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Abstract: Vector quantization (VQ) is a block coding method that is famous for its high compression
ratio and simple encoder and decoder implementation. Linde–Buzo–Gray (LBG) is a renowned
technique for VQ that uses a clustering-based approach for finding the optimum codebook. Numerous
algorithms, such as Particle Swarm Optimization (PSO), the Cuckoo search algorithm (CS), bat
algorithm, and firefly algorithm (FA), are used for codebook design. These algorithms are primarily
focused on improving the image quality in terms of the PSNR and SSIM but use exhaustive searching
to find the optimum codebook, which causes the computational time to be very high. In our study,
our algorithm enhances LBG by minimizing the computational complexity by reducing the total
number of comparisons among the codebook and training vectors using a match function. The
input image is taken as a training vector at the encoder side, which is initialized with the random
selection of the vectors from the input image. Rescaling using bilinear interpolation through the
nearest neighborhood method is performed to reduce the comparison of the codebook with the
training vector. The compressed image is first downsized by the encoder, which is then upscaled at
the decoder side during decompression. Based on the results, it is demonstrated that the proposed
method reduces the computational complexity by 50.2% compared to LBG and above 97% compared
to the other LBG-based algorithms. Moreover, a 20% reduction in the memory size is also obtained,
with no significant loss in the image quality compared to the LBG algorithm.

Keywords: computational time; codebook; firefly algorithm; bat algorithm; image compression;
Linde–Buzo–Gray; peak signal to noise ratio; vector quantization

1. Introduction

Images are significant representations of objects. They are utilized in many appli-
cations, such as digital cameras, satellite and medical imaging, or computer storage of
pictures. Commonly, sampling, quantization, and encoding are performed on a 2D analog
signal to generate a digital image that creates an abundant volume of data that is impractical
for storing and transmission. To decrease the image’s size for storage and transmission,
it is necessary to compress the image for practical use. The real-time transmission of
images restricts the image compression techniques as they require fast buffering and low
computational complexity [1]. Conversely, compressing images for storing in memory has
no restrictions. It is due to this that the algorithms are executed in non-real time, where
there is no need for buffers for the communication channel [2]. Image compression can be
categorized into two main types: one is lossless, which contains no loss of image quality
and is used for applications where no loss is tolerable, such as medical imaging, scientific
research, and satellite imaging, while the other is lossy, which bears the loss in quality
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and is suitable for applications where losses are acceptable, such as video streaming, web
publishing, and social media, etc. [3]. The goal of compressing images is to reduce the
storage requirement of the images.

A lossless image compression algorithm formulated by Garcia et al. [4] is a renowned
technique that uses Huffman coding [5] (hierarchical encoding) to assign variable coding
procedures in which more bits are assigned to less frequently occurring data and fewer
bits to more frequently occurring data. The Huffman coding algorithm is adopted in
many standards, including the JPEG (Joint Photographic Experts Group) [6]. However,
it is efficient only if the probabilities of the data are provided and the data encoding is
performed integrally. As the histograms vary from image to image, it is thus not certain
whether the Huffman algorithm performs optimally. Another well-known technique of
lossless image compression is arithmetic coding [7], which contains variations in coding
just like the Huffman algorithm. It is based on reducing the redundant codes present
in the image data. It performs efficiently if the probability of the occurrence of each
symbol is identified. Arithmetic coding works on the principle of generating an interval
for every symbol, which is calculated through cumulative probability. It assigns intervals
to symbols from high to low and rescales the rest of the intervals until all the symbols are
rescaled. It is an error-sensitive technique; a one-bit error will corrupt the entire image [8].
Lossless prediction coding is commonly applied in image coding to eliminate inter-pixel
redundancy [9], ensuring accurate reconstruction without the loss of data. It predicts the
current value of the pixels from the neighboring pixels and creates new values from the
predicted value and original pixel values.

On the other hand, lossy image compression techniques outperform lossless techniques
in terms of compression [10]. There are wide applications where the loss in the image is
tolerable and lossy image compression is preferred due to its tendency to lower the bit rate
as desired by the application. Various lossy schemes are proposed, including predictive
coding [11], which performs predictions using neighboring pixels. It performs quantization
to an error message obtained through the predictive and actual values of an image as
shown in Figure 1.

Figure 1. High-level block diagram of predictive coding.

