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Abstract: This study presents a novel solution for ambient assisted living (AAL) applications that
utilizes spiking neural networks (SNNs) and reconfigurable neuromorphic processors. As demo-
graphic shifts result in an increased need for eldercare, due to a large elderly population that favors
independence, there is a pressing need for efficient solutions. Traditional deep neural networks
(DNNs) are typically energy-intensive and computationally demanding. In contrast, this study turns
to SNNs, which are more energy-efficient and mimic biological neural processes, offering a viable
alternative to DNNs. We propose asynchronous cellular automaton-based neurons (ACANs), which
stand out for their hardware-efficient design and ability to reproduce complex neural behaviors. By
utilizing the remote supervised method (ReSuMe), this study improves spike train learning efficiency
in SNNs. We apply this to movement recognition in an elderly population, using motion capture data.
Our results highlight a high classification accuracy of 83.4%, demonstrating the approach’s efficacy
in precise movement activity classification. This method’s significant advantage lies in its potential
for real-time, energy-efficient processing in AAL environments. Our findings not only demonstrate
SNNs’ superiority over conventional DNNs in computational efficiency but also pave the way for
practical neuromorphic computing applications in eldercare.

Keywords: ambient assisted living (AAL); spiking neural networks (SNNs); reconfigurable neuro-
morphic processors; elderly activity recognition; energy-efficient processing; real-time processing;
activity monitoring

1. Introduction

Contemporary research conducted by the World Health Organization predicts a sig-
nificant increase in the elderly population and longer lifespans globally in the coming
decades. As more seniors choose to “age in place” instead of moving to nursing homes,
eldercare becomes increasingly crucial to supporting their independence and maintaining
their health [1,2]. This situation puts significant pressure on the healthcare sector, necessitat-
ing the implementation and enhancement of ambient assisted living (AAL) systems [3–6].
AAL systems monitor movements and detect falls in addition to recognizing activities,
gestures, and emotions, and they aim to provide an integrated and effective solution for
assisted living.
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Current approaches predominantly utilize wearable devices, such as wristbands for
motion capture and action recognition; audio devices for recording low-level sounds during
daily activities; and marker-based systems, such as Vicon and Qualisys, for accurate 3D
pose representation and action recognition [7–9]. The emergence of deep neural networks
(DNNs) has significantly improved activity recognition in ambient assisted living (AAL)
applications [10]. However, these methods are typically characterized by high energy
consumption and computational demands, making them less suitable for continuous,
real-time applications in domestic environments. In contrast to biological neurons that
communicate with spikes, DNNs utilize mathematical calculations between neurons [11,12].
The need for an efficient, adaptive, and less resource-intensive technology is evident,
especially one that can accurately recognize and interpret the complex array of human
movements that are characteristic of the elderly.

In response to and to address the limitations of DNNs, there is a growing research
focus on neuromorphic computing, particularly spiking neural networks (SNNs), which
can be implemented in neuromorphic processors and promise a more naturalistic computa-
tional paradigm that provides a more energy-efficient approach than DNNs implemented
using GPUs [13–15]. Despite their potential and advantages, such as fast inference, analog
computation, and low energy consumption, the deployment of SNNs in practical AAL
applications remains nascent, with several challenges in their non-differentiable nature,
learning efficiency, adaptability, and hardware implementation still requiring further in-
vestigation before transferring knowledge from classic AAL approaches to SNNs. This
study situates itself within this context, aiming to bridge the gap between the potential of
neuromorphic computing and its real-world application in eldercare.

To meet the increasing demand for real-time and large-scale neuromorphic processors,
previous studies have proposed a reconfigurable neuromorphic model based on field-
programmable gate array (FPGA) technology and asynchronous cellular automata [16–23].
These models offer hardware-efficient solutions for various applications, including Parkin-
son’s treatment emulation, central pattern generation for hexapod robots, spike-timing-
dependent synaptic plasticity, neural integrators, tumor immunotherapy, and ergodic
cellular automaton neuron models [16–19]. Implementing these models in FPGAs offers
lower power consumption and hardware requirements compared with conventional mod-
els. The asynchronous cellular automaton neuron (ACAN) model, initially introduced
in [24] and further optimized in [22], reproduces neuromorphic behaviors of cortical neu-
rons using discrete-state dynamics, and it requires fewer hardware resources. Its dynamic
adjustability after implementation makes it a versatile and suitable solution for imple-
menting SNNs, and it is ideal for real-time neuromorphic applications [25,26], including
movement classification tasks.

