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Abstract: Desmoid tumors (DTs) are non-metastasizing and locally aggressive soft-tissue mesenchy-
mal neoplasms. Those that become enlarged often become locally invasive and cause significant
morbidity. DTs have a varied pattern of clinical presentation, with up to 50–60% not growing after
diagnosis and 20–30% shrinking or even disappearing after initial progression. Enlarging tumors
are considered unstable and progressive. The management of symptomatic and enlarging DTs is
challenging, and primarily consists of chemotherapy. Despite wide surgical resection, DTs carry
a rate of local recurrence as high as 50%. There is a consensus that contrast-enhanced magnetic
resonance imaging (MRI) or, alternatively, computerized tomography (CT) is the preferred modality
for monitoring DTs. Each uses Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST
1.1), which measures the largest diameter on axial, sagittal, or coronal series. This approach, however,
reportedly lacks accuracy in detecting response to therapy and fails to detect tumor progression, thus
calling for more sophisticated methods. The objective of this study was to detect unique features
identified by deep learning that correlate with the future clinical course of the disease. Between
2006 and 2019, 51 patients (mean age 41.22 ± 15.5 years) who had a tissue diagnosis of DT were
included in this retrospective single-center study. Each had undergone at least three MRI exami-
nations (including a pretreatment baseline study), and each was followed by orthopedic oncology
specialists for a median of 38.83 months (IQR 44.38). Tumor segmentations were performed on a
T2 fat-suppressed treatment-naive MRI sequence, after which the segmented lesion was extracted
to a three-dimensional file together with its DICOM file and run through deep learning software.
The results of the algorithm were then compared to clinical data collected from the patients’ medical
files. There were 28 males (13 stable) and 23 females (15 stable) whose ages ranged from 19.07 to
83.33 years. The model was able to independently predict clinical progression as measured from
the baseline MRI with an overall accuracy of 93% (93 ± 0.04) and ROC of 0.89 ± 0.08. Artificial
intelligence may contribute to risk stratification and clinical decision-making in patients with DT by
predicting which patients are likely to progress.

Keywords: artificial intelligence; desmoid tumor; deep learning; MRI; decision-making

1. Introduction

Desmoid tumors (DTs) are non-metastasizing and locally aggressive soft-tissue mes-
enchymal neoplasms [1–3]. Those that increase in size often become locally invasive and
cause significant morbidity. DTs are rare, with a reported incidence of 2–4 per million
population, and they account for 0.03% of all neoplasms [4–7]. They have been documented
to occur between the ages of 15 and 60 years, peaking between 30 and 40 years, and more
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commonly affect women than men [8–10]. Approximately 5% to 10% arise in the context of
familial adenomatous polyposis (FAP) caused by a mutation in the adenomatous polyposis
coli (APC) gene [11]. The etiology of DTs is unknown. Most of them occur sporadically, and
85% have a mutation in the CTNNB1 encoding beta-catenin pathway. The three distinct
mutations that have been identified are 41A, 45F, and 45, and mutation 45F is associated
with a high risk of recurrence. DTs arising in FAP have a predilection for a prior surgical site,
and previous surgery is considered to be a risk factor. DTs occur with increased frequency
during or after pregnancy, and anecdotal evidence suggests abdominal wall trauma and
high estrogen states as possible reasons. Pregnancy-associated DTs have overall better
outcomes [4,6].

DTs have a varied pattern of clinical presentation. Up to 50% to 60% of them do
not grow after diagnosis, and 20% to 30% may shrink or even disappear after an initial
progression [12]. The anatomic locations where DTs appear are the extremities, abdominal
wall, and intra-abdominal locations. Since there are currently no tools that can predict
the biological and clinical behavior of DTs at the time of presentation, the consensus is to
begin with active surveillance, according to the global consensus-based guidelines of the
Desmoid Tumor Working Group, Milan, Italy 2018 [11]. Their recommendation for active
surveillance begins with magnetic resonance imaging (MRI) (computed tomography (CT) if
MRI is not available) within 1 to 2 months and then at 3- to 6-month intervals. The presence
of symptoms and evidence of radiological progression (at least 20% increase in the diameter
of target lesion–RECIST 1.1) on a single imaging study should not mandate initiation of
tumor-directed active therapy, but, rather, pain control and active surveillance. Indications
for intervention include progressive symptoms and/or persistent interval progression over
one year and three sequential scans. This surveillance strategy aims to avoid overtreatment
in patients who could spontaneously regress and to refrain from the implementation of
interventions in the presence of stable disease. Alternatively, an earlier decision towards
therapy may be made when DTs are located close to critical structures (e.g., mesenteries or
head and neck) due to a potentially higher risk of morbidity before disease stabilization [13].