If the prediction is accurate, the encoding will produce high compression. Adding
many pixels in the prediction process will directly affect the computational cost, and
it has been noticed that, after attaining three and above previous pixels, no substantial
improvement is observed in the image compression, as observed in algorithms such as the
JPEG (Joint Photographic Experts Group). Transform coding is extensively employed for
image compression, involving the conversion from one domain to another, resulting in
densely packed coefficients [12]. Some coefficients exhibit high energy, while others have
low energy. Transform coding techniques aim to efficiently pack the information using
a limited number of coefficients, with a quantization process used to discard coefficients
containing minimal information. The Karhunen–Loeve Transform (KLT) [13] is another
technique used for compression that uses vectors with low-subspace dimensions. It uses
correlation vectors, which are constructed using the original image. These correlation
vectors are used to calculate the orthogonal vectors. These vectors are used as a linear
combination to represent the original image. The KLT is not an ideal coding scheme due
to image interdependences and computation. Another important lossy technique is the
discrete cosine transform, which is orthogonal and transforms the image to the frequency
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domain. Such a representation is relatively compact and has the advantage of better results
in discontinuous data at the end blocks compared to the Discrete Fourier Transform [14].
The DCT is adopted in many standards, including the Joint Photographers Expert Group
(JPEG). The JPEG was initiated in 1987 and became an international standard in 1992 by
the International Standards Organization (ISO) [15]. The standard contains four modes,
including hierarchical, progressive, baseline, and lossless. The baseline mode is the default
mode, and it is a common standard adopted worldwide. It has a two-step model in which
the first DCT is applied and a quantization process is performed to remove the psycho-
visual redundancy. In the second step, the entropy encoders are used to to remove the
coding redundancy.

JPEG 2000 was developed after its first release, and it was a joint venture of the ISO
and the International Telecommunication Union (ITU). It has an advantage over the JPEG
due to its high compression ratio and better functionalities. It differs from the JPEG in
terms of the transform coefficients and provides additional functions regarding progressive
resolution transmission, better quality, error calculation, and information on location.

One of the renowned image compression techniques is vector quantization, which is
recognized for its effectiveness in achieving high compression ratios with minimal distor-
tion at specified bit rates [16]. It offers many features, including high compression with a
higher block size and low compression with a smaller block size. The alteration in distor-
tion can be tailored to specific applications by modifying the size of the block. Moreover,
it provides a rapid decompression method utilizing codebooks and indexes, suitable for
implementing in web and multimedia applications to decompress the images multiple
times. Generating the optimal codebook is a pivotal aspect of vector quantization, and it
can be refined through various optimization techniques, including the implementation
of genetic algorithms [17], ant colony optimization [18], and other various optimization
techniques. Linde–Buzo–Gray [19] developed an algorithm that recursively produces an
optimal codebook of size “N” from a random selection of codebooks. It divides the original
vectors into N number of clusters and endeavors to refine the codebook until the distortion
is within the acceptable threshold.

Several optimization algorithms are applied on LBG for codebook generation and its
optimization; however, these algorithms improved the quality of the reconstructed image
but suffered greatly in terms of computational time [20]. Hence, in the proposed research, a
fast-LBG-based codebook generation is proposed, which improves the computational time
and storage requirements of LBG and LBG-based algorithms.

2. Recent Algorithms for Codebook Generation

Vector quantization is a block coding method using encoding to find the final codebook.
The codebook contains the codeword and indexes, which are transmitted to the receiver.
The decoder uses indexes and codewords to reconstruct the image. The encoder and
decoder of the VQ are shown in Figure 2.

Figure 2. Block diagram of VQ encoder and decoder.
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The test image is configured to match a training vector of dimensions (N × N), which
is then condensed into a smaller block of size Nb (n × n). The blocks are represented
as Xi, where (i = 1, 2, 3, 4. . . . . . ..Nb). Specific vectors from the Nb blocks are chosen as
the codewords. These vectors are selected based on minimum “D” between codeword
and training vector, and they are denoted as Cj (i = 1, 2, 3. . . . . . .Nc). In this context, Nc
denotes the overall number of codewords within the codebook. The index of the codebook
represents the location of each codeword in the codebook, which is updated during each
iteration after the “D” is calculated. After the finalization of indexes and codewords, they
are combined and transmitted as a codebook to the receiver. The decoder after receiving the
codebook uses index and codewords for reconstructing the original image. The distance of
the codebook with the training vector is calculated as

Euclidean Distance = D = 1/Nc

Nc

∑
j=1

Nb

∑
i=1

Vij ∗ ||Xi − Cj||2 (1)

Under condition

D =
Nc

∑
j=1

Vij = 1, for all i ∈ {1, 2, 3, . . . , Nb} (2)

Vij =

{
1, if Xi belongs to the jth cluster
0, otherwise

(3)

For VQ, it is important to satisfy two conditions,
(1) A partition denoted by Rj for all j = 1, 2, 3, 4, . . . , Nc will satisfy the given criteria.

Rj ⊃ {xϵX; d(c, Cj) < d(x, Ck), i f ∀k ̸= j (4)

(2) The Cj defines a centroid Rj where

Cj = 1/Nj

Nj

∑
i=1

xi, ∀xiϵRj (5)

Here, Nj represents total vectors that belong to Rj.

2.1. Vector Quantization Using LBG

The first algorithm to apply the VQ technique, as described by Linde et al. (1980), is
known as the Linde–Buzo–Gray (LBG) algorithm [21]. Algorithm 1 illustrates the steps of
the LBG algorithm. This method employs a k-means clustering approach, utilizing a proximity
function to identify the optimal local solution. This function makes an effort to prevent distortion
from becoming worse between iterations. Due to its ineffective randomly initialized codebook,
this technique becomes trapped in local optima and is unable to find the optimal solution.