The contributions of this paper are multifold. Firstly, we propose using the ACAN
model as a building block for neuromorphic networks, validating its ability to reproduce a
total of 20 cortical spiking patterns on an FPGA and demonstrating its versatility and robust-
ness in diverse neuromorphic modeling scenarios. Secondly, a comprehensive parametric
analysis is demonstrated for the MNIST hand-written digit dataset to identify optimal learn-
ing configurations for these neuron models by adjusting both the neuron characteristics
and learning parameters, significantly enhancing their learning efficiency and applicability.
Thirdly, we apply our methodology to our novel movement dataset and the critical task of
human movement classification for recognizing basic distinct elderly human movements,
such as gait, cutting, standing up, sitting down, and turning. The adoption of the ACAN
model and the ReSuMe learning method has been pivotal in achieving precise, adaptive
learning for these specific tasks. Our work has yielded promising results for its integration
into real-time, holistic AAL systems.
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2. Dataset

In this section, we describe the data collection methods, dataset division, and prepro-
cessing steps used to train the models discussed in the next section, namely, Section 3. The
study involved two senior individuals who repeated five basic action scenarios: cutting, gait,
sitting down, standing up, and turning (Figure 1). The Vicon system assessed the individuals’
posture by tracking the position of nj joints in the human body, which were represented
by 3D coordinates (x, y, z) and sampled at a consistent rate of 10 ms. The data underwent
post-processing and were saved as .c3d files, containing joint coordinates, metadata, sensor
setups, and specific measurements. After collecting action scenarios for all individuals, we
chose to analyze nj = 38 principal joints. This decision was made since other, additional
joints often had missing estimations caused by occlusions during particular activities.

Figure 1. Evolving from left to right, the five action scenarios are illustrated in each row, i.e., (1) cutting,
(2) gait, (3) sitting down, (4) standing up, and (5) turning.

Mokka software, which is a tool for analyzing motion kinematics and kinetics [27],
was used to transform the .c3d files into a tabular format and remove any unnecessary
metadata. To maintain consistency, markers that displayed inconsistency or were absent
were removed. In order to handle composite movement labels, we conducted manual
annotation of the crucial frames that signified a shift in the type of movement, leading
to distinct "areas" of movement within the same sample. Given the dataset’s constrained
and imbalanced nature, the instances were partitioned into segments of fixed length by
using a sliding window technique. Segments that intersected with annotated areas were
categorized based on their corresponding movement, while the remaining segments were
classified as gait. The dataset was expanded from 126 to 17,803 samples. In order to maintain
balanced classes and prevent any class imbalance, we restricted the number of samples
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per class to match the size of the smallest classes for experimentation in Section 4. The
dataset was further enhanced by calculating velocity and acceleration data. The samples
were then normalized to a range of [0, 1] as spiking rates. These rates will be provided in
the subsequent section.

The basic movement types of cutting, gait, sitting down, standing up, and turning encom-
pass a combination of gait and labeled movement as described by Menychtas [28]. The
original samples were evaluated manually to identify pivotal frames that indicated the shift
between various sorts of movements, resulting in the aforementioned 17, 803 data points.
The samples were divided into segments by using a sliding window of size S frames, and
the frames were categorized into their respective classes. This class was determined either
as gait or as the specific movement indicated by the label of the original data point. The
determination was based on whether the window included the critical area, as identified by
the critical frames. More precisely, samples labeled cutting and turning exhibited a solitary
critical area in the middle of the movement. On the other hand, samples labeled standing up
and sitting down featured critical areas at the onset of the movement. Notably, the samples
classified as gait did not display any critical areas. After the preprocessing step, the number
of samples increased, as indicated in Table 1.

