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Abstract: This paper introduces a self-attention Vision Transformer model specifically developed
for classifying breast cancer in histology images. We examine various training strategies and con-
figurations, including pretraining, dimension resizing, data augmentation and color normalization
strategies, patch overlap, and patch size configurations, in order to evaluate their impact on the
effectiveness of the histology image classification. Additionally, we provide evidence for the increase
in effectiveness gathered through geometric and color data augmentation techniques. We primarily
utilize the BACH dataset to train and validate our methods and models, but we also test them on two
additional datasets, BRACS and AIDPATH, to verify their generalization capabilities. Our model,
developed from a transformer pretrained on ImageNet, achieves an accuracy rate of 0.91 on the
BACH dataset, 0.74 on the BRACS dataset, and 0.92 on the AIDPATH dataset. Using a model based
on the prostate small and prostate medium HistoEncoder models, we achieve accuracy rates of
0.89 and 0.86, respectively. Our results suggest that pretraining on large-scale general datasets like
ImageNet is advantageous. We also show the potential benefits of using domain-specific pretraining
datasets, such as extensive histopathological image collections as in HistoEncoder, though not yet
with clear advantages.

Keywords: breast cancer; deep learning; histology; normalization; transformers

1. Introduction

According to the International Agency for Research on Cancer (https://www.iarc.
who.int/cancer-type/breast-cancer/ (accessed on 25 April 2024 )), in 2020, breast cancer
became the most commonly diagnosed cancer type in the world, accounting for about
13% of all cancer diagnoses. Certainly, early detection and precise diagnosis are crucial
for efficient treatment and improved patient outcomes. Within the medical imaging field,
histopathology is fundamental to the diagnostic process and the gold standard for distin-
guishing between benign and malignant tissue, especially in breast cancer among patients
suffering from in situ and invasive carcinoma. The development of automated methods
has been a prolific area of research in recent years [1] because of the hard work required
to manually analyze these images, which is time-consuming, prone to errors, and needs
extensive training and domain expertise [2].

In this study, we propose a self-attention Vision Transformer (ViT) model [3] tailored
for breast cancer histology image classification, which extends and refines a previous
preliminary work [4]. The performance of the presented model is evaluated using differ-
ent training strategies and configurations, involving pretraining, resize dimension, data
augmentation, patch overlap, and patch size, to examine their impact on performance.
The image set used is part of the BACH Grand Challenge on BreAst Cancer Histology
images (BACH) [5], for which both baselines and the state-of-the-art are available. The
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proposed ViT model on the breast cancer histology image shows efficacy on the classifi-
cation task regarding the experimental results obtained, and these findings can be useful
for the implementation and design of future ViT-based models with comparable image
classification tasks.

Background and Related Work

Here, after an introduction on ViTs, we briefly present some examples of deep learning
applications on different datasets of breast cancer histology images, mainly from the BACH
dataset [5]. At the beginning, we illustrate the results achieved from the application
of different Convolutional Neural Networks (CNNs) [6,7], and then we showcase the
outcomes obtained using ViTs.

In computer vision, image classification is a critical task with several applications in
fields such as autonomous vehicles, surveillance systems, and medical imaging. For many
years, the dominant approach has been the use of CNNs to deal with image classification
tasks because of their exceptional performance in capturing local patterns and hierarchical
structures [8]. However, advances in deep learning have prepared the way for the rise
of a new paradigm known as ViT [3] that has already achieved considerable success in
image classification tasks. Several factors have contributed to defining the success of ViTs
in image classification.

Firstly, the self-attention mechanism provides the model with the ability to dynam-
ically assign weights to different parts (referred to as patches) of the image, with the
enhancement of the representation of the whole context. This capability proves to be
particularly advantageous in the situation where the valuable information necessary for
discrimination is sprinkled in distant areas of the image. Secondly, with the aim to process
larger input resolutions and deeper architectures, ViTs can be easily upsized, empowering
the performance on complex datasets. Lastly, the pretraining and fine-tuning processes
applied by ViTs allow for capable transfer learning, making them particularly suitable for
situations with limited labeled data.

Chennamsetty et al. [9] used tree CNNs, a ResNet-101 [10], and two DenseNet-161 [11]
networks, trained on different preprocessing modalities, to form an ensemble to classify
histology images from the BACH dataset. The images are resized via bilinear interpolation
to 224 × 224 pixels, then normalized to zero mean and unit standard deviation. In the train-
ing phase, the ResNet-101 and a DenseNet-161 are fine-tuned with images normalized from
the breast histology data, while the other DenseNet-161 is fine-tuned with the ImageNet
normalization. Finally, each model makes a prediction between the four classes for each
image and a majority voting scheme is adopted to assign a final class of the input. Finally,
the authors achieved an accuracy of 0.87 on the hidden test dataset of BACH.

Kwok [12] presented a model based on Inception-Resnet-v2 [13] that uses both mi-
croscopy images and Whole Slide Images (WSIs) [14,15] from BACH to train a patch
classifier in two steps. Firstly, from the original images of pixel size 2048 × 1536, he extracts
5600 patches with a size of 1495 × 1495 pixels with a stride of 99 pixels, resizes them to
299 × 299 pixels, and uses them for fine-tuning a four-class Inception-Resnet-v2 trained
on ImageNet. Some patches are also extracted from the WSIs with the same modality of
the first step. This second new patch dataset is refined by rejecting images with a <5%
foreground and labeled using the CNN trained on the first part. Then, 5900 patches from
the top 40% incorrect predictions, that are fairly sampled from each of the four classes, are
selected as hard examples for the second step. For the second step, the 5600 patch extracted
in the first step and the 5900 in the second step are merged, and then the CNN is retrained.
The aggregation from patch-wise predictions back onto image-wise predictions and WSI-
wise heatmaps gives the results of the predictions. A normalization and a threshold are
applied to the map obtained with the aim to bias the predictions more towards normal and
benign, and less to in situ and invasive carcinomas. At the end, the author achieved an
accuracy of 0.87 on the hidden test dataset of BACH and a score of 0.69 in Part B dedicated
to WSIs.
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Brancati et al. [16] used a combination of three configurations of ResNet [10], 34, 50,
and 101, each trained on the BACH dataset, varying from each other in relation to the
number of layers, with the use of a maximum probability rule to contrast their individual
weaknesses during the testing. In particular, each image is downsampled by factor k, 80%
of the original image size, and the input to the network is only the central patch of size
m × m, where m is set the same as the minimum size between the width and height of the
resized image. Then, the final classification is achieved with the highest class probability
supplied by the three configurations. Finally, the authors achieved an accuracy of 0.86 on
the hidden test dataset of BACH.