Algorithm 1: LBG Algorithm
Rk→CB
Initialize X = (x1, x2. . . xk) as initial training vectors. The Euclidean Distance (D)
among the two vector is D(x, y).

Step 1: Initial codebook CB0, which is generated randomly.
Step 2: Initialize i = 0.
Step 3: Execute the given steps for each training vector. Calculate the distances

among the codewords in CBi and training vector as D(X; C) = (xt − ct).
Find the closest codeword in CBi.
Step 4: Divide the codebook in clusters of N number of blocks.
Step 5: Calculate the centroid of each block for obtaining the new codebook CBi + 1.
Step 6: Calculate the average distortion of CBi + 1. If no improvement in last

iteration, the codebook is finalized and execution stops. Otherwise, i = i + 1, and
go to Step 3.
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2.2. Particle Swarm Optimization Vector Quantization Algorithm

Hsuan and Ching proposed Particle Swarm Optimization (PSO) to find the opti-
mum codebook for VQ [3]. The codebook employs swarm intelligence to adjust the
codewords based on the natural behavior principles observed in schools of fish, as depicted
in Algorithm 2. This approach offers a global codebook, in case the particle update velocity
is kept higher, but requires many iterations to find the global best solution.

Algorithm 2: PSO-LBG Algorithm
Step 1: Implement the LBG algorithm to discover the codebook and designate as
the global best (gbest) codebook.

Step 2: Randomly generate additional codebooks.
Step 3: Compute the fitness values for each codebook.

Fitness(C) =
1

DistortionD(C)
(6)

1
D(C)

=
Nb

∑Nc
J=1 ∑Nb

i=1 uij ∗ ||Xi − Cj||2
(7)

Step 4: Upon observing an enhancement in the fitness of the codebook compared
to the previous fitness (pbest), assign the new fitness value as pbest.

Step 5: Identify the codebook with the highest fitness value; if the fitness surpasses
that of gbest, update gbest with the new value.

Step 6: Update velocities and elements to transition to a new position.

Vn+1
ik = Vn

ik + C1rn
1 (pbestn

ik − Xn
ik) + C2rn

2 (gbestn
k − Xn

ik) (8)

Xn+1
ik = Xn

ik + Vn+1
ik (9)

The variable K denotes the total number of solutions, where “i” denotes the
position of a particle, and r1 and r2 represent random numbers, while C1 and C2
signify the rates of social and cognitive influences, respectively.

Step 7: Until max iteration or stopping criteria are met, repeat Steps 3–7.

2.3. Quantum-Inspired Particle Swarm Optimization Vector Quantization Algorithm

By the procedure outlined in Algorithm 3, Wang et al. implemented the Quantum
Swarm Evolutionary Algorithm (QPSO) [22], whereby the local points are estimated as Pi
utilizing Equation (10) derived from the local best (pbest) and global best (gbest) codebooks.
The adjustment of particle positions is facilitated by manipulating parameters u and z. It is
noted that refining these parameters to improve PSNR entails substantial computational
resources, surpassing those demanded by PSO and LBG algorithms.

Pi = r1 pbesti + r2gbesti/r1 + r2 (10)

2.4. Firefly Vector Quantization Algorithm

The firefly algorithm for codebook design was introduced by MH Horng [23]. This al-
gorithm, inspired by the flashing behavior of fireflies, incorporates brightness into its objec-
tive function. It operates by generating multiple codebooks, analogous to fireflies, with the
goal of transitioning from lower to higher intensities or brightness values. However, if there
is a lack of brighter fireflies within the search space, the algorithm’s performance in terms
of the PSNR may deteriorate. The FA-VQ algorithm is depicted as Algorithm 4 in the
present study.
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Algorithm 3: QPSO-LBG Algorithm
Step 1: Initialization of the LBG algorithm involves assigning the global best
codebook (gbest) and initializing the remaining codebooks and velocities
randomly.

Step 2: The fitness of each codebook is computed.
Step 3: If the newly computed fitness surpasses the previous best fitness (pbest),
the new fitness value replaces pbest.

Step 4: The largest fitness value among all particles is taken, and, if an
improvement is detected in gbest, it is updated with the new value.

Step 5: Random values, r1, r2, and u are chosen within the range of 0 to 1, and the
local point Pi is calculated using Equations (8) and (9).

Step 6: The elements of the codebook Xi are updated according to
Equations (11)–(13).

Li = z|Xi − pi| (11)

i f u > 0.5Xi(t + 1) = pi − Li ∗ ln(1/u) (12)

else Xi(t + 1) = pi + Li ∗ ln(1/u) (13)

In this context, the constant ‘z’ is maintained such that it satisfies the condition
z < 1/ln

√
2, where ‘t’ represents the iterations.

Step 7: Steps (3) to (7) are iterated until reaching the maximum allowable number
of iterations.

Algorithm 4: FA-LBG Algorithm
Step 1: Implement the LBG algorithm and designate its output as the brighter
firefly (codebook).

