizing access to high-quality
diagnostic imaging. However, amidst the brilliance of OCT lies a challenge inherent to
all imaging modalities—noise. Inevitably introduced during the imaging process, noise
mingles with the signal emanating from the object under scrutiny, influencing the resul-
tant intensity observed by the detecting pixel [2]. Of particular concern is speckle noise,
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a byproduct of low coherence in irradiance, which casts a shadow over the signal-to-noise
ratio, obscuring critical details within the imagery. Within the realm of ophthalmology,
OCT serves as a versatile tool, facilitating the acquisition of cross-sectional and volumetric
images that illuminate the intricate landscape of biological tissues and retinal structures.
These images serve as invaluable aids in diagnosing a myriad of ocular diseases, ranging
from diabetic retinopathy (DR) [3] to age-related macular degeneration (AMD) [4], guiding
clinicians toward tailored treatment strategies.

Meanwhile, in the realm of computer science and Artificial Intelligence (AI), Machine
Learning (ML) emerges as a beacon of innovation. By mining insights from past data,
ML algorithms prognosticate future trends, obviating the need for explicit programming
or human intervention [5]. At its core, ML epitomizes the essence of pattern recogni-
tion, endowing computers with the capacity to glean insights from vast datasets with
unparalleled efficiency.

Within the ML landscape, deep learning (DL) commands center stage, propelled by
leaps and bounds in computational prowess and the proliferation of “big data”. Convolu-
tional Neural Networks (CNNs) epitomize this evolution, revolutionizing DL with their
ability to extract features, classify images, and recognize patterns at breakneck speeds.
By emulating the intricate workings of the human brain through the deployment of filters
and intricate layers, CNNs herald a new era of computational efficiency.

The intersection of DL and OCT heralds a realm of boundless possibilities, marked
by advancements in volumetric data handling, heightened sensitivity, and specificity in
detecting structural alterations and the tantalizing prospect of denoising retinal images to
unprecedented levels of clarity. This synthesis prompts a critical examination, as we delve
into recent studies illuminating the applications of DL to OCT imagery, evaluating their
impact on image quality assessment.

Moreover, as we stand on the precipice of a new era in medical imaging and computa-
tional innovation, it behooves us to explore the clinical ramifications of integrating these
cutting-edge computational techniques into the fabric of healthcare delivery. Through a
judicious examination of recent computational innovations and their potential clinical ap-
plications, we chart a course toward enhanced diagnostic accuracy, streamlined treatment
pathways, and, ultimately, improved patient outcomes. Thus, this review not only serves
as a testament to the symbiotic relationship between technology and healthcare but also as
a compass guiding future research endeavors and clinical initiatives.

2. Overview of Optical Coherence Tomography

Optical coherence tomography (OCT) stands as a maturing imaging technology, of-
fering resolution ranging from millimeters to sub-millimeters and boasting a penetration
depth comparable to that achieved in human skin [6]. This innovative technique pre-
dominantly employs low-coherence infrared light to safely delve into biological tissues,
affording longer exposure times in contrast to X-rays. Figure 1 illustrates the conceptual sys-
tem configuration of Michelson interferometry, the foundation upon which OCT operates.
Within this setup, the interferometric probe beam, formed by recombined reflected beams
at the beam splitter, is directed toward the surface under examination, with a detector
poised to capture the backscatter emanating from this surface [7].

Central to the functioning of OCT is the notion of coherence, a defining characteristic
of light wherein all rays maintain a consistent and calculable phase over a defined period.
However, the utilization of low coherence, while advantageous in probing biological tissues,
introduces an unintended consequence—the introduction of noise altering pixel intensity
and distorting the resulting image. This phenomenon manifests as artifacts, leading to a
compromised signal-to-noise ratio within OCT images [7]; while various forms of noise may
afflict the imaging process, speckle noise emerges as the predominant type encountered in
OCT imagery [8].

At the heart of OCT lies the Michelson interferometer, serving as its primary setup.
Here, an optical probe directs low-coherent light toward the sample, penetrating its surface
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and awaiting the rebound of reflected light. Subsequently, this reflected light is channeled
to the interferometer via an optical fiber for meticulous analysis, as depicted in Figure 1 [9].

Figure 1. A system diagram of the principle of Michelson interferometry used in OCT [9]. The sig-
nal from a collimated light source (LS) is partitioned into two orthogonal beam paths by a beam
splitter (BS); one collinear and the other normal to the ls pointing. The normal beam is reflected off
a movable mirror (M1), the collinear off a fixed mirror (M2). The reflected beams are recombined
at the bs and the co-propagating superposition is recorded as an interferogram at the detector (D).
Image [9].

3. Material and Methods

This paper presents a systematic review focusing on studies concerning diagnostic
accuracy. The reporting of this study adheres to the PRISMA-DTA guidelines [10].

3.1. Eligibility Criteria

This systematic review is designed to address specific queries utilizing the PICO
framework, which encompasses Population, Intervention, Control, and Outcomes. Our
investigation centers on several key questions. Firstly, we aim to explore the various
implementations and accuracy outcomes associated with employing deep learning (DL)
techniques for denoising retinal optical coherence tomography (OCT) imagery. Secondly,
we seek to evaluate the effectiveness of these DL-based denoising models in mitigating noise
and enhancing the quality of retinal OCT images. Thirdly, we will assess the performance
of DL-based denoising models against other denoising methods or untreated OCT images
used as benchmarks. Finally, our primary objective is to evaluate the effectiveness of
DL-based denoising models by analyzing improvements in image quality through the
application of widely used image metrics. Inclusion criteria for studies are as follows:

• Population (P): Studies focusing on the utilization of DL models with retinal imagery
obtained from either clinical or research settings.

• Intervention and Control (I, C): Studies employing DL-based models for tasks such
as image denoising, speckle reduction, or super-resolution, compared with a refer-
ence test.

