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Abstract: Plants are essential for humans as they serve as a source of food, fuel, medicine, oils, and
more. The major elements that are utilized for our needs exist in storage organs, such as seeds. These
seeds are rich in proteins, show a broad spectrum of physiological roles, and are classified based on
their sequence, structure, and conserved motifs. With the improvements to our knowledge of the
basic sequence and our structural understanding, we have acquired better insights into seed proteins
and their role. However, we still lack a systematic analysis towards understanding the functional
diversity associated within each family and their associations with allergy. This review puts together
the information about seed proteins, their classification, and diverse functional roles along with their
associations with allergy.
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1. Introduction

Plant seeds plays a vital role in human life as they satisfy around half of the world’s
dietary protein requirements [1]. Apart from the dietary needs, seed proteins play a funda-
mental role in germination, cellular growth and development, thiamine accumulation [2],
nutrient storage [3] and regulating hormone levels [4]. Studies have shown that seed pro-
teins also play a critical role in endurance for extreme dryness or drought-like conditions [5],
activity against microbes and fungus [6,7], hemagglutination activity [8], plant defense [9],
ribosome inhibitory activity [10] and many more. Therefore, seed proteins not only serve as
a warehouse for proteins during germination, but they also perform numerous metabolic
and structural roles.

Based on their function, seed proteins are traditionally classified as housekeeping
proteins and storage proteins. While housekeeping proteins are involved in metabolism,
storage proteins provide building blocks and energy for germination. With advancements
in the field, along with many structural studies, the conventional classification of seed
proteins has been amended. Now, the classification is performed based on the structural
motifs, sequence, and physiological function. Although the structural folds are evolutionary
conserved, the members of the proteins that belong to the same family show diversity in
their functions.

The structure-based automated comparison improved our understanding and identi-
fied novel functions for seed proteins. For example, 7S vicilin and 11S vicilin from the cupin
family are known to have a variety of physiological functions ranging from plant defense,
oxidative stress and metabolite source to hypertensives, and they can also trigger allergic
reactions [11–14]. Members of the prolamin family, 2S albumin, non-specific lipid binding
proteins (nsLTPs), protease inhibitors, and others, also show functional diversities [15,16].
2S albumins play a crucial role in polyamine metabolism as they are rich in sulfur and have
been shown to induce allergic reactions. Likewise, various inhibitors possess antifungal,
antitumor, antimicrobial and actin-crosslinking activities [17,18]. Apart from the usual
prolamin family functions, non-specific lipid transfer proteins (nsLTPs) have the ability to
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transfer different lipids [19]. The presence of lipids helps with plant defense, and they form
a protective hydrophobic layer on the aerial organs [19].

Despite all of these advancements, an understanding of the biological function of many
seed proteins is yet to be revealed. We still lack a systematic comparison of the functional
diversity and associated structural motifs. This review summarizes our understanding of
the structure-based functional diversity in seed proteins and their associated physiological
role and allergenic potential. It also gives an overview of the biochemical and molecular
characteristics of food allergens that make them capable of inducing or triggering an
immune response.

2. Classification of Seed Storage Proteins

Seed storage proteins are conventionally categorized into different superfamilies
and families at the molecular level [20]. However, Osborne earlier classified them into
four categories based on their solubility as water-extractable Albumins (2S), Globulins
(7S and 11S), which are soluble in the dilute salt solution, and alcohol-soluble Prolamins
and Glutelins, which are soluble in mild acidic or basic pH [21,22]. In wheat, prolamins
(gliadin) and glutelin (glutenin) form the major gluten components. However, recently,
these proteins were classified into three superfamilies based on their amino acid sequence
conservation, 3D structure and biological activity (Table 1).

Table 1. Classification of seed storage proteins based on sequence conservation, 3D structure and
biological activity.