Step 2: Initialize the parameters alpha (α), beta (β), and gamma coefficients (λ).
Step 3: Randomly initialize codebooks; select maximum iteration count j.
Step 4: Start count m = 1.
Step 5: Evaluate the fitness of all codebooks using Equation (6). Choose a

codebook randomly based on its fitness value and commence moving codebooks
toward the brighter fireflies using Equations (14)–(17).

Euclidean distance rij = ||Xi − Xj|| (14)

||Xi − Xj|| =

√√√√ Nc

∑
k=1

L

∑
h=1

(Xh
ik − Xh

jk)
2 (15)

β = βoe−γij (16)

where 0 < u < 1 and k = (1, 2, 3,. . . ..Nc).
Step 6: If brighter fireflies cannot be located, begin moving randomly within the
search space in pursuit of brighter ones using

Xh
jk = (1 − β)Xh

ik + βXh
jk + uh

jk (17)

Step 7: If (m = j), execution stops.
Step 8: Increment m = m + 1.
Step 9: Jump to step 5.

2.5. BA Vector Quantization Algorithm

Karri et al introduced a bat algorithm (BA) for vector quantization, inspired by the
mating behavior of bats [24]. In this algorithm, the codebook is considered as a bat, esti-
mating the global codebook through three key parameters: loudness, frequency, and pulse
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rate. Compared to other LBG-based algorithm techniques, it achieves notably high PSNR.
Nonetheless, it requires the calculation of an extra parameter, leading to a notable rise in
computation duration when contrasted with PSO, QPSO, and LBG algorithms. Algorithm 5
introduces the BAT algorithm.

Algorithm 5: BA-LBG Algorithm
Step 1: Begin by allocating N codebooks, represented as bats, and defining
parameters ‘A’ as (loudness), ‘V’ as (velocity), ‘R’ as (pulse rate), ‘Qmin’ as
(minimum frequency), and ‘Qmax’ as (maximum frequency).

Step 2: Implement the LBG algorithm to establish the initial codebook. Randomly
select the remaining codebooks, denoted as Xi (where i = 1, 2, 3,...N − 1).

Step 3: Set the iteration counter m to 1 and define the maximum count as j.
Step 4: Evaluate all codebooks’ fitness values using Equation (6). Identify Xbst as
the best-performing codebook.

Step 5: Update the positions of the codebooks by adjusting their frequency and
velocity according to Equations (18) through (20).

Q1(t + 1) = Qmaximum(t) + ∆Q(t) (18)

where ∆Q(t) = (Qminimum(t)− Qmaximum(t)) · (R)

V1(t + 1) = Vi(t) + ∆V(t) (19)

where ∆V(t) = (Xi(t)− Xbest(t)) · Qi(t + 1)

X1(t + 1) = Xi(t) + Vi(t) (20)

Step 6: Select the size of the step between 0 and 1 for the random walk (W).
Step 7: If the step size exceeds the pulse rate (R), the codebook is shifted using
Equation (21).

X1(t + 1) = Xbest(t) + W ∗ R (21)

Step 8: Produce a randomized value, and, if its magnitude is below the threshold
of loudness, incorporate it into the codebook.

Step 9: Perform sorting the codebooks with respect to fitness value Xbest.
Step 10: If the condition (m = j) is satisfied, the execution halts. Otherwise,
the value of m is incremented by 1.

3. Proposed Fast-LBG Algorithm

The conventional LBG algorithm faces inefficiencies because of the random initial-
ization of the initial codebook, often leading to entrapment in local optima. While PSO
and QPSO methods generate efficient codebooks, higher-velocity particles may suffer from
instability. Constructing a codebook for HBMO [25] demands numerous tuning param-
eters. Additionally, the FA algorithm’s convergence is compromised when there are no
brighter fireflies [26] in the search space. Failure to meet the convergence conditions in the
CS algorithm [20] necessitates numerous iterations. To address these challenges, a novel
approach is proposed, modifying the LBG algorithm by incorporating rescaling via bilinear
interpolation to reduce the computational time while maintaining a PSNR and SSIM near
the LBG algorithm. The proposed method’s block diagram is depicted in Figure 3.

Figure 3. Block diagram of the proposed fast-LBG algorithm.
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Bilinear Interpolation for Codebook Rescaling

Bilinear interpolation allows for the estimation of a function’s value at any location
within a rectangle given that its value is known at each of the rectangle’s four corners. This
technique is particularly relevant in our methodology, where resizing the image is essential
for reducing computational complexity. In our proposed method, bilinear interpolation
is employed using the nearest neighborhood method to rescale the image and reduce the
comparison between the codebook and the training vector. Bilinear interpolation estimates
the value of an unknown function at a specific location (x, y) based on the known values
at four surrounding sites. The encoder uses the input image as a training vector, which
is initialized with a random selection of vectors from the image. Assume we want to
find the value of the unknown function f at a specific location (x, y). The values of f at
the four sites Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 = (x2, y2) are
assumed to be known. First, a bilinear interpolation is performed in the x direction using
the following equation:

f (x, y1) =
x2 − x
x2 − x1

f (Q11) +
x − x1

x2 − x1
f (Q21) (22)

To acquire the necessary estimate, interpolation is performed in the y-direction using
the following equation:

f (x1, y) =
y2 − y
y2 − y1

f (Q12) +
y − y1

y2 − y1
f (Q22) (23)

Through interpolation, we reduce the size of the image by 1/4 of the original image
size. This size reduction reduces the total number of comparisons between the training
vector and the codebook. The decoder performs upscaling in response to the encoder’s
downscaling. The upscaling is performed by a factor of 4, and the index at the decoder is
used to replicate the image pixels at the receiving end to match the size of the compressed
image with the original image. Based on the findings, it can be concluded that the proposed
methods reduce computing complexity. The proposed algorithm is shown in Algorithm 6.