Table 1. Number of samples by type of movement before and after preprocessing. After preprocessing
the original samples, their quantity increased significantly, allowing for more robust training.

Before Preprocessing After Preprocessing

Gait 32 3659

Cutting 50 2404

Standing up 22 2751

Sitting down 20 3286

Turning 12 5703

Total 126 17,803

3. Method

This section provides an overview of the approach, which encompasses the ACAN
model, the ReSuMe training method, and the network configuration.

3.1. Asynchronous Cellular Automaton-Based Neuron

The asynchronous cellular automaton-based neuron (ACAN) model is a digital neuron
designed for field-programmable gate array (FPGA) optimization, having the ability to
replicate various neural activities.

The ACAN architecture, proposed by Matsubara and Torikai in their publication [24],
is a digital neuron model that draws inspiration from the Izhikevich model. It is specifically
designed for digital systems, with a particular emphasis on its compatibility with FPGAs.
The model replicates a range of spiking and bursting patterns observed in cortical neu-
rons [29,30]. The ACAN operates in a generalized configuration where it receives action
potentials (spikes) as input, represented by Stm(t), modifies its internal variables, and
produces output spikes (Y(t)). Every ACAN unit is equipped with an internal clock (Clk),
enabling asynchronous operations among ACAN units as they function independently of a
global clock signal (Figure 2).
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Figure 2. Generalized asynchronous cellular automaton-based neuron (ACAN) model adapted
from [22].

The internal state of an ACAN unit is represented by the following four bidirectional
shift registers with positive integer bit lengths of N, M, K, and J, respectively:

• The membrane register is an N-bit bidirectional shift register with an integer state V in
the range of (0, . . . , N − 1), representing the membrane potential of the neuron model.

• The recovery register is an M-bit bidirectional shift register with an internal state U in
the range of (0, . . . , M − 1), representing the recovery variable of the neuron model.

• The membrane velocity counter is a K-bit register with an internal state P in the range
of (0, . . . , K − 1), controlling the velocity of membrane potential V.

• The recovery velocity counter is a J-bit register with an internal state Q in the range of
(0, . . . , J − 1), controlling the velocity of recovery variable U.

Furthermore, the ACAN’s expected behavior is determined by two logic units, namely,
the Vector Field Unit and the Rest Value Unit, which do not retain any memory.

• The Vector Field Unit determines the vector field characteristics for states V and U.
• The Rest Value Unit sets the rest values for states V and U.

Each field unit comprises logic gates and reconfigurable wires that provide connections
between the membrane and rest registers.

The control signals (sV , sU) ∈ 0, 1 and (δV , δU) ∈ {−1, 0, 1}, which are generated by
the Vector Field Unit, are defined as follows:

sV =

{
1 if P ≥ Ph(V, U)

0 otherwise
sU =

{
1 if Q ≥ Qh(V, U)

0 otherwise
(1)
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δV = DV(V, U), δU = DU(V, U) (2)

F(V, U) = N(γ1(V/N − γ2)
2 + γ3 − U/M)/λ, (3)

G(V, U) = µM(γ4(V/N − γ2) + (γ3 + γ5)− U/M)λ, (4)

Ph(V, U) =
⌊∣∣F−1(V, U)

∣∣⌋− 1, (5)

Qh(V, U) =
⌊∣∣G−1(V, U)

∣∣⌋− 1, (6)

DV(V, U) = sgn(F(V, U)), (7)

DU(V, U) = sgn(G(V, U)) (8)

The rest value unit generates two signals (A, B) that determine the reset values of the
(V, U) states after a reset is triggered.

A = ⌊ρ1N⌋, (9)

B(U) = U + ⌊ρ2M⌋ (10)

where (ρ1, ρ2) are parameters.
The ACAN’s dynamics are characterized by nine hyper-parameters, namely, M, N, K, J,

Γ = (γ1, γ2, γ3, γ4, γ5, λ, µ, ρ1, ρ2) [22,24]. The aforementioned parameters are pivotal
for the variety of spiking patterns that are achievable by the ACAN. These patterns are
described in detail in Table 2 and are documented in the study by Matsubara et al. [31]. The
ACAN configuration types are commonly utilized in the ensuing parametric analysis.