Family Characteristics Members Example of Structures from
Protein Data Bank (PDB)

Prolamin
Conserved skeleton of cysteine
Rich in proline and glutamine
Rich in α-helix

2S albumin
nsLTPs
cereal prolamins
α-amylase inhibitors

Vigna unguiculata (3OYO)
Moringa oleifera (5DOM)
Solanum melongena (5TVI)

Cupin Have one or more β-barrel cores 7S vicilin
11S vicilin

Solanum melongena (5VF5)
Cicer arietinum (5GYL)

BetV1 or
pathogenesis-related class

Cytoplasmic disease
resistance-related proteins

PRs
Proteases
Kunitz type of protease
inhibitor and more

Betula pendula (1BV1)
Fragaria x ananassa (4C94)

The Prolamin superfamily is rich in proline and glutamine amino acids, and it is thus
called prolamins [21]. Members of this family have a limited sequence identity, eight con-
served cysteine residues (CXnCXnCCXnCXCXnCXnC), and they are rich in α-helices [23].
The Prolamin superfamily is subdivided into various families such as the nonspecific lipid
transfer protein (nsLTPS), 2S albumin and cereal prolamins [24].

The cupin superfamily consists of globular seed storage proteins, and they are charac-
terized by a β-barrel fold [25]. They can either have a single domain cupin or a bidomain
cupin. Bidomain cupins have two β-barrel folds and can assemble into a trimer or a hex-
amer or a higher oligomer. For example, 7S vicilins are trimers with no disulfide bond,
whereas 11S legumin-type globulins have disulfide bonds, and they are hexamers that
can be cleaved into two trimers. They are named 7S or 11S based on the sedimentation
coefficient. Globulins have been studied in detail in many plant seeds such as eggplants
(Solanum melongena) [11,26], soybeans (Vicia faba) [27], peas (Pisum sativum) [28] and French
beans (Phaseolus vulgaris) [29].

The Bet V1 (or pathogenesis-related) superfamily comprises of pathogenesis-related
proteins (PR proteins), cereal inhibitors of alpha-amylases, cytoplasmic disease resistance-
related proteins, Kunitz type of protease inhibitors and more [30]. The members of this
family fold in an β-α2-β6-α format, where the C-terminal helix is wrapped by an antiparal-
lel β-sheet. They have a large hydrophobic core that binds large spectra of ligands such as
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phytohormones and siderophores such as flavonoids and alkaloids. This family is known to
have more than 15 structures with non-identical sequences [31]. The physiological function
of this family is still under investigation, but to date, it is mainly governed by bound
ligands [31].

3. Structural Studies on Seed Storage Proteins

An increase in the number of protein sequence and structural studies has made the
creation of systematic and scientific databases possible. It is for this reason that Prolamins,
cupins and plant pathogen-related proteins (BetV1) are described as superfamilies, while
legumins, vicilins, nsLTPS and albumins are described as families [32]. Some proteins
are still not completely classified into any specific groups, such as profilins, expansins
and chlorophyll-binding proteins. In this section, examples of the structural properties
associated with members of the different superfamilies are described (Figure 1).
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Figure 1. Structural features of seed storage proteins. Three-dimensional structures of different seed
storage proteins made using PyMol (www.pymol.org, accessed on 1 December 2022).

3.1. Structural Features of Prolamin Superfamily

A lot of structural variations are known in this family, however, this superfamily
shows eight conserved cysteine residues that form a disulfide bond along with the presence
of unusual CC and CXC motifs [19,21]. These unusual signature motifs facilitate the nsLTPS
identification of members of this superfamily, which includes 2S albumin, nsLTP and other
cereal prolamins.

nsLTP: Non-specific lipid transfer proteins (nsLTP) are known as one of the major
plant allergen families. As the name suggests, they are associated with lipid transportation
in plants, where the lipids are bound to the hydrophobic pocket within the protein [33].
nsLTPs have conserved cysteine and disulfide bonds, and they are rich in α-helices, and
along with this, they have a high pI [20]. These properties make them capable of triggering
an allergenic response once they reach the gastrointestinal system [34]. nsLTPs are divided
into two types, Type I nsLTPs (9 kDa) and Type II (7 kDa), depending upon polypeptide
chain length [35]. Along with the difference in the polypeptide length, nsLTP I have
disulfide bonds between 1–6, 2–3 and 4–7, which are swapped to 1–5, 2–3, 4–7 and 6–8 in
nsLTP II, respectively [36].