Algorithm 6: Proposed FLBG Algorithm
Step 1: Resize the image using bilinear interpolation using Equations (25) and (26).
Step 2: Find the Euclidean Distance “D” between the two vectors as D(x,y).
Step 3: Initial codebook CB0, which is generated randomly.
Step 4: i = 0.
Step 5: Execute the given steps for each training vector. Calculate the distances
among the codewords in CBi and the training vector as D(X; C) = (xt − ct).

Find the closest codeword in CBi.
Step 6: Divide the codebook into clusters of N number of blocks.
Step 7: Calculate the centroid of each block for obtaining the new codebook
CBi + 1.

Step 8: Calculate the average distortion of CBi + 1. If no improvement in last
iteration, the codebook is finalized and execution stops, or else i = i + 1, and go to
Step 4.

4. Results and Discussion

The evaluation of the codebook involved conducting tests on grayscale images. For the
comparative study, five distinct test photographs shown in Figure 4 were utilized: ‘Cam-
eraman.png’, ‘Baboon.png’, ‘peppers.png’, ‘Barb.png’, and ‘Goldhill.png’. The simulations
were performed on a 32-bit Windows 11 Pro system using an Intel® Core™ i5-3210M
Processor running at 2.54 GHz with a 3M Cache 4 GB double data rate 3 RAM. MATLAB
version R2019A was utilized for compiling the codes. All the tests were conducted on
512 × 512 grayscale images, as depicted Figure 4.
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Figure 4. (a–e) The images utilized for analytical purposes underwent compression during the experimentation.

Initially, the test image undergoes partitioning into non-overlapping blocks measur-
ing 4 × 4 pixels each for compression purposes. These blocks are then considered as
16,384-dimensional training vectors, with the dimension of each input vector set to 16.
The comparison metrics utilized include data rate per pixel (BPP), Mean Square Error
(MSE), and peak signal-to-noise ratio (PSNR), calculated using Equations (24), (25), and (26),
respectively.

bpp =
Log2Nc

k
(24)

k represents size of the block, while Nc indicates the size of codebook. The bit rate normal-
ized by the number of pixels serves as a metric for evaluating the magnitude of compression
in an image.

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

(
f (i, j)− f̂ (i, j)

)2
(25)

M × N denotes the overall pixel count, where I and J signify the x and y coordinates
of pixel values. The test image is referenced as f (I, J), while the compressed image is
denoted as f−(I, J).

PSNR = 10 log10(
255

MSE
)2 (db) (26)

PSNR measurements are employed for assessing the quality of the decompressed image.
Five test images are examined, each standardized to a size of M× N (512× 512) pixels while
employing varied codebook sizes (8, 16, 32, 64, 128, 256, 512, and 1024). The maximum
average PSNR values are utilized for determining the parameters in the proposed method
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for simulating the test image, which is executed four times. Comparative Tables 1–5
depict the PSNR evaluation of the test images utilizing FLBG in comparison to the existing
algorithms. The analysis of the average variation in peak signal-to-noise ratio concerning
the bit rate indicates that the proposed algorithm achieves a PSNR level comparable to that
of LBG.

Table 1. Image ‘Cameraman’ PSNR vs. bitrate comparison.

Bpp PSNR in Decibels

LBG PSO QPSO HBMO FA BA FLBG

0.15 25.2 25.4 25.2 25.4 25.3 25.5 25.3

0.25 26.4 26.3 26.4 26.5 26.4 26.5 26.3

0.325 26.4 26.5 26.5 26.6 26.4 26.5 26.4

0.375 26.2 26.7 27.2 26.9 26.8 27.35 26.2

0.435 26.3 28.6 28.6 28.5 28.7 29.2 26.5

0.485 26.5 29.8 29.4 29.5 29.7 29.9 26.6

0.55 26.7 30.2 30.2 30.2 30.1 30.5 26.8

0.625 26.7 31.4 31.5 31.6 31.6 31.8 26.8

Table 2. Image ‘Baboon’ PSNR vs. bitrate comparison.