• Outcomes (O): Studies reporting any estimate of image quality metrics (such as PSNR,
CNR, SSIM) applied at either the image or pixel level.

Our exclusion criteria encompass studies that do not meet specific standards, includ-
ing a lack of clear explanation regarding the utilized DL model, absence of an effective
comparative analysis with other state-of-the-art denoising methods, and classification as
reviews rather than original research contributions. By meticulously delineating these
inclusion and exclusion criteria, our goal is to ensure the robustness and reliability of the
systematic review findings. This approach facilitates comprehensive insights into the utility
and efficacy of DL in enhancing the quality of retinal OCT imagery.
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3.2. Search Methods for Identifying Studies

An electronic search was conducted within the following electronic databases: Google
Scholar, Scopus, Medline (via PubMed), Embase, and ArXiv, covering entries up to
16 November 2023. Results were filtered to include publications from 2010 onward, as deep
learning (DL) for computer vision and image analysis gained prominence following its
development in 2012 by Krizhevsky et al. [11]. Language restrictions were not applied.
Customized keywords were utilized for each database. Refer to Table 1 for the specific
search queries employed. Moreover, additional studies were identified through screening
conference proceedings and journal articles. Furthermore, manual cross-referencing of the
bibliographies of included papers was performed to ensure comprehensive coverage.

Table 1. The results of the electronic search in multiple databases.

Database Keywords Results Date

Google Scholar Image denoising AND deep learning AND “optical
coherence tomography”

4220 16 November 2023

Medline Image denoising AND deep learning AND “optical coherence
tomography”

32 16 November 2023

Scopus TITLE-ABS-KEY (image AND denoising AND deep AND learn-
ing AND “optical coherence tomography” )

68 16 November 2023

Embase (“image denoising”/exp OR “image denoising” OR ((“im-
age”/exp OR image) AND (“denoising”/exp OR denoising)))
AND (“deep learning”/exp OR “deep learning” OR (deep
AND (“learning”/exp OR learning))) AND (“optical coherence
tomography”/exp OR “optical coherence tomography”)

37 16 November 2023

ArXiv Image denoising AND deep learning AND “optical coher-
ence tomography”

9 16 November 2023

3.3. Study Selection

To efficiently manage citations, BibTeX was employed as a tool. Initial screening
involved the removal of duplicate entries based on titles and abstracts. Subsequently,
a thorough evaluation of articles was conducted to identify eligible studies in accordance
with the predetermined inclusion and exclusion criteria. This meticulous process ensured
the selection of relevant and appropriate studies for the systematic review. Additionally,
any discrepancies or uncertainties during the screening process were resolved through
discussion among the research team, ensuring consistency and accuracy in study selection.

3.4. Data Collection and Extraction

Data collection was conducted independently from the included studies and meticu-
lously revised to address any discrepancies or disagreements. Comprehensive information
was extracted, encompassing various data items vital for analysis. These included biblio-
graphic details such as authors’ names and publication years, details regarding the data
modality and type of dataset utilized, hardware specifications, and dataset size (including
train/validation/test sets, if provided). Moreover, inclusion and exclusion criteria at the
image level, if available, were noted, along with the specified objective of the study (e.g., im-
age denoising, speckle reduction, super resolution). Information regarding pre-processing
techniques, data augmentation strategies, and the deep learning (DL) approach employed,
including the neural network (NN) architecture utilized, was also recorded. Additionally,
details regarding the loss function employed and the image quality metrics used for evalua-
tion were documented. The resulting findings from each study were thoroughly examined.
In cases where an article compared multiple NN architectures, the most accurate one was
reported to ensure clarity and consistency in the analysis. This comprehensive approach
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to data extraction facilitated a robust and thorough examination of the included studies,
contributing to the reliability and validity of the systematic review findings.

3.5. Risk of Bias and Applicability

This review focuses specifically on the denoising aspect, and to assess the risk of
bias in the included studies, we adapted and employed the QUADAS-2 tool. This modi-
fied tool encompasses four main domains addressing the risk of bias: the data selection,
index test, reference standard, and flow-and-timing. Additionally, it evaluates three do-
mains regarding the applicability of the study to patient selection, the index test, and the
reference standard.

Within the “data selection” domain, we scrutinized papers with vague data-split
strategies and limited information on the dataset, which could potentially lead to data
leakage, indicating a high risk of bias. Moving on to the “index test” domain, we assessed
indicators such as the lack of description of the model and the absence of details regarding
test recreation and reproducibility. The “flow-and-timing” domain was evaluated based on
indicators such as the implementation of multiple reference standards (i.e., state-of-the-art
denoisers) within the same article and the appropriateness of intervals between the index
test and reference standard. Finally, within the “reference standard” domain, we considered
indicators like inadequate information on reference standard definition and the utilization
of only one reference test.

In cases where concerns arose regarding the relevance of the studies, certain factors
were meticulously reviewed. These included the dataset used, the procedure employed for
creating clean data, the specific deep learning (DL) model utilized, and its performance
concerning image quality metrics. Table 2 outlines the key questions utilized in our
assessment process, providing a structured framework for evaluating the risk of bias across
the included studies. Through this comprehensive approach, we aimed to ensure the rigor
and reliability of our review findings.

Table 2. Modified leading questions of QUADAS-2 for critical appraisal.

Domain Leading Questions

Data
Selection

1—Are any data imbalances addressed in the article?
2—Was the dataset split explained correctly for training, validation, and testing?
3—Did the study collect sufficient noisy–clean image pairs?

Index test

1—Was the methodology sufficiently explained for reproducibility?
2—Were the results of deep learning models explained without knowledge of
state-of-the-art denoisers?
3—Did the study apply any image quality metrics, sensitivity or robustness analysis
on their model?