Roy et al. [17] developed a patch-based classifier (PBC) using a CNN for an automated
classification of breast cancer histopathology images from the BACH dataset. This model
works in two different modalities: one patch in one decision (OPOD) and all patches in one
decision (APOD), and both adopted a Macenko color normalization technique [18], a patch
extraction (512 × 512 pixels), and augmentation. On the one hand, the patch labels are
predicted using the first mode and the final class label is obtained from the scores returned
by a softmax classifier. On the other hand, the label for the entire image is determined using
a majority voting scheme with the second mode. In addition, the images are classified not
only into four classes as requested by the challenge but also in two classes. The results of
this research show that the OPOD model accomplishes accuracy rates of 0.77 and 0.85 for
multi-class and for binary histopathological patch-wise classification, respectively, while
APOD demonstrates accuracy rates of 0.90 and 0.92 for multi-class and binary image-wise
classification, respectively. Finally, the authors achieved an accuracy of 0.87 on the hidden
test dataset of BACH.

Recently, due to the rise of Transformers [19] in natural language processing in 2017
and their application in images with the birth of ViTs [3] in 2020, the medical imaging
field has also shown an interest in the exploration and use of Transformer-based tech-
niques for different tasks and challenges [19,20]. Thus far, there have only been a few
studies that have investigated the application of ViTs in the breast cancer domain with
detection, segmentation, and classification [21]. Moreover, as underlined in recent research
articles [21,22], the capabilities of ViTs in the medical field are not already known and have
not been explored completely.

Wang et al. [22] proposed a semi-supervised learning procedure based on the ViT
with not only an adaptive token sampling (ATS) technique to advantageously sample
the most significant tokens from the input images, but also a consistency training (CT)
strategy that combines supervised and unsupervised learning with image augmentation.
Thus, ATS-ViT is the core model used in the training process that consists of two parts:
the first one, the supervised training, improves the predictive ability of the model, while
the second one, the consistency training, enhances its generalization. These two parts are
then unified via an end-to-end training procedure. The authors evaluated the model using
two different datasets: one with breast ultrasound images (BUSI) and the other with breast
histopathology images (BreakHis [23]). The best approach, CT + ViT + ATS, achieved an
average test accuracy of 0.98 on the BreakHis dataset, outperforming the CNN baselines.

Tummala et al. [24] presented a variant of ViT, called Swin Transformer (SwinT) [25],
that works on the concept of non-overlapping shifted windows. Using the BreakHis
dataset, the study evaluates the results of an ensemble of four SwinT models not only
for a binary classification (benign/malignant) but also for an eight-subtype classification
(four benign and four malignant). The unique aspect of SwinT is its employing of shifted
windows arranged in a non-overlapping fashion. This upgraded ViT version employs a
hierarchical structure, offering linear complexity and scalability for window-based self-
attention computations. The shifted window approach in SwinT boosts efficiency by
limiting self-attention calculations to local, non-overlapping windows, thereby facilitating
connections across different windows. The ensemble of SwinTs, which includes the tiny,
small, base, and large variants, achieved an average test accuracy of 0.99 for the two-class
classification and of 0.96 for the eight-class classification.
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Alotaibi et al. [26] presented an ensemble model that merges two pretrained models,
namely ViT and Data-Efficient Image Transformer (DeiT) [27], with the aim to classify breast
cancer histopathology images into eight classes using the BreakHis public dataset. While
the ViT model follows a similar operational approach to earlier studies, its novelty lies in
the addition of DeiT, which uses an extra input called the distillation token. The learning
process of the distillation token involves backpropagation, where it interacts with classes
and patch tokens through the self-attention layers. Thus, DeiT introduces enhancements
over previous ViT models, bringing a new level of performance and capabilities to the
architecture. Both models are pretrained on ImageNet, utilizing an input size of 224 × 224
and a batch size of 16. Then, a soft voting technique is used to obtain the highest probability
value from this ensemble model. The experimental results presented an accuracy of 0.98.

He et al. [28] depicted the exploration of histopathological image color deconvolu-
tion in conjunction with deep learning models. The researchers proposed the Deconv-
Transformer (DecT) model for the classification of histopathological images of breast cancer
using three datasets: the BreakHis dataset, BACH dataset, and UC dataset. The proposed
DecT model predominantly relies on the Transformer architecture instead of convolution
layers, aiming to align more effectively with color deconvolution processes. Then, the train-
ing process for the DecT model and its variants is divided into two stages, facilitating the
discovery of more optimal parameters for the deconvolution layer. Experimental findings
indicate that this approach integrates image information from both RGB and HED color
spaces, surpassing the ViT model and various traditional CNN models in terms of classifi-
cation accuracy. Some color data augmentation is applied to attenuate overfitting during
mode training. The final results showed that the DecT model achieved an average accuracy
of 0.93 on the BreakHis dataset, 0.79 on the BACH dataset, and 0.81 on the UC datasets.

Sriwastawa and Arul Jothi [29] presented a wide comparison between performances
of several newer models of the ViT, in particular the Pooling-based Vision Transformer
(PiT) [30], Convolutional Vision Transformer (CvT) [31], CrossFormer [32], CrossViT [33],
NesT [34], MaxViT [35], and Separable Vision Transformer (SepViT) [36], with the aim to
show the enhancement of the accuracy and generalization ability of ViT. They employed
the BreakHis and IDC datasets [37,38]. In particular, all chosen models were independently
trained from scratch on the BreakHis and IDC datasets, and the models trained on BreakHis
were fine-tuned using IDC. MaxViT seems to be the best transformer-based classifier,
achieving a test accuracy of 0.916 on BreakHis, 0.92 on IDC, and 0.92 when pretrained
on BreakHis and then fine-tuned on IDC, directly followed by NesT and CvT. Despite
this, according to the researchers, none of the models manifest a significantly improved
performance compared to existing works.

In Table 1 we summarize the models we take into account in the selected studies in
which breast cancer is classified.