Originally, nsLTPs were believed to have only a lipid transfer role, however, we now
know that they perform various functions including cutin and wax metabolism, seed devel-
opment and germination, the responses to stress factors, cell wall growth and calmodulin
binding [37–41]. Likewise, pepper nsLTP is produced during high salinity, drought or

www.pymol.org
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low-temperature stress, as well as after wound formation or pest attacks [42,43]. Similarly,
barley, sunflower and sugar beet nsLTPs can inhibit bacterial and fungal growth [44–46].
Moreover, the studies on A. thaliana show the critical role of in forming a hydrophobic layer
on plant aerial organs for protection [47]. Other than these physiological functions, the
nsLTP protein from peach peel was identified as an allergen, and it was named Pru p3 [48].
The LTPs from Rosaceae fruits (peaches, apricots, cherries, plums and pears) Solanaceae
(potatoes, tomatoes and eggplants) [10,26], Brassicaceae (cabbages and mustard) and even
legumes and cereals are categorized as pan-allergens [49–51]. Unlike other plant allergens,
these LTPs can trigger specific IgE antibodies, and they are, therefore, also called true food
allergens [34,52–54].

2S albumins: 2S albumin generally consists of two polypeptide chains of 3.8 kDa and
8.4 kDa that are linked together by two disulfide bridges. Limited structural information is
available for this family. A few NMR and X-ray structures from Moringa oleifera (5DOM),
Lathyrus sativus (3LP9), Vicia narbonensis (1NAR), Vigna unguiculata (3OYO), Helianthus anuus
(1S6D), Brassica napus (1SM7) and Ricinus communis (1PSY) have been determined [55–61].
Like nsLTPs and other members from this family, 2S albumins are also α-helical, which
Is probably due to very similar disulfide bond patterns. 2S albumins are also classified
as allergens, such as, Ber e1, Jug r1, Ses I2 and Sin a1 from Brazil nuts, English walnut,
sesame and mustard seeds, respectively. This could be because of their compactness and
thermal and proteolytic stability [62]. For Sin a1, IgE-reactive epitopes have been identified,
however, more studies are required to obtain better insights into the allergenic role of 2S
albumin [62].

3.2. Structural Features of Cupin Superfamily

The cupin superfamily is known to have a beta-barrel fold, and it is characterized by
the signature motifs: G(X)5HXH(X)34E(X)6G and G(X)5P(X)4H(X)3N, which are known
as motif 1 and motif 2, respectively, where H and E stand for histidine and glutamate.
The presence of these histidine-rich motifs facilitates metal binding, as seen in the case of
germin and other globulins [63]. Exceptions are seen when histidine is absent in motif 1 [63].
The members of the cupin family are resistant to proteolysis and thermal degradation,
increasing their ability to be immunogenic [64]. 7S vicilin and 11S legumins are two major
members of this family.

As mentioned earlier 7S vicilin show diverse functions, including its role in desicca-
tion [65], oxidative stress [59], antimicrobial protection [12], sugar-binding protein [66] and
antihypertensive effects [13], and they are identified as an allergenic class [67]. The struc-
tural database has a large pool of vicilin such as AraH1 from jack beans (Canavalis ensiformis),
soybeans (Glycine max), SM80.1 (Solanum melongena), SL80.1 (Solanum lycopersicum), French
beans (Phaseolus vulgaris) and peanuts (Arachis hypogaea) and many more [29,64,68–70].
Structurally, vicilins are trimeric proteins that have a three-fold axis of symmetry between
each monomer and have a pseudo-dyad axis within each monomer. Each monomer can
also be divided into a beta-barrel core and an extended helix. Similar to 7S vicilin, 11S
globulin also consists of a β-barrel core domain and an extended α-helical domain. They
mostly form hexamers instead of trimers, and therefore, it is difficult for them to crystallize.
One exceptional example of 11S globulin is from soybeans (Glycine max), where subunits
are formed of many different kinds, i.e., A1B2, A1aB1b, A2B1a, A3B4, and A5A4B3 [71,72].
The crystal structure of A3B4 homohexameric was reported in 2001 [71].