Flow and
Timing

1—Was the full dataset utilized in the analysis?
2—Did each image have a reference clean image?
3—Were the reference clean images produced similarly?
4—Did the model show a sufficient interval between the reference and index test?

Reference
Standard

1—Were state-of-the-art results of denoisers mentioned and utilized
for interpretation?
2—Did the study describe the noisy–clean image procedure and minimize bias?
3—Were limitations, biases, and generalization issues reported sufficiently?

3.6. Data Synthesis and Analysis

Due to the diverse array of study designs and image quality measures utilized, our
quantitative synthesis was primarily confined to examining the outcomes related to image
denoising and speckle reduction. Given the substantial variability in the image quality
metrics employed for quantifying denoising and super resolution, the scope for direct
comparison was somewhat constrained, while a minority of studies reported metrics such
as contrast-to-noise ratio (CNR), equivalent number of looks (ENL), and the structural
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similarity index measure (SSIM), the predominant metrics presented were peak signal-to-
noise ratio (PSNR) or signal-to-noise ratio (SNR). Consequently, conducting a comparative
quantitative analysis across studies was limited to reporting any or all evaluation metrics
mentioned, calculated by:

PSNR = 10 log(
L2

MSE
), (1)

SNR = 10 log(
Psignal

Pnoise
), (2)

L denotes the maximum possible pixel value, and MSE is the mean squared error of the
image. Psignal and Pnoise are the mean and standard deviation of pixel values, respectively.
Next, the structural similarity index (SSIM) is a well-known image quality metric that
focuses on perceived similarity. The SSIM focuses on texture, quality degradation and
visible structures. The SSIM is defined as

SSIM =
(2σnc + c2)(2µnµc + c1)

(µ2
n + µ2

c + c1)(σ2
n + σ2

c + c2)
(3)

µn, µc, and σn, σc are the mean value and standard variation in noisy (n)–clean (c)
image pairs, respectively. Lastly, contrast-to-noise ratio (CNR) utilizes ROIs of background
and signal areas for speckle repression with respect to both areas. Equivalent number of
looks (ENL) is a metric assessing the smoothing of the predicted image. It does not require a
reference image since it utilizes selected ROIs of background and signal. ENL is defined as

ENL =
µ2

b
σ2

s
(4)

σs is the standard deviation of the signal representation, and µb is the mean value for
background representation. CNR is calculated through

CNR = 10 log(
µs − µb√
σ2

b + σ2
s

) (5)

µs and σs are the mean value and standard deviation of the signal representation, re-
spectively. For background representation, µb and σb are the mean value and
standard deviation.

4. Results
4.1. Study Selection and Study Characteristics

Out of the initial pool of 4399 studies identified, a rigorous evaluation was conducted
for 41 studies based on the criteria outlined in Table 2, utilizing their full texts. Subsequently,
54 studies were excluded following a thorough assessment of their full texts. The reasons
for exclusion were carefully documented and categorized, with detailed explanations
provided in Table S1. Ultimately, after meticulous manual screening, a total of 41 studies
were deemed eligible for inclusion in our review. Notably, the number of studies included
per year exhibited an upward trend over the observation period, as depicted in Figure 2.
This trend underscores the increasing interest and attention devoted to the subject matter
over time, highlighting the evolving landscape of research in this field.

The studies examined in this review were categorized into two main groups based on
the type of optical coherence tomography (OCT) images utilized within the field of ophthal-
mology: Optic Nerve Head (ONH) images and retinal images. A summary of these studies
is presented in Tables 3 and 4, respectively, highlighting the utilization of various deep
learning (DL) models for tasks such as image denoising, speckle reduction, and super reso-
lution. Specifically, retinal image datasets utilized in this review were predominantly public
datasets purposely employed for denoising OCT images (n = 37). Notable datasets included
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DUKE [12], Topcon [13], OPTIMA [14], Cirrcus [15], and Heindberg [16]. Conversely, ONH
images (n = 4) primarily comprised private datasets created by researchers.

Figure 2. Flowchart of the search following the PRISMA guidelines.

The majority of studies (n = 39) incorporated multiple reference tests to evaluate their
proposed methods against previous state-of-the-art denoisers. These reference tests encom-
passed both traditional programming and DL denoising models. Specifically, 26 studies
implemented DL models and traditional programming as reference tests, while 9 studies
utilized traditional programming-based state-of-the-art denoisers such as BM3D and NLM.
However, five studies did not specify any established reference test.

Regarding the choice of dataset for denoising, the DUKE dataset (n = 22) was the
most frequently utilized, followed by Topcon (n = 6), with ONH images being the least
employed (n = 4). Various DL models were deployed and integrated into hybrid frame-
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works, as depicted in Figure 3, which illustrates the distribution of studies implementing
each DL model. Notably, 44% of the studies implemented a hybrid generative adversarial
network (GAN), with the super-resolution GAN (SR-GAN) being the most utilized (n = 3)
alongside the conditional GAN (cGAN) (n = 3). Additionally, 13% of the studies employed
a traditional U-Net model (n = 6) for denoising, with only one hybrid framework reported.

Figure 3. Deep learning models approaches involved for denoising OCT images (n = studies).

Evaluation of denoising, speckle reduction, and studies on super resolution primarily
relied on metrics such as PSNR and SNR as the major image quality indicators. Furthermore,
other widely used image quality metrics included the SSIM (n = 27), CNR (n = 24), and ENL
(n = 16). These metrics are comprehensively displayed in Tables 3 and 4, providing insight
into the methodologies and outcomes of the reviewed studies.