Imaging plays an important role in the diagnosis, follow-up, surgical planning, and
assessment of response to systemic therapy. The most applied modalities are CT for
intra-abdominal tumors, MRI for extra-abdominal tumors, and US in selected cases. The
signal intensity of DTs on MRI in the various imaging sequences reflects the proportion of
collagen fibers, spindle cells, fluid content, and extracellular matrix that are present in the
targeted area [14,15]. The most observed MRI appearance of DTs is a heterogeneous pattern,
with a signal that is iso- to hyperintense to skeletal muscle on T2-weighted images, and
isointense to muscle on T1-weighted images [16]. Histologic components have different
MRI intensities: specifically, a myxoid matrix has high signal in T2 and enhances intensely
after injection of gadolinium, a cellular stroma is intermediate in intensity, and fibrous
tissue/collagen bands have low signal and no enhancement on post-contrast images [17,18].
DTs commonly (90%) demonstrate variable moderate-to-marked enhancement after the
administration of gadolinium-based contrast material, especially in the more cellular and
less fibrotic myxoid regions [19]. Despite the characteristic findings of DTs on MRI studies,
biopsy is necessary to distinguish them from other soft-tissue tumors.

The management of unstable symptomatic and enlarging DTs is challenging. Despite
wide surgical resection, DTs have a high rate of local recurrence, reaching as high as 50% [4].
Systemic chemotherapy is the first line of treatment for many patients for whom surgery is
not feasible or will not achieve a cure. New techniques, such as in situ cryoablation [20] and
selective intra-arterial doxorubicin [21], have shown promising initial results in decreasing
tumor volume and symptoms. Since none of these treatments have high cure rates while
carrying a significant risk of adverse effects and complications, the consensus is to begin
patient management with active surveillance after biopsy and initial diagnosis.

For treated tumors, the evaluation of response to therapy is assessed by means of
Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which measures
the largest diameter on axial, sagittal, or coronal plans. This method, however, does
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not adequately identify all clinically relevant responses [22]. There is a consensus that
contrast-enhanced MRI or, alternatively, CT is the preferred modality for monitoring
DTs [13]. Those imaging studies show early changes in heterogeneity in responding
tumors due to a decrease in cellular area and an increase in fibro-necrotic content before
dimensional response, although they are prone to interobserver variability and differences
across different viewer platforms. Therefore, the need for a new, standardized, more
sophisticated technique is crucial to more precisely evaluate response to therapy. Two
studies that assessed DTs by means of radiomics have shown that it identifies changes in
tumor intensity significantly earlier than RECIST 1.1. Crombe et al. compared radiomics for
quantifying changes in heterogeneity to conventional response criteria in patients treated
with chemotherapy and reported that the radiomics model predicted progression better
than changes in size and dimensions that occurred months later [23]. Subhawong et al.
compared volumetric signal and texture analysis to conventional assessment in 27 patients
with DTs who received systemic therapy. That method allowed a more comprehensive
analysis of DT biologic change, and the authors suggested that it may permit early detection
of DT behavior and therapeutic response [24–26].

The objective of this study is to assess the ability of MRI-based artificial intelligence
(AI) to predict disease progression of untreated DTs at presentation. Deep learning was
applied to analyze and compare baseline MRI findings to the clinical records of treatment-
naive patients. The working hypothesis was that deep learning applied to MRI studies
has the potential to predict the biological and clinical behaviors of DTs, thus assisting
physicians in clinical decision-making and management of these patients, as well as aiming
to prevent unnecessary systemic or local treatments and associated side effects.