In a nutshell, the ACAN model functions in the following manner: Input is received
by the ACAN in the form of binary spikes, which are weighted by synaptic weight. After
considering the input and its previous state, the unit carries out calculations based on
Equations (1)–(10), altering its internal state and generating a new output. In this study, we
focus on monitoring the basic parameter V, which represents the membrane potential of a
physical neuron.

Table 2. ACAN types based on spiking activity and corresponding parameter values.

Type γ1 γ2 γ3 γ4 γ5 λ µ ρ1 ρ2

a 7 0.3 0.2 2.8 0.06 R 0.7 0.3 0

b 7 0.3 0.2 2.8 0.06 R 0.7 0.3 0

c 7 0.3 0.2 2.8 0.06 R 0.7 0.55 −0.2

d 7 0.3 0.2 2.8 0.06 R 0.7 0.55 −0.2

e 7 0.3 0.2 2.8 0.06 R 0.7 0.55 −0.2

f 7 0.3 0.2 1.1 0.03 R 0.01 0.2 0.15

g 7 0.3 0.2 −0.5 0.05 R 4 0.25 0.4

h 7 0.3 0.2 3 −0.09 R 0.5 0.3 0

i 7 0.3 0.2 −0.5 0.05 R 4 0.25 0.4

j 7 0.3 0.2 3 −0.09 R 0.5 0.3 0

k 7 0.3 0.2 3 −0.09 R 0.5 0.3 0

l 7 0.3 0.2 −0.5 0.05 R 4 0.25 0.4

m 7 0.3 0.2 3 −0.1 R 0.5 0.3 0

n 7 0.3 0.2 3 −0.1 R 0.5 0.48 −0.42

o 7 0.3 0.2 3 0.1 R 0.5 0.3 0

p 7 0.3 0.2 3 −0.11 R 0.5 0.3 0
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Table 2. Cont.

Type γ1 γ2 γ3 γ4 γ5 λ µ ρ1 ρ2

q 7 0.3 0.2 −0.5 0.15 R 0.5 0.2 −0.3

r 7 0.3 0.2 2.8 0.06 R 0.7 0.3 0

s 7 0.3 0.5 −5 0 R −0.1 0.4 0.3

t 7 0.3 0.5 −5 0 R −0.1 0.55 −0.1

3.2. Remote Supervised Method (ReSuMe)

The remote supervised method (ReSuMe) [32], which was used for SNN training, is
described along with its adaptation for digital settings. The ReSuMe is a learning method
that relies on the synaptic plasticity rule introduced by Hebb in his publication [33]. In order
to successfully modify ReSuMe for a digital environment, we aimed to closely replicate the
procedure in a specifically digital format. As a result, it was necessary to deviate from the
continuous-time formulation described in [34] and modify it to suit digital implementation.
We compute the difference between the values of Sd(t) and Sl(t) by using discrete time
intervals. This involves transforming the output (post-synaptic) and desired spike trains,
Sl(t) and Sd(t), into their discrete time-series counterparts, Sl [n] and Sd[n]. At each time
step n, there is either a spike (1) or no spike (0) in this format. The output at time ni
is determined based on the occurrence of spikes in Sl [ni] and Sd[ni]. If a spike occurs
in Sl [ni] but not in Sd[ni], the output is 1. If a spike occurs in Sd[ni] but not in Sl [ni],
the output is −1. If spikes occur in both Sl [ni] and Sd[ni], the output is 0. This digital
adaption enables concurrent processing across the full frame, making it more suitable for
our system’s real-time operation, where inputs are received as distinct binary spikes rather
than spike timing.