Bpp PSNR in Decibels

LBG PSO QPSO HBMO FA BA FLBG

0.15 18.2 18.3 18.1 18.7 19.1 19.1 18.1

0.25 19.6 19.6 19.7 19.8 19.6 20.1 19.3

0.325 19.5 20.2 20.2 20.1 20.2 20.2 19.4

0.375 19.6 20.5 20.7 21.2 20.8 21.6 19.2

0.435 19.7 21.5 21.4 21.8 21.6 22.2 19.1

0.485 19.7 22.1 22.3 22.7 22.5 23 19.3

0.55 19.6 23.1 23.2 23.4 23.1 23.6 19.4

0.625 19.7 23.4 23.4 23.6 23.5 24.4 19.4

Table 3. Image ‘Peppers’ PSNR vs. bitrate comparison.

Bpp PSNR in Decibels

LBG PSO QPSO HBMO FA BA FLBG

0.15 24.2 24.3 24.4 24.4 24.4 24.6 24.1

0.25 25.1 25.3 25.4 25.2 25.2 25.5 24.8

0.325 25.2 26.2 26.4 26.3 26.1 26.3 25.1

0.375 25.2 27.1 27.2 27.4 27.6 28.4 25.1

0.435 25.2 29.1 29.4 29.4 29.6 30.2 24.7

0.485 25.3 30.1 30.3 30.4 30.5 30.7 25.2

0.55 25.4 31.2 31.4 31.5 31.6 31.8 24.7

0.625 25.3 32.4 32.5 32.6 32.7 32.5 25.2
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Table 4. Image ‘Barb’ PSNR vs. bitrate comparison.

Bpp PSNR in Decibels

LBG PSO QPSO HBMO FA BA FLBG

0.15 23.7 24.2 23.6 23.4 23.4 24.2 23.2

0.25 23.7 24.1 24.1 24.1 24.1 24.5 23.2

0.325 24.1 25.7 25.7 25.7 26.2 26.2 23.7

0.375 24.1 27.1 27.2 27.1 27.2 27.5 24.2

0.435 24.1 28.1 28.3 28.2 28.4 28.3 23.8

0.485 24.7 28.7 28.7 28.8 29.1 29.1 24.5

0.55 24.5 30.1 30.2 29.7 29.8 30.2 24.1

0.625 25.1 30.2 30.1 29.7 29.8 30.8 24.8

Table 5. Image ‘Goldhill’ PSNR vs. bitrate comparison.

Bpp PSNR in Decibels

LBG PSO QPSO HBMO FA BA FLBG

0.15 24.4 24.5 24.2 24.2 24.2 24.8 23.6

0.25 25.1 25.2 25.2 25.5 25.7 25.8 24.7

0.325 25.5 25.2 25.8 25.8 26.1 26.1 25.1

0.375 25.6 26.1 26.1 26.8 26.7 27.1 25.1

0.435 25.6 27.2 27.3 27.6 27.7 28.2 25.2

0.485 25.6 28.2 28.1 28.7 28.6 28.8 24.8

0.55 25.6 29.7 29.8 30.1 30.1 30.2 24.7

0.625 25.6 30.1 30.1 30.4 30.3 30.8 24.8

Although PSNR is a valuable metric for comparing image quality, it may not fully
correlate with human visual perception, especially in distinguishing structural details.
To overcome this limitation and facilitate structural comparison, we computed the Struc-
tural Similarity Index Measure (SSIM) metrics [27]. These metrics evaluate luminance,
contrast, and structure among the test images and the compressed images. The SSIM score
is determined using Equation (27).

SSIM(X, Y) = [L(X, Y)]α.[C(X, Y)]β.[S(X, Y)]γ (27)

where S, C, and L denote structure, contrast, and luminance, respectively, while alpha,
beta, and gamma signify the relative significance of these parameters. For the sake of
ease, it was presumed that alpha = beta = gamma = 1. The SSIM values were observed
to vary between 0 and 1, where 0 indicates no similarity and 1 signifies a high degree of
resemblance between the two images. As shown in Figures 5–9, using FLBG, the SSIM
scores (expressed as percentages) of five test images are compared to those obtained from
existing algorithms.
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Figure 5. Similarity index measure for Cameraman image.

Figure 6. Similarity index measure for Baboon image.

Figure 7. Similarity index measure for Peppers image.

Figure 8. Similarity index measure for Barb image.
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Figure 9. Similarity index measure for Goldhill image.

The graph indicates that the proposed algorithm achieves an SSIM percentage that
is approximately equal to that of the LBG algorithm. Figures 10–12 examine and contrast
three reconstructed test images utilizing FLBG- and LBG-derived algorithms, employing a
codebook capacity of 64 and a block size of 16. It is observed that the image quality of the
reconstructed images depicted in Figures 10–12 is comparable to that of LBG. Simulations
were conducted by varying the codebook sizes. Increasing the codebook size enhances
the image quality but also increases the total number of comparisons among codewords
and training vectors, resulting in longer computation times and lower compression ratios.
Nevertheless, a notable reduction in computation time was achieved during testing. Table 6
presents the average processing times for various test images measured using the FLBG
and comparable algorithms. Each test image was run six times to compute the average
processing time for accurate evaluation. The results demonstrated a significant efficiency
advantage of FLBG over traditional LBG and other LBG-based algorithms. Specifically,
FLBG achieved a 47.7% reduction in processing time compared to LBG, showcasing a
substantial improvement. Furthermore, FLBG outperformed other LBG-based algorithms
by more than 97%, indicating its superior performance.