2. Methods
2.1. Study Design and Patient Selection

This was a single-center retrospective cohort study of DT patients who underwent at
least 3 MRI studies for disease assessment. All patients were followed-up at the Tel Aviv
Sourasky Medical Center from 20 March 2006 to 23 June 2019, with a minimum follow-up
period of 1 year and a maximum follow-up period of 13 years. Each participant had at
least one year of treatment-free follow-up, during which a minimum of 3 MRI studies were
performed. The study included a total of 57 patients with a tissue diagnosis of DT. The
medical reports of each participant were screened for the keywords “Desmoid”, “Desmoid
tumor” and “Aggressive fibromatosis”. In addition, clinical data were extracted from
the medical files of the participants, which included gender, age, weight, height, other
malignancies, and the clinical stability of the DT.

The study inclusion criteria were patients followed-up in our institution, older than
18 years of age, and having undergone at least 1 pretreatment MRI with satisfactory quality
T2 with fat suppression sequence and a minimum of 2 additional MRIs for assessment
over time; the time gap between the studies relied on the clinical status of the patients and
the DT location and ranged between 3 and 12 months. Exclusion criteria were individuals
younger than 18 years of age, no available baseline MRI, the lack of T2 with fat suppression
sequence, fewer than 3 MRIs and non-measurable or small tumors (fewer than 3 MRI slices),
and any previous treatment for DT. Six patients were excluded, two due to top losses (low
image quality) and small tumor size. At baseline, the patients’ tumors were analyzed
through a deep learning algorithm and divided according to their clinical progression
profile into “stable” and “unstable” disease courses.

Clinical data, including follow-up from outpatient and inpatient visits, were docu-
mented on clinical files of the orthopedic oncology department. The recorded clinical data
on baseline and upon completion of follow-up were retrieved.

This retrospective study was conducted in accordance with the approval of the Ethics
Committee of the Tel Aviv Sourasky Medical Center, and in compliance with the Declaration
of Helsinki. Informed consent was waived.



J. Imaging 2024, 10, 122 4 of 11

2.2. Input Data

The analysis was based upon T2 fat-suppressed weighted images collected from
pretreatment MRI scans of patients with a DT-proven biopsy at the Tel Aviv Sourasky
Medical Center. Data were collected from different MRI systems from different sites and
vendors with various acquisition parameters. The MRI machines ranged in magnetic
field strength from 1.5 to 3 Tesla (Siemens-Avanto, Aera, Skyra, Prisma and Biograph.
GE-Discovery and Signa. Philips Intera, Ingenia and Achieva). Each of the protocols was
tailored for DT location in order to optimize the coil, field of view, and slice thickness.

2.3. Manual Lesion Segmentation

The lesion area was defined as an abnormal heterogeneous area on T2 FSWI, with
hyperintense areas representing the myxoid matrix and cellular stroma, and hypointense
areas representing fibrous tissue. A single radiologist performed the manual 3D segmen-
tations of the DT by using a tumor tracking application (IntelliSpace Portal, Philips). The
segmentations were extracted in stereolithography format (STL) together with the original
MRI sequence and sent to a PhD qualified data scientist specializing in medical AI. Figure 1
shows an example of 3D segmentation of a DT in the posterior thoracic wall.
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Figure 1. (A). Sagittal T2FS MRI of a segmented DT located in the soft tissues of the torso.
(B). Extracted 3D model of the tumor seen in (A). DT; Desmoid tumor.

2.4. Model Training

Deep learning model training and evaluation were performed with the Fast.ai frame-
work built on top of the PyTorch environment. The input data consisted of crop images of
the tumor center ± 1 slices (a total of 3 slices per patient) extracted from the segmented
lesion area and resized to a 96 × 96 image size. Data augmentation was performed in order
to increase the dataset size and variance and it included random rotations, zooming, and
lightning. The model performance was tested based upon images of the lesion’s area and
its surrounding tissue (Figure 2A), as well as upon the lesion area in isolation (Figure 2B).