Regarding the CNN models, as Chennamsetty et al. [9] report in their research, the per-
formance of CNN is dependent on the network architecture and number of training in-
stances, and also on the data normalization scheme. Up to now, there is neither a single
architecture nor a preprocessing modality that promises to achieve the best performance.
For that reason, the best way to obtain a good result seems to create an ensemble of net-
works with different preprocessing regimes, as demonstrated by all the studies considered.
Therefore, the main drawback is the computationally more expensive approach of involving
an ensemble of models. For example, as Brancati et al. [16] explain in their study, ResNet
was adopted instead of other deep network architectures because it has a small number of
parameters and it needs a relatively low complexity compared to other models.

Regarding the ViT models, not only the forming of an ensemble of networks with
different preprocessing modalities is experimented on, as shown by Wang et al. [22]
and Tummala et al. [24], but also only one type of network is investigated, as shown
by He et al. [28] and Sriwastawa and Arul Jothi [29]. In those cases, they utilize the
BreakHis dataset for two- and eight-class classifications, which are not directly comparable
with the BACH dataset we employ containing four classes. The experiment conducted
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by He et al. [28], which was the only one to utilize the same dataset as us, achieved an
accuracy rate of 0.79. The experimental results of Wang et al. [22], who used an ensemble of
CT + ViT + ATS, show that the original ViT model does not present superior performance
compared to its CNN competitors, and also Sriwastawa and Arul Jothi [29], even with the
use of different single ViTs, explain that none of the models reveal a significantly improved
performance compared to existing works.

Table 1. Summary of findings of published breast cancer classification models.

Reference Number Dataset Methods Accuracy

Alotaibi et al. [26] BreakHis ViT + DeiT 0.98 (8-class)
Baroni et al. [4] BACH ViT 0.91
Brancati et al. [16] BACH Resnet-34, 50, 101 0.86

Chennamsetty et al. [9] BACH ResNet-101 +
DenseNet-161 0.87

He et al. [28] BreakHis DecT 0.93
BACH DecT 0.79
UC DecT 0.81

Kwok [12] BACH Inception-Resnet-
v2 0.87

Roy et al. [17] BACH PBC with CNN 0.87
Sriwastawa and Arul Jothi [29] BreakHis MaxViT 0.916

IDC MaxViT 0.92
BreakHis + IDC MaxViT 0.92

Tummala et al. [24] BreakHis Ensemble of
SwinTs

0.99 (2-class), 0.96
(8-class)

Wang et al. [22] BUSI CT + ViT + ATS 0.95
BreakHis CT + ViT + ATS 0.98 (2-class)

Yao et al. [39] BACH dataset Ensemble of 5
models 0.92

Until now, only a limited number of studies have explored the use of ViTs in the field
of breast cancer histology image for classification [21,40]. Thus, our study showcases an
extensive and perceptive exploration into the use of ViT models for this purpose. We aim
to establish a robust foundation highlighting the advantages of employing ViTs in this
field, specifically by examining the impact of pretraining, augmentation methods, patch
configurations, and also some integration of domain-specific tools. First of all, unlike the
examples extensively reported in Table 1 where ensemble models are predominantly used,
we improve the model’s classification capacity and subsequently its generalization with a
limited computational cost and without any ensemble of models. In fact, we use only a
ViT-based model, without any particular parameters being tuned or featuring engineering.
Secondly, we apply some basic pretraining strategies, such as geometric and color data
augmentation and Macenko’s color normalization, that are found to be sufficient to increase
the accuracy rate. Then, our model is shown to work in a good manner without any
other preprocessing of the images, unlike the common practice in the medical field with
CNNs extracting some patches with or without overlap, as demonstrated by Kwok [12]
and Brancati et al. [16]. In addition, we fine-tuned a custom neural network leveraging
HistoEncoder [41], a tool designed for digital pathology, not only to find the potentiality
of using a domain-specific training in histology images, but also to compare the results
of a model from a pretraining with prostate cancer images to a fine-tuning with breast
cancer ones. Finally, our best ViT model is tested on two other datasets, the BRACS [42]
and AIDPATH (https://aidpath.eu (accessed on 25 April 2024)), with the aim of studying
the model’s generalization deeply.

We focus on the following Research Questions (RQs):

https://aidpath.eu
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RQ1: Is it possible to fine-tune a ViT model for breast cancer classification?
RQ2: What are the effects of using pretraining strategies, such as data augmentation

or normalization?
RQ3: Is it possible to generalize our results to other datasets?

The rest of this paper is organized as follows. In Section 2, we firstly present the
main dataset we use, BACH, and the other two datasets, BRACS and AIDPATH, which
we add to evaluate our model. Then, we describe the general characteristics of our ViT
model and its configurations. In Section 3, we present the results of our study, including an
in-depth analysis of our pretraining outcomes, the evaluation of robustness through k-fold
cross-validation, and an assessment of the model’s generalization capability. In Section 4,
we discuss our results and key findings. Finally, in Section 5, we draw our conclusions.

2. Materials and Methods
2.1. Datasets

The developed models were trained on a single dataset, namely BACH, and then tested
not only on the same dataset but also on two further datasets to study their generalizability
capabilities. They are described in the next sections.

2.1.1. BACH: Grand Challenge on BreAst Cancer Histology Images

In 2018, for the promotion of the development of automated breast cancer detection
and diagnosis methods, Grand Challenge on BreAst Cancer Histology images (BACH)
(https://iciar2018-challenge.grand-challenge.org (accessed on 25 April 2024)) [5] was or-
ganized in conjunction with the 15th International Conference on Image Analysis and
Recognition (ICIAR 2018), obtaining classification and localization of relevant histopathol-
ogy classes in medical imaging, both microscopy and WSIs, from an annotated dataset,
specifically compiled and made publicly available for the challenge. The BACH challenge
was divided into Part A and Part B. The first one comprises hematoxylin and eosin (H&E)-
stained breast histology microscopy images split in four classes: (1) normal, (2) benign,
(3) in situ carcinoma, and (4) invasive carcinoma. The second one is composed of pixel-
wise segmented WSIs with the same four classes. The post-challenge submissions, which
required an evaluation of the results, are open only on Part A images and tasks. Therefore,
in this paper, we participate in a single part of the challenge: we focus on Part A with an
experiment integrating the image set from Part B. Additionally, this means that to evaluate
the results, we can refer to the metrics provided by the post-challenge submission, i.e., only
the accuracy rate.