Figure 10. The image Goldhill reconstructed employing six distinct algorithms: (a) Linde–Buzo–Gray.
(b) Linde–Buzo–Gray Particle Swarm Optimization. (c) Linde–Buzo–Gray Quantum Particle Swarm
Optimization. (d) Linde–Buzo–Gray Honey Bee Mating Optimization. (e) Linde–Buzo–Gray firefly
algorithm. (f) Linde–Buzo–Gray bat algorithm. (g) Linde–Buzo–Gray Cuckoo Search Optimization.
(h) Fast Linde–Buzo–Gray.



J. Imaging 2024, 10, 124 14 of 18

Figure 11. The image of Barb reconstructed employing six distinct algorithms: (a) Linde–Buzo–Gray.
(b) Linde–Buzo–Gray Particle Swarm Optimization. (c) Linde–Buzo–Gray Quantum Particle Swarm
Optimization. (d) Linde–Buzo–Gray Honey Bee Mating Optimization. (e) Linde–Buzo–Gray firefly
algorithm. (f) Linde–Buzo–Gray bat algorithm. (g) Linde–Buzo–Gray Cuckoo Search Optimization.
(h) Fast Linde–Buzo–Gray.

Figure 12. The image of Peppers reconstructed utilizing six distinct algorithms: (a) Linde–Buzo–Gray.
(b) Linde–Buzo–Gray Particle Swarm Optimization. (c) Linde–Buzo–Gray Quantum Particle Swarm
Optimization. (d) Linde–Buzo–Gray Honey Bee Mating Optimization. (e) Linde–Buzo–Gray firefly
algoorithm. (f) Linde–Buzo–Gray bat algorithm. (g) Linde–Buzo–Gray Cuckoo Search Optimization.
(h) Fast Linde–Buzo–Gray.
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Table 6. The average computational times taken across different test/experimental images.

Size of Codebook: 16

Image Average Time Taken for Computation (seconds) at Bitrate = 0.25

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 8.13 591.11 618.56 1232.22 1173.37 599.61 2521.45 3.12
PEPPER 8.92 487.57 493.45 1105.28 1040.34 630.44 3326.92 3.33
BABOON 9.44 669.84 695.21 1983.12 1964.46 698.98 3031.06 4.13
GOLDHILL 9.64 625.37 740.91 1158.50 1130.75 513.28 2480.95 4.66
BARB 9.21 555.67 656.91 1567.51 1549.53 690.42 2811.53 4.87

Average 9.07 585.91 641.01 1409.33 1371.69 626.55 2834.38 4.02

Percentage Improvement 55.65 99.31 99.37 99.71 99.71 99.36 99.86

Size of Codebook: 32

Image Average Time Taken for Computation (seconds) at Bitrate = 0.3125

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 9.16 521.32 554.42 1291.34 1298.46 593.81 2209.83 4.12
PEPPER 9.82 532.17 428.92 898.76 934.76 546.91 1713.63 4.59
BABOON 8.88 468.12 497.96 1249.01 1243.71 549.34 2715.31 3.93
GOLDHILL 7.72 476.64 538.46 1340.21 1299.82 480.45 2625.02 3.06
BARB 10.03 423.93 474.92 1349.01 1320.15 422.78 2025.72 5.23

Average 9.12 484.44 498.94 1225.67 1219.38 518.66 2257.90 4.19

Percentage Improvement 54.11 99.14 99.16 99.66 99.66 99.19 99.81

Size of Codebook: 64

Image Average Time Taken for Computation (seconds) at Bitrate = 0.3750

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 11.31 665.23 685.12 1563.76 1491.62 671.45 2982.76 5.41
PEPPER 11.31 597.42 599.24 1247.54 1278.45 636.77 4468.23 5.63
BABOON 12.25 573.61 590.12 1412.32 1437.11 740.02 3984.18 6.12
GOLDHILL 14.31 622.21 637.74 1577.14 1181.33 498.56 4305.03 7.11
BARB 16.73 460.21 466.24 1306.21 854.17 398.74 2721.12 8.32

Average 13.18 583.74 595.69 1421.39 1248.54 589.11 3692.26 6.52

Percentage Improvement 50.55 98.88 98.91 99.54 99.48 98.89 99.82

Size of Codebook: 128

Image Average Time Taken for Computation (seconds) at Bitrate = 0.4375

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 16.28 645.34 657.54 1080.44 1054.19 628.82 1932.31 8.94
PEPPER 19.41 600.32 675.32 1132.68 1081.51 623.62 2220.82 10.71
BABOON 22.61 467.57 536.07 1112.14 1060.77 963.91 2785.66 11.11
GOLDHILL 18.21 835.27 860.38 1413.08 1343.73 502.21 1962.02 9.92
BARB 30.34 579.21 589.54 1291.81 1271.32 562.24 2438.01 12.12