2.5. Data Splitting

The entire dataset was split in a stratified manner: specifically, at the subject level, into
80% training and 20% validation, proportional to the group’s size, and ensuring that all
images belonging to a given patient would be allocated to the same group. The training
and validation were performed in a 5-fold cross-validation manner.
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tumor model.

2.6. Network Architecture

An EfficientNet [24] convolutional neural network was used. Network training was
carried out with a batch size of 16. Optimization of the network hyper-parameters (Effi-
cientNet architecture [bo-b7], learning rate, number of epochs, metric for evaluation of
the model during training, and input imaging data) was performed on the training and
validation data in a 5-fold cross-validation manner.

2.7. Transfer Learning

Due to the relatively small data size that was available for this study, the network was
trained by pre-trained model-based weights that had been trained on an ImageNet data
set, as previously described elsewhere [27,28].

2.8. Statistical Analysis

The classification results were evaluated on the validation datasets for each of the
input datasets and for each of the 5-fold validations using accuracy, precision, recall, F1
scores, and area under the receiver operating characteristic curves (ROC AUC). Categorical
variables were expressed as percentages. The distribution of continuous variables was
assessed with histograms and Q-Q plots and expressed as median (interquartile range [IQR].
Baseline characteristics were evaluated for the entire study cohort as well as according to
the clinical behavior of the DT. The statistical analysis of the clinical data was performed by
means of a univariate analysis, comparing between the stable and unstable groups. The
Wilcoxon test was applied for continuous variables, and Chi-squared test was applied for
the categorical variables. The statistical analysis was performed with SPSS (version 27),
and the results were considered significant if p < 0.05.

3. Results
3.1. Baseline Characteristics

The 51-patient study cohort included 28 males (13 with stable disease) and 23 females
(15 with stable disease), with an age range from 19.07 to 83.33 years (mean age 41.22 ± 15.5 years).
The mean age at diagnosis was 33.8 ± 17.1 years. The distribution of the anatomical loca-
tions of the DTs was 10 abdominal walls, 28 upper and lower extremities, 5 back, 4 chest
walls, and 4 neck (Figure 3). The average tumor volume was 130.8 mL, and the range of
volumes was 5.5–560.8 mL. All the patients underwent pre-treatment baseline MRIs and
were followed by orthopedic oncology specialists for a median of 38.8 months (IQR 17.68
to 58.22). A search of each patient’s medical file for associated malignancies and medical
conditions yielded 39 patients with no major coexisting medical conditions, 4 with FAP,
2 with Hodgkin’s lymphoma, and 6 patients with lipoblastoma/desmoplastic fibroma,
squamous cell carcinoma, scleroderma, ulcerative colitis, endometriosis, or Factor V Leiden
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(1 each). There was no significant difference between stable and unstable patients regarding
baseline characteristics, including sex, anatomical location of the DT, weight, height, age at
diagnosis, and follow-up duration (p > 0.05) (Table 1).
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Table 1. Demographic and clinical characteristics of patients with desmoid tumors.

Stable Unstable p Value

Gender
Male, 28 13 (46.4%) 15 (65.2%) N.S.
Female, 23 15 (53.6%) 8 (34.8%) N.S.

Anatomic location of the DT
Extremities, 31 16 (57.15) 15 (65.2%) N.S.
Chest wall, 5 3 (10.7%) 2 (8.7%) N.S.
Back, 4 2 (7.1%) 2 (8.7%) N.S.
Abdominal wall, 8 6 (21.4%) 2 (8.7%) N.S.
Neck, 3 1 (3.6%) 2 (8.7%) N.S.

Weight (Kg) 67.5 72 N.S.
Height (cm) 168 175.5 N.S.
Age at diagnosis (years) 31.76 26.67 N.S.
Follow-up time (months) 45.63 31.99 N.S.

DT; Desmoid tumors.