The Part A dataset comprises 400 training images, distributed equally for the four
classes and 100 test images. For the acquisition of the images, a Leica DM 2000 LED
microscope and a Leica ICC50 HD camera are used. All patients originate from the Porto
and Castelo Branco regions in Portugal; cases are from Ipatimup Diagnostics and come
from three different hospitals. The given images are in RGB TIFF format and have a size of
2048 × 1536 pixels with a pixel scale of 0.42 µm × 0.42 µm. An example image is depicted
in Figure 1 that shows two patch sizes we tested in our experiments. For the training
set, a partial patient-wise distribution of the images is given to participants, while for the
test set, images are collected from a completely distinct set of patients, ensuring a fair
evaluation of the methods.

The best two teams that took part in the challenge obtained the same accuracy of
0.87 [5]. Then, for post-challenge evaluations, the submission was re-opened and, in this
phase, some slightly better results were achieved, also exploiting data from other datasets.
For instance, Yao et al. [39] with a complex ensemble of CNN and RNN on the BACH test
dataset reached an accuracy of 0.92.

https://iciar2018-challenge.grand-challenge.org
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Figure 1. On the left side, an in situ carcinoma image from the training set. On the right side, two
sample patches in the two sizes used in our experiments.

2.1.2. BRACS: BReAst Carcinoma Subtyping Dataset

The BReAst Carcinoma Subtyping (BRACS) dataset (https://www.bracs.icar.cnr.it
(accessed on 25 April 2024)) comprises a large collection of annotated histopathology images
stained with H&E and used to study breast carcinoma [42]. The dataset was created through
a collaboration between the IRCCS Fondazione Pascale, the Institute for High Performance
Computing and Networking (ICAR) of the National Research Council (CNR), and IBM
Research-Zurich, aiming to develop methodologies for identifying atypical tumors in breast
cancer pathology via automated analysis of histological images. BRACS is particularly
valuable for researchers looking to test and compare automated detection and classification
strategies for breast tumors, as it includes a range of lesions typically found in breast
tissue. These lesions belong to different kinds, such as Pathological Benign (PB), Usual
Ductal Hyperplasia (UDH), Flat Epithelial Atypia (PEA), Atypical Ductal Hyperplasia
(ADH), Ductal Carcinoma in situ (DCIS), and Invasive Carcinoma (IC). The dataset also
includes images representing normal (N) tissue samples, which are glandular tissue samples
without any lesions. ADH and FEA are considered intraductal proliferative lesions that
are associated with an increased risk of cancer. They are not “precursors” of cancer but
lesions that predispose to an increased risk of cancer. Even in the WHO classification they
are classified separately as intraductal proliferative lesions [43,44].

The BRACS dataset contains 547 WSIs collected from 189 patients and 4537 Regions of
Interest (RoIs) extracted from 387 WSIs collected from 151 patients. One example of WSI
from this dataset is shown in Figure 2. WSIs of H&E-stained breast tissues were generated
by using an Aperio AT2 scanner at 0.25 µm/pixel for 40× resolution.

https://www.bracs.icar.cnr.it
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Figure 2. Example of a BRACS WSI with annotations and its detailed RoI adapted from Brancati et al. [42].

2.1.3. AIDPATH

As part of the MSCA European Project AIDPATH (https://aidpath.eu (accessed on
25 April 2024)), a dataset consisting of 50 WSIs of an invasive tumor acquired at 40× mag-
nification has been collected and made available. These images are only weakly annotated,
so their use for testing is limited to the capability of correctly classifying invasive tumors.

2.2. Overview of ViT Approach

In this research, the ViT model serves as the foundational architecture for all our
experiments, owing to its established success in diverse computer vision tasks, especially
image classification [8,45,46]. We present in Figure 3 a tailored, customized self-attention
ViT specifically designed for classifying breast cancer in histology images.

I MAGES AUGMENTED
I MAGES

NORMALI ZED
I MAGES

Dat a and Col or  
Augment at i on

Macenko
Nor mal i zat i on

Figure 3. Overview of the proposed self-attention ViT model for classifying breast cancer in
histopathology images.

https://aidpath.eu


J. Imaging 2024, 10, 108 9 of 21

In the preprocessing phase, various data and color augmentations are applied to
all images in Part A of the BACH dataset. Specifically, to the initial 400 images of the
dataset under consideration, additional images are generated through different samplings
of data and color augmentation techniques of the original dataset, including rotation,
scaling, flipping, and color jittering, in order to introduce as much variation as possible.
Subsequently, Macenko’s color normalization is applied to all of these images.

Consequently, all the breast cancer histology images, which now create a larger dataset,
are used to fine-tune the original ViT model [3] pretrained on ImageNet-21k, namely
google/vit-base-patch16-224-in21k. In this specific task with this pretrained ViT based
on the original one, the process of fine-tuning enables leveraging the knowledge learned
from a large dataset (ImageNet-21k) to improve performance on a specific task (the classifi-
cation of breast cancer images) using a smaller dataset (the BACH dataset with data and
color augmentations).

In detail, the core of our ViT architecture comprises a stack of identical transformer
layers [19]: each layer includes a multi-head self-attention mechanism followed by a
position-wise feedforward network. The self-attention mechanism computes attention
scores among each patch and all other patches in the input sequence, facilitating the model’s
ability to capture both local and global contextual information. This capability enables
accurate and robust predictions of breast cancer sub-types. After processing the fixed-size
image patches through these transformer layers, the pretrained prediction head is removed
and replaced with a new feedforward layer consisting of four outputs, corresponding to
the number of classes in the breast cancer classification task. This new feedforward layer,
along with the [CLS] token, enables the model to adapt to the specific classification task
by employing a classification head in the form of a projection applied to the final hidden
state of the [CLS] token. The responsibility of this classification head is to predict the logits
associated with different breast cancer sub-types, which represent the considered classes.
It consists of a linear layer that performs the necessary projection, followed by a softmax
activation function, yielding a probability distribution across the four selected classes.

2.3. Model Configurations

In this study, we investigate various training strategies and configurations for our
self-attention ViT model to assess their impact on the performance of breast cancer histology
image classification.