Average 21.37 625.54 663.77 1206.03 1162.30 656.16 2267.76 10.56

Percentage Improvement 50.58 98.31 98.41 99.12 99.09 98.39 99.53

Size of Codebook: 256

Image Average Time Taken for Computation (seconds) at Bitrate = 0.50

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 23.15 898.23 922.46 824.23 816.44 696.46 1627.23 13.24
PEPPER 18.33 760.12 760.12 1010.65 984.54 574.41 1750.66 13.98
BABOON 28.25 599.51 568.24 1019.86 1040.91 572.32 2039.75 14.13
GOLDHILL 29.92 931.61 560.64 850.06 834.32 981.93 2978.06 14.33
BARB 27.84 689.71 698.66 847.23 837.72 596.06 2598.43 13.82

Average 25.50 775.84 702.02 910.41 902.79 684.24 2198.83 13.90

Percentage Improvement 45.49 98.21 98.02 98.47 98.46 97.97 99.37
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Table 6. Cont.

Size of Codebook: 512

Image Average Time Taken for Computation (seconds) at Bitrate = 0.5625

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 36.84 731.32 758.23 1125.23 1078.35 849.45 1643.64 19.13
PEPPER 39.31 934.72 887.53 665.21 650.81 533.07 1371.76 19.12
BABOON 20.71 657.02 715.02 712.05 723.12 803.57 1158.42 16.32
GOLDHILL 35.14 582.97 601.74 955.58 960.07 885.02 1253.42 18.33
BARB 72.52 815.84 706.91 878.68 872.67 693.68 1805.61 36.23

Average 40.90 744.37 733.89 867.35 857.00 752.96 1446.57 21.83

Percentage Improvement 46.64 97.07 97.03 97.48 97.45 97.10 98.49

Size of Codebook: 1024

Image Average Time Taken for Computation (seconds) at Bitrate = 0.625

LBG PSO-LBG QPSO-LBG HBMO-LBG FA-LBG BA-LBG CS-LBG FLBG
CAMERAMAN 66.74 1532.32 1572.27 1918.71 2013.43 1576.42 3679.84 35.46
PEPPER 63.44 1022.78 1156.53 1254.02 1231.37 855.74 2059.35 32.13
BABOON 66.55 1435.45 1439.54 1664.23 1636.13 1665.13 2396.33 34.13
GOLDHILL 94.67 1353.84 1369.65 1489.71 1483.25 775.30 2340.92 48.36
BARB 112.32 1515.02 1503.81 1199.27 1181.88 1133.72 2400.28 58.23

Average 80.74 1371.88 1408.36 1505.19 1509.21 1201.26 2575.34 41.66

Percentage Improvement 48.40 96.96 97.04 97.23 97.24 96.53 98.38

It can be observed from these tables that FLBG has less computational time and
reduced image size compared to the LBG-based algorithms, such as HBMO-LBG, FA-LBG,
BA-LBG, PSO-LBG, QPSO-LBG, and CS-LBG.

It is important to mention here that this work specifically focuses on an LBG com-
pression method that is a VQ-based technique. We acknowledge that its focus may seem
narrow in comparison to the widely used transform-based methods like the JPEG, JPEG
2000, and WebP. However, we would like to emphasize that our intention was not to
directly compete with these established algorithms in terms of computational time or file
size reduction. Instead, our aim was to enhance the computational speed of the VQ-based
LBG compression method.

While it is true that comparing the resultant image sizes and execution times of
various algorithms is crucial for selecting the most suitable compression method, we
believe that a qualitative comparison is equally important, especially when considering
different algorithmic approaches. Transform-based methods excel in many scenarios,
but there are specific cases where VQ methods offer unique advantages, such as preserving
perceptual quality, exploiting correlated data, and facilitating fixed-rate compression.

In this work, we sought to highlight the importance of VQ methods in certain applica-
tion domains where these advantages are critical. Although our enhancements may not
directly improve the execution time or file size reduction compared to the state-of-the-art
transform-based methods, they contribute to the broader discussion on the relevance and
necessity of VQ techniques.

5. Conclusions

A fast-LBG algorithm is proposed for compressing images, wherein the codebook
generation is enhanced by pre-scaling the image prior to applying the LBG algorithm. This
pre-scaling optimizes the process by exploiting the inherent high correlation among the
pixels, thus reducing inter-pixel redundancies. The reduction in the training vector size
before the LBG algorithm application significantly cuts the processing time by minimizing
the number of required comparisons among the training vector and codebook codewords.
Consequently, the resultant image size is contingent upon the chosen rescaling factor,
enabling increased compression potential at the expense of image quality.
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Based on the simulation outcomes, it is evident that the proposed algorithm ex-
cels in terms of computational efficiency, advocating for its adoption in LBG and LBG-
based algorithms to mitigate the computational complexity and diminish compressed
image dimensions.

The potential avenues for future research encompass exploring the efficacy of the algo-
rithm on polychrome, monochrome, and three-dimensional images. Moreover, employing
advanced scaling mechanisms such as edge-directed interpolation or Sinc and Lanczos
resampling could further enhance the results.
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