J. Imaging 2024, 10, 86 9 of 22

Table 3. Summary of findings in the selected studies utilizing Optic Nerve Head (ONH) datasets for image denoising, speckle reduction, and super-resolution.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Devalla, 2019 [17] 24,832 B-Scans
(23,280/1552)

Augmentation: Rotation, flip,
elastic deformation
Pre-Processing: NA

U-Net with residual blocks NA MAE
SNR = 8.14 dB
CNR = 7.63 dB
MSSIM = 0.65

Cheong, 2021 [18] 2628 B-Scans
(2328/300)

Augmentation: rotation,
translation, flip, and scaling
Pre-Processing: NA

Hybrid model (framework
containing U-Net followed
by a choice of ResNet,
ResXNet, or EfficientNet)

NA Shadow + content +
style

PSNR = 11.1%
AGM = 57.2%
CNR = 154%
SSIM = 187%

Tian, 2020 [19] 350 HQ scans
(315/35)

Augmentation: flip, rotation,
cropping RMA-GAN SRCNN, EDSR,

ESRGAN

Content + perceptual +
adversarial + MS-SSIM
+ TV

PSNR = 25.7 dB
SSIM = 0.77

Hu, 2020 [20] 2500 B-Scans Augmentation: NA MSUN with self-fusion NA L1 + MSE PSNR = 10.1 dB
SSIM = 0.57

Akter, 2020 [21] 157 B-Scans (100/57)

Augmentation: NA
Pre-processing: contrast
adjustment, sharpening filter,
manually removed noise using
Fiji: ImageJ

U-Net
WIN5-RB,
Autoencoder, DnCNN,
Dense-UNet

MSE

PSNR = 29.8 dB
SSIM = 0.90
MSE = 0.005
MAE = 0.03

Halupka, 2018 [22] 55,080 B-Scans
(40,711/5587/ 8780)

Augmentation: flip, rotation,
cropping GAN WGAN, BM3D,

DD-CDWT
MSE + VGG +
adversarial

PSNR = 32.3 dB
SSIM = 0.78
MSE = 40.3
MS-SSIM = 0.92

Keywords: MSE—Mean squared error; MAE—Mean absolute error; SNR—Signal-to-noise ratio; PSNR—Peak signal-to-noise ratio; CNR—Contrast-to-noise ratio; SSIM—Structural
similarity index measure; MS-SSIM—Multi-scale structural similarity index measure; RMA-GAN—Realistic mixed attention GAN; SRCNN—Super-resolution CNN; EDSR—Enhanced
deep super-resolution network; ESRGAN—Enhanced super-resolution GAN; MSUN—Multi-scale U-Net; WGAN—Wasserstein GAN.
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Table 4. Summary of findings in the selected studies utilizing retinal datasets for image denoising, speckle reduction, and super-resolution.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Wei, 2018 [23] Duke [12] 26 B-Scans
(22/4)

Pre-processing: KNN for
clustering
Augmentation: scaling

DnCNN
BM3D, NLM,
BM3D-SAPCA, LPG-PCA,
Low Rank, FFDnet

NA
PSNR = 28.2 dB
CNR = 3.9 dB
MSR = 6.2

Chen, 2020 [24] 36 B-Scans (25/11)
Pre-processing: aligning,
averaging, thresholding,
adding speckle noise

DN-GAN

MSBTD, SBSDI, BM3D,
K-SVD, Tikkhonov,
SRResNet,
GAN-SRResNet, DCSRN,
GAN-U-Net

L1 + perceptual
PSNR = 27.9 dB
SSIM = 0.9
FBE = 3.6

Gour, 2020 [25]
Duke [12] and
Topcon [13],
23 B-Scans

NA DnCNN

Adaptive Median Filtering,
wavelet thresholding,
Tikhonov, BM3D, K-SVD,
MSBTD, Anisotropic
diffusion, STAT, Bayesian,
Isotropic diffusion, SE-CNN

MSE PSNR = 27.5 dB
SSIM = 0.68

Hassan, 2021 [26] 10,000 B-Scans
(8000/2000)

Pre-processing: added
speckle noise D-GAN Wavelet, Bilateral, NLM,

BM3D
Euclidean + perceptual
+ adversarial

PSNR = 35.4 dB
MSE = 0.19

Ma, 2018 [15]
Duke [12] and
Topcon [13] 521
B-Scans (512/9)

Pre-processing: registration,
alignment and
enhancing contrast
Augmentation: flip, scaling,
rotation, non-rigid
transformation

cGAN
NLM, BM3D, STROLLR,
K-SVD, MAP, DnCNN,
ResNet

MSE + L1 + edge

SNR = 60.1 dB
CNR = 10.0 dB
ENL = 126.9 dB
EPI = 1.0

Guo, 2020 [27]
Duke [12], A2A
SD-OCT, 90 B-Scans
(10/80)

NA Nonlocal GAN

NLM, BM3D, K-SVD,
BM4D, GCBD, GAN-MSE,
DnCNN, GAN-WDP,
DeGAN

Binary cross-entropy
SNR = 40.1 dB
ENL = 981.3 dB
CNR = 7.4 dB

Qiu, 2020 [28] 47 B-scans (37/10)
Pre-processing: averaged and
registered the B-scans to create
denoised image pairs

DnCNN NLM, BM3D Perceptually sensitive
(SSIM loss)

PSNR = 26.4 dB
SSIM = 0.71
MSE = 89.6
MS-SSIM = 0.91
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Table 4. Cont.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Huang, 2021 [13]
OCT2017 [29],
84,500 B-scans
(83,416/32/968)

Augmentation: crop AC-SRResNet BM3D, U-Net, SRResNet L1
SNR = 41.8 dB
CNR = 44.6 dB
EPI = 0.72

Halupka, 2018 [22] 69 OCT volumes
(51/7/11)

Pre-processing: averaged and
registered the B-scans to create
denoised image pairs

GAN BM3D, DD-CDWT,
CNN-WGAN

Adversarial + MSE +
perceptual

PSNR = 32.3 dB
SSIM = 0.78
MS-SSIM = 0.92
MSE = 40.3

Qiu, 2021 [30]
Duke [12], 52 groups
of 50 B-scans each
(37/15)