• Pretraining Strategy : Distinct strategies in our experimentation concerning the use of pre-
trained weights [47] are explored. The first strategy entails the utilization of a ViT model
that has undergone prior training on a substantial dataset. Specifically, we make use
of the google/vit-base-patch16-224-in21k model (https://huggingface.co/google/
vit-base-patch16-224-in21k (accessed on 25 April 2024).) that underwent pretraining
on ImageNet-21k, comprising 14 million images and approximately 22,000 classes,
at a resolution of 224 × 224. This approach is motivated by the concept of transfer
learning [48,49], which capitalizes on the knowledge acquired from the source domain
to enhance performance in the target domain. On the other hand, the second strategy
entails using the same ViT architecture but initializing the model’s weights randomly.
This strategy, in essence, involves training the model from scratch.

• Resize Dimension: An examination is undertaken into the consequences of resizing
the input images to a standardized dimension of 224 × 224 pixels, a prevalent prac-
tice in image classification tasks. Additionally, we explore the implications of ab-
staining from resizing the input images, allowing the model to operate with their
original dimensions.

• Data Augmentation: The application of geometric data augmentation techniques, in-
cluding rotation, scaling, and flipping, to enhance the model’s generalization capa-
bilities is investigated. Additionally, color data augmentation methods such as color
jittering are explored. These modifications to our input images serve to artificially
expand and diversify our dataset, thereby equipping the model with more robust

https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
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and invariant features. We also consider an experimental scenario where no data
augmentation is employed to assess the model’s performance in the absence of the
additional diversity introduced by these augmentation processes. Furthermore, we
shift our focus to the Part B dataset, incorporating tiles derived from WSIs. A single
WSI can encompass multiple regions categorized as normal, benign, in situ carcinoma,
and invasive carcinoma.

• Color Normalization: The importance of using Macenko’s color normalization [18,50]
lies in its ability to standardize the appearance of digital histopathology images across
different conditions. Images can vary significantly in color due to differences in
staining processes, scanners, and lighting conditions. Macenko’s method addresses
this issue by normalizing the colors in the images, ensuring that the tissue samples
appear consistent across different images. This consistency is crucial for accurate
diagnosis and research, as it allows for more reliable comparison and analysis of tissue
samples. The method works by modeling the stain color and intensity distribution,
then adjusting the images to fit a standard model. This not only aids pathologists in
making more accurate diagnoses but also improves the efficacy of automated image
analysis systems, which play an increasingly important role in histopathology.

• Tile Overlap: This refers to the number of pixels shared in common between two adja-
cent tiles. Increasing the overlap can potentially enhance the model’s performance by
facilitating better integration of information across tiles. However, this improvement
comes at the cost of increased computational demands. Therefore, our objective is to
determine the optimal overlap that strikes a balance between model performance and
computational efficiency.

• Tile Patch Size: The patch size plays a central role in defining the level of localized
information the model can gather from each patch. Larger patches empower the model
to capture intricate local nuances, while smaller patches facilitate a broader contextual
perspective. However, opting for larger patches amplifies the computational workload
due to the increased number of pixels within each patch. Hence, our aim is to identify
the optimal patch size that effectively balances the trade-off between capturing local
and global information while preserving computational efficiency.

3. Results

This study presents a detailed evaluation of various ViT models for breast cancer
histology image classification, as shown in Table 2. Different ViT models are evaluated
considering a range of parameters such as pretraining strategies, data augmentation meth-
ods, tile overlap, patch size, and image resizing techniques, with accuracy as the primary
performance metric.

• Initially, the baseline ViT model employed 512 × 512 tiles with a 256 overlap and a
32 × 32 patch size, without any image resizing or pretraining, leading to an accuracy
of 0.53. This suggests the chosen patch size may not adequately capture sufficient
local detail for accurate predictions.

• Subsequently, the model was modified to use 512 × 512 tiles resized to 224 × 224,
fine-tuned exclusively on the breast cancer dataset, with a 16 × 16 patch size and a
256 tile overlap, resulting in a similar accuracy score of 0.53.

• Enhancements were made in the next iteration where the base ViT model, pretrained
on ImageNet and fine-tuned on the breast cancer dataset, used 512 × 512 tiles resized to
224 × 224 and a 256 tile overlap with an improved accuracy score of 0.84, emphasizing
the significance of pretraining on extensive datasets.

• In the fourth variation, tile overlap was deleted. The images of 2048 × 1536 pixels
were resized to 224 × 224, achieving an accuracy of 0.84. This indicates that increasing
tile overlap does not necessarily improve performance, and may in fact introduce
computational inefficiency and redundancy.

• Further improvements were observed in the fifth iteration, using the base ViT model
pretrained on ImageNet and fine-tuned on the breast cancer dataset, with a 16 × 16
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patch size and no tile overlap. The incorporation of geometric and color data aug-
mentation techniques resulted in an enhanced accuracy of 0.90, demonstrating the
effectiveness of these augmentations in model generalization.

• The final iteration involved pretraining the same ViT model on ImageNet, followed
by fine-tuning on a comprehensive breast cancer dataset comprising both image-wise
labeled histology images (Part A) and pixel-wise labeled cropped tiles from WSIs (Part
B). The images in Part B were rescaled to match the pixel scale of Part A. Macenko
color normalization was applied to all images to minimize stain variability, achieving
the highest accuracy score of 0.91.

Table 2. Experimental results.

Base Pretrain Resize Data Tile Patch Accuracy
Model Strategy Dimension Augmentation Overlap Size Score

ViT no no no 256 32 0.53
ViT no 224 × 224 no 256 16 0.53
ViT vit-base 224 × 224 no 256 16 0.84
ViT vit-base 224 × 224 no no 16 0.84
ViT vit-base 224 × 224 Geometric, Color no 16 0.90
ViT vit-base 224 × 224 Geometric, Color, Set B no 16 0.91

3.1. Pretraining Outcomes: A Detailed Assessment of HistoEncoder Strategies

HistoEncoder [41] is a Python package and a Command Line Interface (CLI) tool
designed for digital pathology. Its primary function is to extract and cluster features
from histological slide images, aiding in the analysis of these images. It operates through
a self-supervised pretraining process. During this phase, the models learn to produce
similar features for images that exhibit similar histological patterns. HistoEncoder was
developed using comprehensive foundation models and it was trained on significant
prostate tissue data using LUMI, one of Europe’s leading supercomputers, generating two
models: prostate_small and prostate_medium. Both models are designed to extract and
cluster features from histological slide images.