In particular, ReSuMe modifies the synaptic weight (w) between a pre-synaptic neuron
(nin) and a post-synaptic neuron (nl) based on a target spike train, a pre-synaptic spike
train, and a post-synaptic spike train, i.e., Sd(t), Sin(t), and Sl(t), respectively, with the
following rule:

d
dt

w(t) =
[
Sd(t)− Sl(t)

][
a +

∫ ∞

0
W(s)Sin(t − s)ds

]
(11)

The aforementioned equation computes the alteration in each synaptic weight (w). The
learning rate (lr) controls the ultimate adjustment of weights. In this instance, the variable
a denotes the magnitude of the non-correlation component’s influence on the total weight
alteration. The following convolution represents the alterations of w through the Hebbian-
like process. The learning window, denoted by the integral kernel W(s), represents the
convolution’s kernel. It is defined based on the time delay (s) between the spiking events
occurring among neurons. The form of the learning window (W(s)) bears resemblance to
the one described in spike-timing-dependent plasticity (STDP) [34]. In our implementation
of the ReSuMe algorithm, we computed the exponential window, W, in advance in order
to optimize the speed of our learning process, thus achieving faster processing times. The
convolution in the equation above, LW = e−∆t/τ , was computed for each spike in the input
spike trains (Sin(t)). Here, ∆t represents the time difference between a prior spike and the
current time (t) in the spike train.

The final form of the learning rule employed is the following one:

w′ = w + lr(Sd − Sl) · (α + LW) (12)

where w is the synaptic weight matrix of each connection, lr is the learning rate, Sd and Sl are
the desired and the post-synaptic spike trains matrices for all available neurons, α is the non-
correlation amplitude term, and LW is the pre-calculated learning window. Equation (12)
achieves parallelization by performing vector–matrix multiplication between the output
matrix, (Sd − Sl), and the pre-calculated learning window matrix, LW, both of which have
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the same dimension representing time step S. This subtle and sophisticated technique
enhances the effectiveness and adaptability of learning, enabling seamless integration of
the ReSuMe method into digital neuromorphic systems.

3.3. Network Architecture

The architecture of the SNN, encompassing its layers and the procedure of converting
data into spikes, is elucidated. The proposed SNN consists of three main layers, as illus-
trated in Figure 3: an input layer, where data are fed into the network; a rate-coding layer,
where data are transformed into a format suitable for neurons (i.e., spikes); and a classifica-
tion layer composed of ACANs with uniform registers of size R, which also functions as the
output layer. This layer conducts a comparison between the real outputs and the predicted
outputs of the neurons. During both training and testing, performance is evaluated by
using a summation and softmax layer, which is implemented as described in [35,36]. The
data are displayed as time intervals of positional x, y, and z data for thirty-eight (38) distinct
markers positioned on the individuals’ bodies. This particular dataset is unsuitable for
utilization with SNNs, hence necessitating its conversion into spike-based representations.

Figure 3. ACAN network architecture.

To accomplish this, we employ the inhomogeneous Poisson process for spike gen-
eration [37]. This procedure utilizes normalized data within the range of [0, 1] as time-
dependent spike rates. Every feature within the frame is allocated a distinct random
number from a uniform distribution, which is subsequently compared to that particular
feature. A spike is recorded at the specific time if the drawn number does not exceed the
characteristic. The spike trains are next fed into five (5) ACANs, which categorize them
based on one of five movement classifications (Figure 1). After each training sample, the
network’s training accuracy is assessed by comparing its pre-training output to the ground
truth. This is feasible because the network utilizes the complete output for a specific input
sample during training, guaranteeing that the data are essentially unknown, particularly
during the first epoch.

After the training process, a test phase is conducted when the network identifies the
appropriate label by considering the neuron with the highest spiking rate, which is the
most active one. In the last layer, the output of every neuron is added up over the whole
sample time period. This is then processed through a softmax layer to find the output with
the most spikes, which is then assumed to be the network’s output. Subsequently, each
instance is juxtaposed with the ground truth, and every accurate prediction increases a
counter. Following each training period, the network’s overall accuracy is computed in the
following manner:

accuracy = correct/total samples
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The suggested architecture offers a comprehensive framework for efficiently con-
verting and processing data by using the proposed SNN, enabling precise movement
classification in active and assisted living (AAL) applications, as explained in the follow-
ing section.