NA P2PGAN-N2N Median, NLM, BM3D Adversarial + L1

SNR = 35.5 dB
SSIM = 0.81
CNR = 4.0 dB
ENL = 260.3 dB
R = 0.94

Abassi, 2019 [31] Duke [12], 28 B-Scans
(10, 18)

Augmentation: flip, rotate,
crop MIFCN KSVD, BM3D, SAIST,

PG-GMM, BM4D, SSR MSE
PSNR = 27.4 dB
CNR = 3.8 dB
ENL = 2750.8dB

Shi, 2019 [32]

Topcon [13] and
Cirrus [15], 11
groups of 256
B-Scans (2/9)

NA DeSpec-Net

NLM, BM3D, STROLLR,
K-SVD, MAP,
Intra-volume
compounding, DnCNN

L1

SNR = 40.2 dB
CNR = 9.7 dB
ENL = 166.2 dB
EPI = 0.91

Huang, 2020 [33] Duke [12], 26 B-scans
(10/16)

Pre-processing: registering
and averaging images,
removing any over smoothed
images

DRGAN

Median, Bilateral, NLM,
Wavelet, BM3D,
SNR-GAN, NWSR,
edge-sensitive cGAN,
HDCycleGAN, Nonlocal
GAN, SiameseGAN

Adversarial +
reconstruction +
cycle-consistency +
novel noise

PSNR = 24.4 dB
SSIM = 0.58
CNR = 3.2 dB
EPI = 0.98
MSR = 4.8
ENL = 317.4 dB

Yu, 2018 [34] Duke [12], 15 B-scans
(8/3/4)

Pre-processing: crop,
removing unaligned images DN-GAN BM3D, BM3DPCA,

LPGPCA, FFDNET MSE + adversarial
PSNR = 31.0 dB
CNR = 3.3 dB
MSR = 3.7
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Table 4. Cont.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Tajmirr-iahi,
2021 [35]

Topcon [13],
240 B-Scans (200/40)

Augmentation: rotation, shift,
flip, and crop Autoencoder GT-SC-GMM, BM3D,

MSBTD, Tikhonov MSE

SNR = 108.8 dB
CNR = 82.2 dB
ENL = 58.4 dB
TP = 0.79
EP = 0.98
CT = 4.68

Sengupta, 2021 [36] Duke [12], 1600
B-Scans (1400/200) Pre-processing: crop EdgeWaveNet NLM, DeBlur-GAN,

RDNSR-GAN, RED-GAN
L1 + adversarial +
Sobel edge

PSNR = 22.8 dB
SSIM = 0.61

Mehdi-zadeh,
2021 [37] 71 B-scans (51/20) Augmentation: created

patches DnCNN NA L2 + L1 + perceptual
+ VGG

PSNR = 33.6 dB
PSI = 0.23
JNB = 13.9
S3 = 0.26

Cai, 2018 [38] Topcon [13],
256 B-scans (246/10)

Pre-processing: averaged and
registered the B-scans to create
denoised image pairs

ResNet Median, NLM, BM3D MSE PSNR = 34.8 dB
SSIM = 0.52

Zhou, 2022 [39] 5000 B-scans
(4500/480/20) Pre-processing: crop Transformer-IP2

BM3D, PNLM, NCDF,
OBNLM, DnCNN,
CNN-NLM,
Neighbor2Neighbor

Neighbor- 2Neighnor +
PNLM

SNR = 154.6 dB
CNR = 7.9 dB
ENL = 13,160.3 dB

Anoop, 2021 [40]
Duke [12] and
Optima [14], 2720
B-scans (2176/544)

Pre-processing: noise
distribution is found for each
image, patches and denoised
image pairs were created

DenseNet121 CAD, OBNLM, TVG,
Wavelet, K-SVD, DnCNN Cross-entropy PSNR = 31.0 dB

SSIM = 0.91

Fu, 2021 [41] Duke [12], 21 B-scans
(16/5)

Pre-processing: registering
and averaging images,
removed any over smoothed
images

ADGAN Wavelet, NLM, BM3D,
NWSR, HDCycleGAN

Adversarial +
cycle-consistency

PSNR = 27.6 dB
SSIM = 0.62
CNR = 3.1 dB
ENL = 530.8 dB

Wang, 2021 [42]
Topcon [13] and
Cirrus [15], 1920
B-scans (512/1408)

Pre-processing: creating
denoised image pairs
from [23]

Capsule cGAN

BM3D, K-SVD, NLM,
MAP, STROLLR, DnCNN,
ResNet, Cycle-GAN,
cGAN

L1 + Adversarial
+ SSIM

SNR = 59.0 dB
CNR = 11.4 dB
ENL = 417.2 dB
EPI = 1.0
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Table 4. Cont.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Zhou, 2022 [43]
Topcon [13] and
Cirrus [15], 1920
B-scans (512/1408)

Pre-processing: registering
and averaging images

Cycle-GAN with
mini-cGAN

NLM, BM3D, STROLLR,
K-SVD, MAP, DnCNN,
DPDNN, NAGAN with
mini-cGAN

L1 + MSE

SNR = 20.9 dB
CNR = 12.5 dB
SSI = 0.09
EPI = 0.99

Wu, 2021 [44] 3737 B-scans,
(3537/200)

Pre-processing: crop and
contrast enhancement cGAN

Cycle-GAN, DnCNN,
BM3D, DCWT, NLM,
MPE, cGAN, EGAN, SR

Adversarial +
cycle-consistency +
structural consistency
+ regularization

SNR = 35.0 dB
CNR = 7.2 dB
EPI = 0.92
CRSB = 0.14

Das, 2020 [45]
Duke [12] 45 B-scans
and 384 OCT
volumes, (2000/17)