In this study, we develop a custom neural network leveraging HistoEncoder. The net-
work architecture comprises an encoder, created via HistoEncoder, which processes the
input images to extract relevant features. Additionally, a linear layer is integrated, map-
ping these features to class scores, which is a crucial step in the classification process.
This design facilitates the model’s learning from input images, enabling precise classifica-
tion into distinct categories, thereby demonstrating its effectiveness in handling specific
histopathological image data.

The best achieved accuracy rates for the models are 0.89 and 0.86 for the prostate
small and prostate medium models, respectively, as shown in Table 3. The achieved
results, although promising, still fall short of the higher accuracy rates obtained using
google/vit-base-patch16-224-in21k, the pretrained model from Hugging Face. This
model reports accuracy rates of 0.90 and 0.91, respectively, when enhanced with data
augmentation techniques and Macenko normalization, along with the utilization of dataset
Part B. These advanced techniques contribute to the model’s superior performance in
histopathological image classification tasks. On the other side, the sub-optimal perfor-
mance obtained using HistoEncoder might be in part due to the different organ used in
training HistoEncoder.
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Table 3. Experimental results: pretraining outcomes.

Base Pretrain Data Accuracy
Model Strategy Augmentation Score

ViT vit-base Geometric, Color, Set B 0.91
ViT vit-base Geometric, Color 0.90
ViT HistoEncoder prostate_small Geometric, Color, Set B 0.89

ViT HistoEncoder
prostate_medium Geometric, Color, Set B 0.86

ViT vit-base no 0.84
ViT vit-base no 0.84

3.2. The Robustness through the Use of K-Fold Cross-Validation

K-fold cross-validation stands as a critical method in the fields of statistics and machine
learning, serving as a key tool for assessing the performance of models. Choosing a 5-fold
cross-validation involves dividing our dataset into five equal parts where each fold should
ideally represent the overall data distribution. For each round of validation, one of the
five folds is used as the validation set. The decision to employ 5-fold cross-validation
is strategically made to strike a balance between bias and variance, two crucial aspects
in model evaluation. This approach offers a well-rounded assessment, ensuring neither
overfitting nor oversimplification of the model. In Table 4, after running all five rounds, we
show the performance measures, such as accuracy, precision, recall, and F1-Score, from each
round are averaged to give an overall performance metric for the model.

Table 4. Five-fold cross-validation performance metrics for histopathological image classification
using a ViT model.

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 µ σ2

Accuracy

Normal 1.00 0.80 0.80 0.60 0.95 0.83 0.16
Benign 0.75 0.65 0.65 0.70 0.80 0.71 0.07
In situ 0.85 0.90 0.65 0.85 0.75 0.80 0.10

Invasive 1.00 0.45 1.00 0.85 0.90 0.84 0.23

Precision

Normal 0.95 0.89 0.89 0.63 0.95 0.86 0.13
Benign 0.83 0.57 0.59 0.64 0.76 0.68 0.11
In situ 0.81 0.75 0.87 0.81 0.83 0.81 0.04

Invasive 1.00 0.60 0.80 0.94 0.86 0.84 0.15

Recall

Normal 1.00 0.80 0.80 0.60 0.95 0.83 0.16
Benign 0.75 0.65 0.65 0.70 0.80 0.71 0.07
In situ 0.85 0.90 0.65 0.85 0.75 0.80 0.10

Invasive 1.00 0.45 1.00 0.85 0.90 0.84 0.23

F1-Score

Normal 0.98 0.84 0.84 0.62 0.95 0.85 0.14
Benign 0.79 0.60 0.62 0.67 0.78 0.69 0.09
In situ 0.83 0.82 0.74 0.83 0.79 0.80 0.04

Invasive 1.00 0.51 0.89 0.89 0.88 0.83 0.19

Table 4 is divided into four classes: normal, benign, in situ, and invasive. For each
class, the table lists performance metrics such as accuracy, precision, recall, and the F1-Score
for each fold. The table presents the data obtained from the 5-fold cross-validation with
a subdivision of evaluation metrics adopted, highlighting their behavior in each class,
as well as the mean and the standard deviation. In general, it can be seen that the normal
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and invasive classes are better predicted than the benign class, while the in situ class is
predicted as slightly worse than the first two. Some considerations are reported below:

• Accuracy: Confusion matrices for all 5-fold cross-validations are depicted in Figure 4.
Each figure shows a heatmap obtained from a fold. In the x-axis the predicted labels
between normal, benign, in situ, and invasive are represented, while the y-axis presents
the true labels. In other words, each row of the matrix illustrates the occurrences in
the true class, while each column represents the occurrences in the predicted class.
The elements on the main diagonal, from top left to bottom right, show the number
of samples that are correctly classified. For instance, in the heatmap of Fold 1, the
samples belonging to the normal and invasive classes, and in the heatmap of Fold
3, the samples belonging to the invasive class, are all correctly predicted. Instead,
elements outside the main diagonal represent misclassifications. The final accuracy
score for each fold is 0.90, 0.70, 0.78, 0.75, and 0.85 respectively. It is clear that the
model’s accuracy varies significantly across folds, particularly for the invasive class,
where the accuracy ranges from 0.45 (Fold 2) to 1.00 (Folds 1 and 3).

• Precision: The model’s precision is generally quite high, with the normal class showing
the highest mean precision at 0.86. However, the invasive class again shows a high
variation in precision across folds at 0.15.

• Recall: For the in situ class, the recall is quite stable, with a mean of 0.80 and a low
standard deviation of 0.10, suggesting consistent performance in identifying this class
across different subsets of data.

• F1-Score: The F1-Scores in the table generally follow the trends of precision and recall,
with the normal class having the highest mean F1-Score of 0.85, while the benign class
has the lowest at 0.69.

Table 4 also indicates the mean and standard deviation. By looking at the average of
the performance metrics, the invasive class has the highest average accuracy, while the
benign class has the lowest average accuracy. In particular, the normal and the invasive
classes show high mean values across all metrics with relatively low standard deviations for
the first class, indicating that the model performs well and in a consistent manner for this
class. This is desirable in a predictive model, as it suggests that the model’s performance
is reliable and not heavily dependent on the specific data it was tested on. In contrast,
the performance is less consistent when it comes to the other classes, particularly the
invasive class, where it is notable that it has a higher variance than other classes, indicating
greater variability in model performance for this class. This might suggest that this class
might be more difficult to distinguish than the other classes.