3.3. Structural Features of Bet V1 (Pathogenesis-Related) Superfamily

The Bet V1 family is a recently classified family. It is also called pathogenesis-related
(PR), as these proteins are produced upon pathogen attacks. The first member of this
family from tobacco, P14a, was identified in 1995. The NMR structure of the PR-1 protein
shows that it adopts an α + β topology and has two hydrophobic core regions. Unlike
PR-1, the PR-5 protein comprises of three domains. The first domain has from ten to
seven-stranded β-sheets, whereas domain II has disulfide-rich large loops that stabilize the
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β-sheet structure. Although there is sequence variation, this loop is conserved among the
proteins of this family [73–76]. Domain III, on the other hand, forms a small loop, and it has
two disulfide bonds [73]. This class also consists of a long C-terminal α-helix (α3), which is
bordered by antiparallel β-sheets (from β1 to β7). Another member of this family, PR-10,
has a deep, 30 Å, Y-shaped hydrophobic pocket that facilitates ligand binding [77,78]. A
few examples of the crystal structures from this family are 4RYV, 4PSB, 4Q0K, 4N3E, 4JHH,
4JHI, 4JP6 and 4JHG [79–83].

4. Physiological Function of Seed Storage Proteins

Seed proteins are the storehouse for a variety of functions starting from germination
to oxidative stress and resistance, and they even are allergenic. This section reports some of
the known biological functions performed by seed proteins.

4.1. Germination

The primary function of seeds is to provide nutrients to the growing seedling during
germination [84]. Studies have shown that during germination, the total protein concen-
tration gradually reduces from zero to three [85] as they keep serving essential amino
acids [86]. The gradual reduction ensures the continuous nutrient needs during the differ-
ent phases of the germination process [87]. Various aspects of development are regulated
by the key phytohormone, abscisic acid (ABA), including stress adaptations [88–90]. ABA
signaling is modulated by different phosphatases and kinases [91]. Similarly, the hydroly-
sis of storage protein during germination is performed by proteases and peptidases [92].
Storage lipids, on the other hand, facilitate malate production, which is required for fatty
acid synthesis [93].

4.2. Nutrient Accumulation

Seeds behave as the nitrogen and carbon sinks of plants, as they are protein reserves
that mobilize during germination. They play a vital role in regulating various metabolic
processes, cellular growth, and development and nutrient accumulation and as a source of
energy. Several pathways are regulated during germination to improve nutrient accumula-
tion. For example, seed storage protein, AmA1, results in an increase in the total protein
concentration along with the tuber yield of potatoes [2].

4.3. Thiamine Storage

A few seed globulins are characterized as thiamine storage proteins due to their high
affinity for thiamine. Extensive studies have been conducted on maize, peas and oats
towards understanding the thiamine metabolism. It is found that thiamine plays an im-
portant role in key pathways such as the pentose phosphate cycle, glycolysis and the citric
acid cycle [1]. Studies have shown that the thiamine binding properties reduce as the seed
germinates. These proteins are found in metabolically inactive and unphosphorylated
forms [94]. During germination, thiamine phosphate synthases and thiamine pyrophospho-
kinase convert thiamine into thiamine pyrophosphate [95–97]. Thus, thiamine phosphate
synthase regulates the total amount of thiamine during germination.