3.2. Algorithm Results

The model was tested on both extracted 3D tumor models alone as well as on tumors
with the background MRI sequence included (Figure 1) and the two performances were
compared. The model that ran on the segmented tumor alone achieved the highest degree
of accuracy and it was chosen to represent the results (Figure 2B), with an EfficientNet-b3
model, learning rate of 0.001, and accuracy as the metric for model evaluation during
training, and with a total of 75 epochs, while preserving the model which achieved the best
level of accuracy during training.

The results of the algorithm that correlated to the overall outcome for both stable and
unstable patients are depicted in Table 2. The algorithm was able to predict those who
were likely to progress with a mean precision of 77% ± 11%. The algorithm was able to
predict a stable disease with a mean precision of 90% ±12%. The overall mean accuracy
of the obtained deep learning algorithm to predict outcome based upon radiological MRI
features was 93% ± 4%. The mean F score was 0.84 ± 0.05 for stable patients and 0.82 ±
0.05 for unstable patients. The mean ROC curve which showed the overall performance of
the model at all classification thresholds was 0.89 ± 0.07 (Figure 4). The similarity of the
performance that had been obtained across the five datasets demonstrated the robustness
of the obtained model.
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Table 2. Five-fold classification results.

Precision Recall F_Score Accuracy ROC

Stable 0.90 ± 0.12 0.81 ± 0.06 0.84 ± 0.05
0.93 ± 0.04 0.89 ± 0.08Unstable 0.77 ± 0.11 0.91 ± 0.10 0.82 ± 0.05
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4. Discussion

Desmoid tumors are rare and do not metastasize, but they can be locally aggressive,
with high recurrence rates. The peak incidence occurs between the ages of 30 and 40 years,
making it a disease of a young adult population. Despite their benign nature, these tumors
still pose a therapeutic challenge because of their variable clinical behavior and rate of
recurrence. Some lesions progress, some do not change, and some even shrink without
treatment. Kasper et al. [13] summarized the latest consensus for managing DTs as sup-
ported by the Desmoid Tumor Working Group in 2018. The recommendation calls for
active surveillance as the preferred first-line approach for newly diagnosed or recurrent
disease and the provision of medical therapy consisting of chemotherapy, radiotherapy, or
combination therapy for cases that show clinical and/or radiological progression in three
consecutive (the timing depends on clinical status and DT location) follow-ups for at least
one year of surveillance. The exception is abdominal wall disease for which surgery is
preferred upon diagnosis. The 2018 Desmoid Tumor Working Group’s recommended algo-
rithm for diagnosing and managing DTs is as follows: The first step is tissue diagnosis by
core needle biopsy, followed by active surveillance for 1–2 years and/or three consecutive
MRIs, and initiation of treatment when there is evidence of disease progression. Surgery is
the first line of treatment in abdominal wall tumors, while chemotherapy or radiotherapy
is given if surgery is not feasible (e.g., in challenging anatomical location) or when no cure
is possible (e.g., in cases of extensive aggressive disease). The first line of treatment for
DTs in the extremities/chest wall/shoulder girdle is chemotherapy, and the second line is
chemotherapy/radiotherapy/surgery/isolated limb perfusion. Investigational treatment
such as sclerotherapy can be given as the third line of treatment or for tumors resistant to
any therapy.
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A deep learning algorithm on the pretreatment MRI of the 51 study patients with a
histological diagnosis of DTs was applied in the search for features that can differentiate
stable from unstable disease. Disease stability was based upon clinical and radiological
follow-up findings. The algorithm was able to predict which patients with DTs were likely
to progress at a high degree of certainty and showed better performance in predicting stable
disease compared to unstable disease (precision rates of 0.90 and 0.77, respectively), with
an overall accuracy of 0.93. As such, this tool appears to have much potential in assisting
clinicians in making the correct decision early on before actual disease progression and
possible onset of morbidities, and of sparing patients who are unlikely to progress from
undergoing unnecessary treatment.