Pre-processing: crop SRGAN SBSDI, SSR, NWSR,
SRGAN

Adversarial +
cycle-consistency +
identity mapping

PSNR = 39.2 dB
CNR = 4.7 dB

Huang, 2019 [46] Duke [12], 26 B-scans
(10/16) Pre-processing: crop SDSR-OCT BM3D + Bicubic, NWSR,

SRCNN
Pixel + perceptual +
GAN

PSNR = 28.1 dB
CNR = 4.6 dB
ENL = 537.5 dB
EPI = 0.95

Ge, 2022 [47] Duke [12], 10 B-scans
Pre-processing: clear images
are obtained by registering
and averaging and crop

Self2Self-OCT BM3D, NWSR, DnCNN,
DIP, TSI

Background noise
attenuation +
self-prediction

PSNR = 24.8 dB
SSIM = 0.99

Ma, 2022 [48] Duke [12], 26 B-scans
(10/16) NA DSGAN MIFCN, Edge-sensitive

cGAN, SDSR-OCT
Adversarial + SSIM +
MSE

PSNR = 28.1 dB
SSIM = 0.95
CNR = 3.7 dB

Xie, 2022 [49] Duke [12], 26 B-scans
(22/4) NA GAN

K-SVD, BM3D, wGAN,
cGAN, SDSR,
HDcycleGAN, DRGAN

Adversarial +
cycle-consistency +
perceptual

PSNR = 27.6 dB
EPI = 1.0
CNR = 3.1 dB
ENL = 73.8 dB
MSR = 5.1
SSIM = 0.65

Xie, 2023 [50] Duke [12], 26 B-scans
(10/16) NA MGAN NLM, BM3D, DnCNN,

MIFCN, SDSR-OCT

Adversarial +
pixel-level error +
BCE+ SSIM

PSNR = 28.1 dB
SSIM = 0.95
EPI = 0.99
CNR = 3.6 dB
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Table 4. Cont.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Ahmed, 2022 [51] Duke [12], 18 B-scans
(10/8)

Pre-processing: clean images
are obtained by BM3D,
BM3DDEB, Weiner and HWT

DenseNet with AG BM3D, NLM MSE + pixel difference
PSNR = 23.5 dB
CNR = 7.7 dB
ENL = 585.5 dB

Ahmed, 2022 [52]
Duke [12] and
dentistry, 28 B-scans
(18/12)

NA Autoencoder with MFSK
and AG

BM3D, NLM, DnCNN,
GAN MSE + pixel difference

PSNR = 26.9 dB
CNR = 7.0 dB
ENL = 213.7 dB
SSIM = 0.68

Zhou, 2023 [53]

OCT2017 [29] and
OCTID [54],
5620 B-scans
(5000/ 600/20)

Pre-processing: crop Transformer-based NLM

N2N, DRGAN,
Den-mimic-net,
Contourlet, BM3D,
INLSM, NLM, OBNLM,
PNLM

MSE + gradient
CNR = 15.7 dB
SNR = 51.1 dB
ENL = 23,787 dB

Kande, 2020 [55] Duke [12], 28 B-Scans
(10/18) NA SiameseGAN

MSBTD, MIFCN, Shared
Encoder, WGAN U-Net,
WGAN ResNet

MS-SSIM + perceptual

PSNR = 28.3 dB
SSIM = 0.83
MSR = 4.2
CNR = 2.6 dB
TP = 0.68
EP = 0.66

Qiu, 2020 [56]
Duke [12], 52 groups
of 50 B-scans each
(37/15)

Pre-processing: crop DBPN BM3D, Bicubic, NWSR,
U-Net MSE

PSNR = 31.3 dB
RMSE = 0.027
MS-SSIM = 0.92

Zhou, 2021 [57]
Topcon [13] and
Cirrus [15], 521
B-scans (512/9)

Pre-processing: registering
and averaging images
Augmentation: flip, scaling,
rotation, non-rigid
transformation

GAN with HRNet
NLM, STROLLR, DnCNN,
DPDNN, Edge-cGAN,
mini-cGAN

L1 + MSE +
Adversarial

SNR = 40.4 dB
CNR = 11.2 dB
SSI = 0.09
EPI = 0.96
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Table 4. Cont.

Paper Data Size Pre-Processing and
Augmentation Model Compared to Loss Function Image Quality Metrics

Ahmed, 2022 [58] Duke [12], 18 B-scans
(10/8) NA DnCNN BM3D, Weiner, NLM CNR + pixel difference

PSNR = 29.6 dB
CNR = 11.5 dB
ENL = 1196.6 dB

Keywords: MSE—Mean squared error; MAE—Mean absolute error; SNR—Signal-to-noise ratio; PSNR—Peak signal-to-noise ratio; CNR—Contrast-to-noise ratio; SSIM—Structural similarity
index measure; MS-SSIM—Multi-scale structural similarity index measure; ENL—Equivalent number of looks; EPI—Edge preservation index; RMA-GAN—Realistic mixed attention GAN;
SRGAN—Super-resolution GAN; EGAN—Enhanced GAN; SRCNN—Super-resolution CNN; SSR—Self Super-resolution; SRResNet—Super-resolution ResNet; WGAN—Wasserstein
GAN; DeGAN—Denoising GAN; BCE—Binary Cross Entropy; MGAN—Multi-task generative adversarial network; HWT—Hyperanalytic Wavelet Transform; AG—Attention Gate;
MKSF—Multi-kernel speckle filtering block; N2N—Neighbor2Neighbor; DRGAN—Disentangled representation generative adversarial network; NLM—Nonlocal means.
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4.2. Risk of Bias and Applicability

Every study included in the review underwent a thorough assessment of risk of
bias, with the results meticulously documented in Table S2. Out of the studies evaluated,
10 (27%) were identified as having a low risk of bias across all four domains. Notably,
the domain presenting the most challenges was the “index test”, with only 22 studies
(59.5%) categorized as having a low risk of bias in this area. This finding underscores the
importance of critically evaluating the methodology and execution of the index test within
each study to ensure the reliability and validity of the findings. Through this rigorous risk-
of-bias assessment, we aimed to provide a comprehensive evaluation of the methodological
robustness of the included studies, thereby enhancing the credibility and trustworthiness
of our review outcomes.