4.4. Plant Defense Proteins

Plants have evolved to have resistance against pathogen attacks. For example, the
thick cell wall of plants acts as a barrier against such attacks. Studies have shown that
plants also have innate resistance mechanisms. Upon a pathogen attack, the plant triggers
different responses such as the synthesis of molecules, such as phytoalexin, or it shows
cell bursting. Studies have also shown that seed proteins, known as pathogenesis-related
(PR) proteins or plant defense proteins, play a vital role in providing resistance against
pathogens [8,98]. To date at least 13 different pathogenesis-related proteins have been
identified, for example, Chitin Binding Protein (CBP, PR4), Glycine-Histidine Rich Protein,
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Pathogenesis-related (PR) protein 1, Chitinases (PR3), â-Glucanase (PR2), Thaumatin-Like
Protein (TLP, PR5) and more [8].

4.5. Sugar-Binding Proteins

Lectins are identified as sugar-binding proteins. These are also called haemagglutinins
due to their property to agglutinate red blood cells [7,99]. Lectins are mostly oligomers [100],
as observed in Glycine max, Pisum sativum, Arachis hypogaea, Lathyrus ochrus and Griffonia
simplicifolia. Three-dimensional structural studies have successfully given insights into the
atomic interactions between the proteins and the carbohydrates [101,102]. Lectins can also
bind with physiologically relevant non-carbohydrate phytohormones such as cytokinins,
auxins and porphyrins [103]. Studies have also shown that lectin plays a critical role in
regulating the Indole Acetic Acid (IAA) levels in plants [3]. IAA can exist in free or bound
states in seeds. The most active state is when IAA exists in a free state, whereas upon
binding, it has an inactive state. The structural studies on ConM, a lectin from Canavalia
maritima, show its role in controlling IAA availability during seed germination [3].

4.6. Antimicrobial Role

The plant undergoes abiotic and biotic stress during different times of its life cycle.
To combat this, they produce toxic compounds, low molecular weight peptides and other
molecules. These low molecular weight antimicrobial peptides (AMPs) are responsible
for the plants’ defenses. In general, AMPs are 10–15-amino-acid-long cationic peptides.
The sequence, structure, disulfide bonds and hydrophobic nature of AMPs provide the
ability to destroy microbes utilizing different mechanisms [104,105]. AMPs interact with the
phospholipids plasma membrane and other intracellular or extracellular sites to prevent
the microbial attack [106]. A few well-characterized AMPs are snakins, thionins and
defensins [107]. A few studies have shown that AMPs form pores in the membrane,
resulting in the leakage of ions and metabolites or depolarization. Antimicrobial proteins
that belong to the 2S albumin family identified from Leonurus japonicus and Macadamia
integrifolia are LJAMP1 and MiAMP2, respectively [5,108].

4.7. Ribosome-Inactivating Proteins (RIPs)

As the name suggests ribosomal-inactivating proteins (RIPs) act on ribosomes [9,109].
RIPs are RNA N-glycosidases that can perform site-specific deadenylation, thereby inacti-
vating the ribosomes [110,111]. Inactivation due to RIPs is observed in many non-ribosomal
nucleic acid substrates [112–114]. In plants, RIPs have a role in the defense mechanisms of
plant cells [115].

4.8. Stress Tolerance

Storage proteins show desiccation tolerance by removing all of the water content [4]
and free radicals to combat adverse conditions [116]. Osmotically active compounds
synthesized by plants such as osmatin induce cell tolerance in saline conditions [117].
Like osmatin, sugars such as trehalose act as an osmoprotectant. Proteins such as late
embryogenesis proteins (LEA) help in fighting against harsh conditions [118,119]. Other
proteins such as dehydrin, glutathione S-transferases, heat shock proteins (HSP), disease-
resistance proteins and peroxidases are stress-related proteins that regulate plant embryo
development as seen in caster, rice and vitis spp. [120–122].

4.9. Antioxidative Properties

Protein degradation is an important event for the plant that occurs during different
stages of development. This degradation event not only happens during growth and
germination, but also in pathogen attacks, programmed cell death and senescence. This
regulated protein degradation is therefore linked to oxidative stress conditions [123–125].
Reactive oxygen species (ROS) which are produced as a result cause protein carbonyla-
tion, which is an irreversible oxidation process that leads to functional impediment. The
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degradation of these modified proteins occurs via proteases, which are called antioxidant
proteins, thereby imparting normal physiological functions. An abundantly present natural
antioxidant is phytic acid, which can chelate various ions such as zinc, magnesium, iron
and calcium [126,127]. Apart from this, it inhibits iron-driven ROS and lipid peroxida-
tion [126,128,129]. Phytic acid is also known for increasing the viability of plant tissues.