The results of the current investigation are in accordance with those of other studies
that compared radiomics and AI tools to conventional tools (e.g., RECIST 1.1) for the
evaluation of response to therapy in orthopedic oncology patients [19,20]. Recent studies
by Crombe et al. [22] and Subhawong et al. [23] have addressed post-treatment MRI tumor
analysis that used AI in patients with progressive disease. Those authors showed that
image analysis was superior to classical methods in detecting response to therapy and the
likelihood for progression in those patients. The current analysis, on the other hand, focused
upon finding an independent tool that could predict clinical and biological behavior based
solely upon the first pretreatment baseline MRI examination.

Machine learning has received much attention over the last few years. Numerous
reports have demonstrated that deep learning may be used for the automation of various
time-consuming tasks performed by radiologists, such as lesion detection, segmentation,
classification, and monitoring, as well as the prediction of treatment response, which is
usually not achievable without software [29]. Many other studies have discussed the role
of AI in radiology and other medical fields that use imaging in everyday practice (e.g., all
radiology modalities, optic cameras in laparoscopic and other endoscopic procedures, and
more) [30,31]. Mehralivand et al. studied the performance of an algorithm for the detection
of prostatic lesions suspected of cancer based upon MRI findings in 525 patients, and the
sensitivity of their algorithm reached up to 72.8% in detecting malignancies [32].

The importance of predicting DT progression is manifold. Patients with DTs do not
infrequently experience grave surgical complications and often sustain local recurrence.
The location and infiltrative nature of DTs can pose a therapeutic challenge, since the
lesion is often located in proximity to vital structures and its borders are often difficult to
define [33]. There are currently no reliable predictive factors for the clinical outcome of
DTs [34] and patients and treating physicians regularly face a dilemma regarding optimal
treatment and the need for surgical intervention [35].

Tsukamoto et al. reported that upfront surgery is not more advantageous than more
conservative treatments, such as observation or medical treatment for patients with DTs [36].
They observed that 66% of the patients remained stable without surgery and could poten-
tially forego the severe consequences of often mutilating surgery thanks to the implementa-
tion of a reliable predictive model for recurrence and outcome. Moreover, the rate of local
recurrence can reach as high as 50% despite wide surgical resection [4]. Finally, Schut et al.
observed that patients with DT suffer from a significantly lower quality of life due to the
unpredictable and highly variable clinical course of DTs [37].

There are several limitations to this study that bear mention. Because DTs are very
rare, the number of patients in the study group is relatively small. In addition, the study
was conducted in a single, tertiary hospital, which is the National Referral Center for
Orthopedic Oncology. This means that patients arrive with imaging performed in multiple
different MRI vendors and magnetic field strength, which has the potential to affect the
algorithmic ability to accurately interpret input data, due to its variability. The retrospective
nature of the study limits our ability to control the study protocol and the region scanned
and lacks the quality control in real-time scanning. This may hinder the imaging quality,
and, in extreme cases, may result in the exclusion of patients from the study. Manual
segmentation was performed once, by a single radiologist, which may mask inter- and
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intra-observer variability. Finally, no baseline was compared to, so considering ML methods
with radiomics features can be one option.

We consider this study a feasibility study upon which future research will rely, and
hopefully recruit more patients. By doing so, this makes future integration into the clin-
ical workflow more realistic, impacting real-time decision-making, ultimately positively
affecting the patient’s treatment. Additionally, the study leveraged EfficientNet only as
the backbone classification network; it would be interesting to see how different network
architectures have an influence on the overall prediction.

Further collaborative research with multiple large referral centers for DTs is needed to
support the current results [38,39].

5. Conclusions

Non-visual features acquired by deep learning algorithms in the MRIs of DT pa-
tients can be acquired in a non-invasive manner through an offline analysis of routine
MRI examinations. The algorithm described herein represents an innovative approach
to observer-independent risk stratification for patients with DTs. The algorithm can be
applied in a non-invasive independent manner that can substantially support clinical
decision-making in a pluri-disciplinary approach and in accordance with current therapeu-
tic guidelines. The results indicate that this deep learning analysis of the initial MRIs of DT
patients can be valuable for risk stratification, but the number of analyzed DT patients is
relatively small and larger studies are needed to validate the findings.
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