Despite the higher variance, the model seems to be quite effective in distinguishing
the invasive class from the other classes, as the accuracy and precision metrics are higher.
This may suggest that the model has learned to recognize some distinguishing features of
the invasive class, although its performance may vary considerably across cross-validation
folds. This behavior can spotlight that this class may have more pronounced distinguishing
features than other classes in the dataset that are better for classifying it.

Overall, Fold 1 and Fold 5 perform better than the others as we can see by the results
of the different metrics. In particular, we investigate the fold with the least performance to
highlight model weaknesses, that is, number 2. In Figure 5, the distribution of the predicted
probabilities for each class of Fold 2 is presented, divided between correct and incorrect
predictions. Thus, each figure shows the probability distribution of the normal, benign,
in situ, and invasive class. For each class, both correctly and incorrectly predicted samples
for the current class are calculated. Then, two histograms are created: one for correct
predictions with the color green and one for incorrect predictions with the color red. Both
histograms show the distribution of the predicted probabilities for the current class.

Although the different metrics are rather low for this fold (especially for the benign
and invasive classes), indicating potential weaknesses in certain aspects of the model’s
performance, the model still manages to discriminate quite well between the different
classes in terms of confidence scores, as the confidence for the correctly identified instances
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is generally higher than the one for incorrectly classified instances. Thus, this model
indicates an overall good degree of consistency. In other words, despite the performance
not always being optimal on individual metrics, the model demonstrates a good capability
to understand underlying patterns and distinctions within the data in terms of confidence.
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Figure 4. Confusion matrices for all 5 folds. (a) Confusion Matrix Fold 1. (b) Confusion Matrix Fold 2.
(c) Confusion Matrix Fold 3. (d) Confusion Matrix Fold 4. (e) Confusion Matrix Fold 5.
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Figure 5. Probability distributions for Fold 2. (a) Probability distribution for class normal. (b) Prob-
ability distribution for class benign. (c) Probability distribution for class in situ. (d) Probability
distribution for class invasive.

3.3. Model Generalization

Our best ViT model was subjected to testing on the BRACS dataset [42]. The BRACS
dataset, designed specifically for the study of breast cancer histopathology, offers a rich
and varied source of data for such a validation. By testing the ViT on this dataset, we can
evaluate the model’s capacity to generalize and accurately classify histopathology images
of breast carcinoma into various sub-types. Table 5 shows the confusion matrix for this test.
Since the classes on BRACS are more detailed than in BACH, we evidentiated in bold the
diagonal values of the matrix.

Table 5. BRACS_RoI dataset performance metrics.

Normal Benign In situ Invasive Overall

0-N 0.85 0.09 0.04 0.02
1-PB 0.37 0.36 0.14 0.13
2-UDH 0.23 0.20 0.50 0.07
3-FEA 0.12 0.35 0.41 0.12
4-ADH 0.10 0.12 0.71 0.06
5-DCIS 0.04 0.06 0.88 0.02
6-IC 0.06 0.03 0.03 0.88

Accuracy 0.74
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For normal tissue (0-N), the model shows a high accuracy with 0.85. Within the benign
classification, the values are 0.36 for Pathological Benign (1-PB) and 0.20 for Usual Ductal
Hyperplasia (2-UDH). For in situ, corresponding to Ductal Carcinoma in situ (5-DCIS),
the model reaches its peak performance at 0.88, the same as in the invasive class, represented
by invasive carcinoma (6-IC). The other two classes, Flat Epithelial Atypia (3-FEA) and
Atypical Ductal Hyperplasia (4-ADH), have no direct correspondence to any of the BACH
classes, and are reported for completeness.

The model underwent further evaluation on the AIDPATH dataset. The achieved
accuracy in binary classification (presence of tumor or not) is 0.92. This high level of
accuracy underscores the model’s robustness in identifying invasive tumors, validating
its potential applicability in clinical diagnostic settings, for example, to screen or prioritize
slides to be submitted for pathologist evaluation.

4. Discussion

Our research highlights the potential benefits of leveraging self-attention mechanisms
through the ViT model in the challenging task of breast cancer histology image classification.
We find that pretraining significantly improves the model’s performance, as evidenced by
the notable decrease in accuracy upon removing the pretraining task. This underscores the
advantage of transferring knowledge from extensive, general-purpose datasets to specific
medical imaging tasks, thereby potentially enhancing the model’s generalization capacity
and resilience to dataset biases.

In this study, we specifically directed our attention to Part A for post-challenge sub-
mission and we made a strategic decision to exclusively utilize the challenge dataset,
a choice that aligns closely with our research objectives. This focus on the challenge dataset
specifically aims to deeply understand its nuances, especially in relation to breast cancer
histology images. Such a stringent focus ensures that our research remains highly relevant
and directly applicable to the unique conditions and objectives of the challenge.

Regarding our choice of methodology, we deliberately opted for models based on ViTs
rather than the conventional CNNs. This choice stems from the common training practices
for ViT models, which are usually based on generic images and not specifically on medical
images such as histopathology slides. With the growing prevalence of ViTs and transformer
technology across various tech domains, our study is designed to assess their performance
in the context of histopathology image processing and analysis, a domain where evidence
is less substantial [21,22]. Through this study, we aim to reveal a new application and an
understanding of ViTs, thereby expanding their usability in medical imaging fields, an area
in which they have not yet been traditionally utilized.

To assess the performance of our self-attention ViT model for breast cancer histology
image classification, we submitted our predictions to the challenge submission platform
for evaluation. Since we lack access to the labels for the test dataset, this submission falls
under the category of a full-blind submission, meaning we have no prior knowledge of
the correctness of our predictions. The only feedback we receive from the submission
system is a single accuracy score, so it is the official performance criterion of the challenge
organizers. Accuracy is a widely utilized metric in classification tasks because it offers a
straightforward and easily understandable measure of our model’s effectiveness in the
given task. However, it is important to acknowledge that accuracy may not always be the
most suitable metric for assessing model performance, especially in cases of imbalanced
datasets where it can favor the majority class. In such instances, alternative metrics like
precision, recall, F1-score, and AUC-ROC may provide a more comprehensive evaluation
of the model’s performance. Despite these potential limitations, in the specific context
of the dataset employed in this challenge, we are constrained by relying exclusively on
the accuracy metric to measure our model’s efficacy. This limitation primarily arises from
our inability to access the actual labels of the images. Consequently, in our subsequent
analysis, we focus on the accuracy scores obtained from the test dataset to gain valuable
insights into our model’s performance under diverse scenarios, including the investigation
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of various hyperparameters, the adoption of diverse data augmentation methods, and the
implementation of distinct preprocessing strategies outlined earlier.