4.10. Antihyperglycaemic and Antitumor Activity

Studies have shown that there is growing interest in lupin-based products, especially
as functional foods or nutraceuticals. One of the protein fractions, gamma-conglutin, has
a proven ability to control glycaemia and cholesterolemia [130]. The recent studies in
soybeans and mung beans have identified proteins that have antihyperglycemic activi-
ties [131,132]. Various functional peptides have been identified in buckwheat, which shows
antihypotensive and antitumor activity [1,117]. Studies have shown that germinated fenu-
greek seeds have the potential to increase the survival rate of mice with pancreatic cancer.

5. Seed Storage Proteins and Association with Allergy

Along with the important physiological role of seed storage proteins, they also show
allergenic properties. The member of the cupin and prolamin families are among the
group of proteins that are associated with food allergies [24]. A food allergy is an immune
response to some foods that are considered to be foreign upon ingestion. This occurs
when the body’s immune system starts treating harmless food as a harmful entity, and
this triggers an immune response [133,134]. This immune response could be either IgE or
non-IgE mediated, and it may mimic food hypersensitivity. This reaction is mainly because
of some inherited property of food. Eggs, milk, wheat, crustacean shellfish, tree nuts, fish,
peanuts and soya are among the eight major food allergens [134,135]. Recently, sesame
was identified as the ninth major food allergen [136]. The symptoms which occur due to
food allergy vary from mild to acute ones, which are sometimes life threatening. These
symptoms depend upon the localization of triggered mast cells, and therefore, they can
be cutaneous (rash and eczema), respiratory (asthma) or gastrointestinal (vomiting and
diarrhea) (Table 2) [137].

Table 2. Types of hypersensitive reaction and symptoms [137].

S.No Type of Reactions Symptoms

1 Cutaneous Rash, scratching, urticarial plaques, papules, urticaria
and angioedema.

2 Respiratory Asthma, laryngeal edema, rhinitis and nasal congestion.

3 Gastrointestinal Colic, acute nausea, vomiting, emesis, abdominal pain,
weight loss and failure to thrive and/or diarrhea.

In recent years, a large number of the three-dimensional structures of seed allergenic
proteins have been identified and deposited in the protein databank. This helps in visualiz-
ing the surface topology and exposed residue, which further helps in the identification of
epitopes. Furthermore, structural studies of ligand-bound protein complexes have shed
light on how it modulates the allergenic property. In one of the recent studies, the authors
compared the three-dimensional structures and two-dimensional proximity plots of approx-
imately 40 proteins and indicated that allergenic proteins can be classified into four major
families based on their folds [138]. Briefly, Group 1 forms the protein that has antiparallel
beta strands without helical structure. Serine proteases and soybean-type trypsin inhibitors
were placed in this category. Group 2 have alpha helices along with strands, and they are
tightly associated, as seen in the Profilin, aspartate protease. Group 3 is also a mixture
of alpha and beta strands, but the association is not strong (e.g., Lactalbumin). The last
group consists of all of the proteins that are rich in alpha helixes, for example, nsLTP and
2S albumin.
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The key features that make these proteins allergens are the molecular properties
associated with them. These physiochemical and biochemical properties, which are listed
below, are used to characterize the food allergens.