4.3. Findings of the Studies

When focusing on peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) as
metrics for denoising images, a significant variation in deep learning (DL) techniques across
different types of optical coherence tomography (OCT) images was observed. Specifically,
for studies utilizing Optic Nerve Head (ONH) images, PSNR or SNR values ranged from
8.1 to 25.7 dB, while, for retinal datasets, these metrics ranged from 26.4 to 158.6 dB.

The majority of studies predominantly applied public retinal datasets such as Duke [12],
Topcon [13], and Cirrus [15], primarily due to their extensive availability and widespread
use. However, it is noteworthy that these datasets typically do not provide “clean” versus
“noisy” image pairs required for denoising tasks. Consequently, researchers resorted to gen-
erating clean images through alternative means. For instance, clean images were generated
by averaging multiple B-scans or employing traditional programming techniques. In some
cases, unsupervised DL techniques were also utilized to generate clean images. These
approaches aimed to provide a reliable basis for assessing the effectiveness of DL-based
denoising methods, despite the absence of explicitly labeled clean and noisy image pairs
within the datasets.

5. Discussion

Numerous DL tasks consisting of detection, segmentation and classification are chal-
lenging in ophthalmology since OCT is the main imaging technique in that specific field.
OCT introduces speckle noise that adds artifacts, thereby impairing image quality and
confounding correct clinical interpretation [59]. Thus, DL has provided solutions for de-
noising and speckle reduction in OCT images to overcome this problem. In this systematic
review, many studies were compiled and analyzed to assess the application of DL for image
denoising of OCT images in ophthalmology. Over the past ten years, multiple researchers
have shown a developing and promising body of evidence supporting DL for this task.
Even so, there was a limited supply of quality studies for comparison across traditional pro-
gramming and DL. A number of findings require more detailed discussion. The challenge
of addressing numerous deep learning (DL) tasks in ophthalmology, including detection,
segmentation, and classification, is compounded by the prevalent use of optical coherence
tomography (OCT) as the primary imaging technique in this field. OCT introduces speckle
noise, which can adversely affect image quality, thereby complicating accurate clinical inter-
pretation. DL techniques have emerged as promising solutions for denoising and reducing
speckle artifacts in OCT images, with this systematic review analyzing a multitude of
studies to assess the application of DL for image denoising in ophthalmology. Over the past
decade, researchers have generated a growing body of evidence supporting the efficacy of
DL for this purpose. As shown in Figure 3, the main DL models implemented were the
GAN, DnCNN, Autoencoder, U-Net, Noise2Noise, and transformer, etc.

Generative adversarial networks (GANs) exhibit promise in synthesizing synthetic
OCT images with reduced noise levels. By training a generator network to generate realistic
images and a discriminator network to differentiate between real and generated images,
GANs have demonstrated their capability to denoise OCT scans effectively while preserving
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clinically relevant features. However, GANs can be challenging to train and prone to mode
collapse, where the generator produces limited variations in images, potentially limiting
their diversity and generalizability in clinical settings. In contrast, Denoising Convolutional
Neural Networks (DnCNNs) utilize deep convolutional layers to understand the under-
lying structure of noisy OCT images and produce clean counterparts. Through iterative
training on paired noisy–clean image datasets, DnCNNs efficiently enhance image clarity.
However, DnCNNs may struggle with complex noise patterns and require large amounts
of labeled data for training, which may be resource-intensive and time-consuming to ac-
quire. The U-Net architecture, characterized by its symmetric encoder–decoder structure
with skip connections, has showcased remarkable performance in semantic segmentation
tasks, including the denoising of OCT images. By integrating contextual information from
various spatial scales, U-Net effectively preserves anatomical structures. Nonetheless,
U-Net architectures may suffer from memory inefficiency and computational overhead,
particularly when handling high-resolution OCT images. Autoencoders, consisting of an
encoder and decoder network, learn to reconstruct input data from a compressed represen-
tation. Trained on noisy OCT images, autoencoders can encode essential features suitable
for clinical interpretation. However, autoencoders may struggle with capturing complex
image structures and may require careful tuning of hyperparameters to achieve optimal
performance. Transformers, initially designed for natural language processing tasks, have
recently been applied in image processing, including denoising. Leveraging self-attention
mechanisms to capture long-range dependencies, transformers effectively preserve spatial
information in OCT images. However, transformers may suffer from scalability issues
when applied to large-scale image datasets due to their computational complexity and
memory requirements. The Noise2Noise approach involves training deep learning models
directly on pairs of noisy images, eliminating the need for clean reference images during
training. By exploiting inherent redundancies in noisy data, Noise2Noise denoises OCT
images without access to ground truth clean images, making it suitable for real-world clini-
cal applications where clean reference images may not be readily available. Nevertheless,
Noise2Noise may struggle with highly variable noise patterns and may require careful
regularization techniques to prevent overfitting to noise artifacts.

These innovative DL techniques have the potential to revolutionize clinical workflows
in ophthalmology by automating the denoising process and improving the efficiency
and accuracy of OCT image interpretation. By providing clinicians with high-quality,
denoised images, these techniques can facilitate more confident diagnoses and treatment
decisions, ultimately leading to improved patient outcomes. However, the scarcity of high-
quality studies for comparison across traditional programming and DL remains limited,
necessitating a closer examination of key findings.

Firstly, a significant proportion of studies (62%) conducted their DL model train-
ing and testing on public datasets, validating their reported image quality metrics and
comparing them with other state-of-the-art DL models (reference tests). These studies
demonstrated relatively high PSNR or SNR values for denoised images, indicating substan-
tial improvement in image quality attributable to DL models. Given the considerable noise
inherent in OCT images, DL techniques hold significant promise for enhancing diagnosis,
segmentation, and detection tasks.