The achieved accuracy of 0.91 surpasses the top results of the BACH challenge (accu-
racy: 0.87), albeit marginally trailing behind the best post-challenge performance (accuracy:
0.92) [39]. Notably, the latter achievement involves an ensemble of five models (comprising
various CNNs and RNN [51]), representing a computationally more intensive approach
compared to ours.

Our investigation into the impact of geometric and color data augmentation yields
significant insights. Disabling augmentation leads to a notable accuracy decline from
0.90 to 0.84, indicating that such augmentation techniques enhance the model’s ability to
generalize to unseen images, likely by improving its resilience to minor data variations.
Additionally, the utilization of tiles extracted from entire digital slides from set Part B,
coupled with Macenko’s color normalization method, results in a commendable accuracy
score of 0.91 on the test dataset.

Furthermore, our study delves into the effects of patch size and overlap on model
performance. We find that a patch size of 16 × 16 without overlap produces optimal results,
underscoring the importance of careful patch configuration in ViT models. Interestingly,
larger tile overlap and larger patch sizes appear to offer no discernible benefits, potentially
due to information redundancy and inadequate local information, respectively. Notably,
tiling emerges as a parameter that negatively impacts accuracy. The poorest results are
observed when images are split into tiles, regardless of subsequent resizing. This unex-
pected outcome is likely attributed to the fact that while each original image represents a
specific class, it does not exclusively contain tissue from that class, particularly concerning
pathological tissues. Consequently, many tiles lack specificity.

In the experiment using HistoEncoder, although we achieve promising results with
accuracy rates of 0.89 and 0.86 for the prostate_small and prostate_medium models,
respectively, these accuracies are slightly lower than those obtained with the pretrained
model from Hugging Face’s repository, which has accuracy rates of 0.90 and 0.91, respec-
tively. This indicates the effectiveness of leveraging large-scale, general-purpose datasets
to enhance model performance.

Testing the ViT model on the BRACS dataset, our results indicate a high degree of
model accuracy in classifying normal tissue and a notable performance in distinguishing
between IC and DCIS, with a peak accuracy of 0.88 in both categories. However, the sig-
nificantly lower accuracy for PB and UDH suggests areas for further model refinement,
particularly in differentiating between benign conditions and early-stage cancerous lesions.

The additional evaluation on the AIDPATH dataset, focusing on invasive tumor
detection and achieving an accuracy rate of 0.92, further suggests the model’s robustness
and its potentiality for clinical application, although limited by the absence of non-cancer
samples. This might suggest the model’s capacity to effectively identify invasive tumor
patterns, which in turn might be the basis for screening slides and prioritizing those in
need for quick pathologist examination.

These insights underline the potential of ViT models, coupled with strategic dataset uti-
lization and augmentation techniques, to enhance the accuracy and efficiency of histopathol-
ogy image analysis.

5. Conclusions

Our research demonstrates a comprehensive and insightful exploration into the appli-
cation of ViT models for breast cancer histology image classification, primarily utilizing the
BACH dataset. The detailed examination of pretraining effects, resize dimension, augmen-
tation techniques, color normalization, and patch configurations, and the integration of
domain-specific tools like HistoEncoder, provides a solid foundation for the advantages of
employing ViT in this domain. The findings not only contribute to the ongoing discourse
on leveraging advanced machine learning models for medical imaging but also highlight
the importance of dataset selection and preparation in achieving high model performance.
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We provide the following answers to the RQ:

RQ1: To answer RQ1, we can say that it is possible to fine-tune a Vision Transformer
(ViT) model for breast cancer classification; in particular, adapting the chosen
pretrained ViT model google/vit-base-patch16-224-in21k, which has learned
general features from a large dataset, to the specific task of breast cancer classifi-
cation using the histology images of the BACH dataset. Therefore, fine-tuning a
ViT model for breast cancer classification is not only possible but also a practical
and effective approach to leveraging the representation learning capabilities of
pretrained models for specific medical imaging tasks.

RQ2: To address RQ2, we can assert that our results indicate that pretraining ViT models
on ImageNet, coupled with geometric and color data augmentation, significantly
enhances performance in breast cancer histology image classification tasks. Op-
timal results are achieved with a 16 × 16 patch size and no tile overlap. These
findings offer crucial insights for the development of future ViT-based models for
similar image classification applications.

RQ3: To answer RQ3, we can maintain that assessing the ViT model’s performance on the
BRACS dataset provides a comprehensive examination of its ability to generalize
across a spectrum of breast carcinoma sub-types. We obtain a valuable opportunity
to rigorously validate the model’s diagnostic accuracy from the dataset’s wide-
ranging diversity, including different lesions and tissue samples. This evaluation
ensures an understanding of the model’s applicability beyond the specific dataset,
enhancing confidence in its broader generalization capabilities.

Based on the ViT model, many researchers have started to propose a range of variants
for breast cancer histopathology image classification, as we have previously discussed.
Generally, they either utilize an ensemble of ViT models or do not employ the BACH
dataset, preferring instead the BreakHis dataset, as highlighted in a recent review by
Karuppasamy [40]. Therefore, to the best of our knowledge, our approach is the first one
that adopts the base version of ViT on the BACH dataset.

Although the choice to utilize a ViT architecture has shown several advantages for this
task, we have identified some limitations. The first one stems from the nature of the BACH
dataset. In fact, the challenge organizers have made only accuracy available as the model
evaluation metric for the post-challenge phase. Therefore, we have attempted to overcome
this issue by generalizing the model through the use of other datasets. The second one
arises from the small size of the test set, which consists of 100 unlabeled images. Conse-
quently, we introduce the implementation of 5-fold cross-validation in our study. Hence,
potential directions for future work include not only augmenting the dataset through
the acquisition of additional breast cancer histopathology images but also developing a
pretrained model exclusively trained on breast tissue, similar to HistoEncoder, which is
trained on prostate tissue.
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