5.1. Ligand or Metabolite Binding

One of the features that allergens possess is the stability that allows them to manifest
their allergenic potential. Due to natural ligand binding, the polypeptide chain stays
intact, even in harsh conditions, resulting in reduced mobility/accessibility of the backbone,
improving the thermal stability and protecting it against proteolysis. Food allergens are
known to bind to natural ligands, ranging from metal ions to metabolites, lipids and
steroids. They generally provide stability to the three-dimensional structures by occupying
the mostly buried cavities [139], or they sometimes bind superficially by interacting at
the surface [24]. A variety of small molecules including, but not limited to, flavonoids
and phytohormones are found in the hydrophobic core of the allergenic proteins from
pathogenesis-related class 10 (PR-10) proteins. The effect of ligands can be best seen in
parvalbumin, where an absence of calcium triggers conformational changes resulting in the
loss of IgE epitopes [139]. Likewise, a wide array of ligands including retinol and its analogs
are found in a member of the lipocalin. Similar to the PR-10 class allergen, non-specific
LTPs also possess a hydrophobic tunnel for lipid binding, thereby facilitating lipophilic
molecules including LCFA, steroids, sphingolipids and hydrophobic drugs [140]. Recently,
nsLTPs also showed the non-canonical binding of the lipids encompassing the epitopes.

5.2. Lipids or Lipid–Membrane Interactions

One other property that food allergens show is the association with cell membranes.
Seed allergens can aggregate or interact with the phospholipid vesicles, bypassing gastroin-
testinal degradation. Other than the non-specific lipid transfer proteins (nsLTPs) that can
bind with lipids, thionins and thaumatin-like proteins (TLPs) from the pathogen-related-
class can also interact with cell membranes, resulting in depolarization and leakage [141].
Similarly, 2S albumins, 7S vicilins and 11S globulins can interact with lipids, forming
emulsified structures.

5.3. Protein Stability and Mobility

To show immunogenic properties, an allergen needs to show high thermal and gas-
trointestinal stability [142]. As mentioned above, allergenic proteins possess the ability to
dodge the proteolysis process by acquiring a resistance toward proteolytic enzymes. The
presence of disulfide bonds and compact three-dimensional structures along with bound
metabolites and ligands are responsible for this resistance and stability. These properties
help the protein to escape the harsh environment of the GI tract and reduce its mobility.
No single motif can define an allergenic nature, however, most of the allergens have disul-
fide bonds, enabling high thermal stability even in extreme pH conditions [143,144], for
example, 2S albumins, nsLTPs, amylase and trypsin inhibitors.

5.4. Glycosylation

Another characteristic that allergen show is undergoing post-translational modifica-
tion, i.e., glycosylation. The presence of sugar moieties on the protein plays an important
role in stabilizing the proteins’ quaternary structure. Since N-glycan-specific IgE antibodies
have been discovered, it is assumed that the carbohydrate part of the glycol allergen can
trigger IgE antibody production. These specific antibodies can further induce in vitro
basophil. Studies on Solanum lycopersium have shown that these basophils can initiate
the release of histamines against a glyco-allergen Lyc e2 [145]. Glycosylation can affect the
protein stability, as observed in the 7S vicilin of peas, AraH1 [34,146]. AraH1 is one of the
well-studied 7S vicilins that is termed as isoallergen and is glycosylated in nature [34,146].
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5.5. Repeated Structures, Aggregates and Glycation

Other factors, repetitive structures, aggregation and glycation also affect allergenic
sensitization. Many food allergens show repetitive structures such as prolamins, globulins
and tropomyosin, and they form oligomers, thereby imparting thermal stability. Members
of the cupin family are the best example of those which show aggregation and higher
oligomers. Unlike the above examples, a few proteins become allergenic upon thermal
processing which is performed at low water levels such as roasting [147]. For example,
the peanut protein during roasting becomes insoluble due to a modification that occurs
through Millard’s reaction. In this reaction, the sugar moiety reacts with the protein amino
group and forms Amadori compounds, resulting in higher glycation-glycosylation end
products. Studies have shown that this glycation increases the allergenic activity of the
peanuts [139].

6. Conclusions

This review highlights the functional diversity among the members of seed storage
proteins and how the beneficial seeds can sometimes show allergenic behaviors. The
structural and biological properties governing the stability of proteolytic digestion are the
main culprit of this immunogenic property of the seed proteins. This systematic analysis
can thus be utilized further to improve the dietary values of seeds.
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