Secondly, only studies utilizing the Duke [12] public dataset had access to clean versus
noisy image pairs for training purposes. Other studies, utilizing datasets like Topcon [12]
and Cirrus [15], lacked clean images and thus resorted to creating their own algorithms or
applying traditional programming techniques to obtain “ground truths” for their B-scans.
This variance in ground truth generation methods complicates cross-study comparisons
and underscores the importance of clearly outlining and validating strategies for creating
clean images to ensure the production of robust models.

Thirdly, there was considerable variability in both the reporting and conduct of the
studies, posing challenges for comprehensive quantitative and qualitative analyses across
the board. Given the wide array of available image quality metrics beyond PSNR or SNR
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(such as CNR, ENL, and SSIM), it was observed that studies typically reported only two
or three metrics. This lack of uniformity in reporting was further exacerbated by the
implementation of multiple and varied reference tests. For instance, several studies utilized
a diverse range of reference tests, resulting in a vague impact assessment on either PSNR
or SNR. Consequently, there is a pressing need for a standardized structure for image
denoising studies, encompassing specific reference tests (including the appropriate balance
of traditional programming and deep learning models) and a predetermined set of specified
image quality metrics (such as PSNR, SSIM, CNR, and ENL). Consequently, the feasibility of
conducting a meta-analysis was limited, as only a small subset of studies provided similar
image quality metrics beyond PSNR or SNR. This situation underscores the significant
consequences stemming from the lack of minimum standards and tools available in the field
of image denoising, where diagnostic studies are currently limited to utilizing only two
tools (STRAD-AI and QUADS-2). Since the studies included in this review solely reported
either PSNR or SNR of the denoised images in comparison to multiple reference tests,
it remains uncertain whether DL provides significant assistance in image denoising and
speckle reduction. Ideally, the impact of DL for denoising OCT images in ophthalmology
should be demonstrated in practice-based settings and validated by its ability to improve
further objectives such as detection [60], classification [61], and segmentation [62], which
the majority of included studies did not consider.

Fourthly, a significant proportion (74%) of papers were excluded from the review due
to the absence of DL methodologies, instead focusing on improving traditional program-
ming methods such as wavelets and shearlets [63], NLM [64], and BM3D [65]. This suggests
that DL has not been extensively investigated for OCT image denoising. The remaining
papers were excluded due to inadequate descriptions of datasets and their utilization,
as well as a lack of reference testing to demonstrate their impact on PSNR and SNR.

Fifthly, and perhaps most importantly, none of the studies incorporated input from
clinicians regarding the produced results. This is particularly concerning considering that
the primary purpose of denoising OCT images is to assist clinicians in diagnosing various
retinal diseases. Ideally, clinicians should provide feedback on the reported denoised
images, assessing whether useful data has been removed or added that could significantly
impact diagnosis accuracy.

Lastly, it is essential to emphasize that OCT is the primary instrument in ophthalmol-
ogy for capturing multiple types of images (including ONH and retinal images) crucial
for detecting retinal diseases. This systematic review has revealed both strengths and
limitations, with a systematic and extensive assessment of studies conducted to compare
DL for image denoising, speckle reduction, and super resolution for OCT images in ophthal-
mology; while there was a restricted timeline justified by the focus on DL, a substantial and
diverse body of evidence has been presented, validating the necessity for such limitations.
Additionally, the absence of a meta-analysis was attributed to the mixed nature of reporting
and the lack of quality in comparative result analysis.

Therefore, there has been a growing number of studies investigating the denoising of
OCT images in ophthalmology using deep learning, with various computational architec-
tures being explored. Among the reported metrics of image quality, the peak signal-to-noise
ratio (PSNR) has emerged as a reliable metric for intercomparison, with values spanning
from 8.1 to 25.7 dB for ONH images and 26.4 to 158.6 dB for retinal datasets. Moving
forward, it is imperative for future studies to clearly outline reference tests and datasets,
relying on a common, extensive, and clinically meaningful outcome basis to drive progress
in the field.

6. Conclusions

In summary, the landscape of research in denoising Optical Coherence Tomography
(OCT) images within ophthalmology has seen a notable surge, with a diverse array of
studies delving into the application of deep learning techniques. This exploration has
encompassed various computational architectures, reflecting a dynamic and evolving field
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seeking optimal solutions for image enhancement. Among the array of metrics used to
evaluate image quality, the peak signal-to-noise ratio (PSNR) has emerged as a consis-
tent benchmark for intercomparison, offering insights into the effectiveness of denoising
methodologies. Notably, PSNR values have exhibited substantial ranges, underscoring
the complexity and variability inherent in OCT image denoising efforts. Looking ahead,
it is essential for future investigations to prioritize transparency and standardization in
methodologies, particularly in outlining reference tests and datasets. By establishing a
common foundation grounded in clinically meaningful outcomes, researchers can foster
more robust advancements and ensure the translation of findings into tangible benefits for
clinical practice and patient care.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jimaging10040086/s1, Table S1: List of excluded studies and the reasons;
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ber of looks; BCE—Binary Cross Entropy; MGAN—Multi-task generative adversarial network;
HWT—Hyperanalytic Wavelet Transform; AG—Attention Gate; MKSF—Multi-kernel speckle filter-
ing block; N2N—Neighbor2Neighbor; DRGAN—Disentangled representation generative adversarial
network; NLM—Nonlocal means; EPI—Edge preservation index; RMA-GAN—Realistic mixed atten-
tion GAN; SRGAN—Super-resolution GAN; EGAN—Enhanced GAN; SRCNN—Super-resolution
CNN; SSR—Self Super-resolution; SRResNet—Super-resolution ResNet; WGAN—Wasserstein GAN;
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