4. Experiments and Results

4.1. ACAN Spiking Activity Reproduction on an FPGA

We assessed the feasibility of the ACAN model by implementing it and replicating its
cortical spiking processes by using the ModelSim environment. The VHDL-coded ACAN
model was developed to empirically showcase its capacity to accurately replicate a range
of neuronal responses, as depicted in Figure 4. The model’s adaptability was demonstrated
by reproducing various patterns of spiking and bursting activities, which were based on
the ACAN types listed in Table 2. These spiking and bursting activities are as follows:
(a) tonic spiking, (b) phasic spiking, (c) tonic bursting, (d) phasic bursting, (e) mixed-
mode spiking, (f) spike frequency adaptation, (g) class 1 excitation, (h) class 2 excitation,
(i) spike latency, (j) sub-threshold oscillation, (k) resonator, (l) integrator, (m) rebound spike,
(n) rebound burst, (o) threshold variability, (p) bistability, (q) depolarizing after-potential,
(r) accommodation, (s) inhibition-induced spiking, and (t) inhibition-induced bursting.
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Figure 4. The various spiking patterns reproduced by using our VHDL-implemented ACAN model
in the ModelSim environment. The patterns are organized from left to right and from top to bottom:
(a) tonic spiking, (b) phasic spiking, (c) tonic bursting, (d) phasic bursting, (e) mixed-mode spiking,
(f) spike frequency adaptation, (g) class 1 excitation, (h) class 2 excitation, (i) spike latency, (j) sub-
threshold oscillation, (k) resonator, (l) integrator, (m) rebound spike, (n) rebound burst, (o) threshold
variability, (p) bistability, (q) depolarizing after-potential, (r) accommodation, (s) inhibition-induced
spiking, and (t) inhibition-induced bursting.
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4.2. MNIST Hand-Written Digit Dataset

In order to evaluate the capabilities of the SNN, we performed an initial experiment by
utilizing the MNIST hand-written digit dataset [38]. Our ACAN-based SNN architecture’s
fundamental learning capabilities were initially validated by using the MNIST dataset as a
proof of concept. Next, we concentrated on a new collection of movement data acquired
by using the Vicon motion capture device. This dataset showcases the system’s capability
to transition from recognizing patterns in images to analyzing intricate time-series data
that represent human movements. We utilized MATLAB to train the network by using a
dataset consisting of 60,000 training photos and 10,000 test images. The 28-pixel-by-28-pixel
input images were transformed into spike trains of 30 time steps apiece, with the pixel
values determining the spiking rates. This resulted in 784 × 30 samples. The ACAN
parameters that were adjusted for maximum accuracy are as follows: Vector Γ assumed
the values (7, 0.3, 0.2, 2.8, 0.06, 1, 0.7, 0.3, 0), and the register size was R = 64 for all registers.
The network was trained by using ReSuMe, with a learning rate of 0.0001 and τ of 15.
Following training, the network was tested by using new images and achieved an accuracy
of 89%, which is comparable to prior research in the field of SNNs [26], demonstrating the
network’s capacity to understand spatio-temporal correlations within the data.

4.3. Network and Training Optimization

An in-depth parametric analysis was carried out to fine-tune the network’s hyperpa-
rameters, including the register size (R) of the ACAN model neuron, the time constant
of ReSuMe, and the overall type of the ACAN model (please refer to Table 2), and to
evaluate the impact of spiking activity patterns on learning effectiveness. The analysis
was performed in MATLAB, evaluating several ACAN models by systematically varying
each parameter, such as register sizes and time constants, within a specified range. The
type of ACAN includes the set of the following parameters: {a, c, f , g, j, m, s, t}. For the size
of the register (R), we tested the values {8, 16, 32, 64, 128, 256, 512, 1024}. Finally, for the
time constant (τ), we tested the values {1, 5, 10, 15, 20, 25}. The data shown in Figure 5 and
Table 3 indicate that the ACAN parameters play a crucial role in determining the system’s
learning capability. Figure 5 illustrates the substantial impact of various ACAN parameters
on the learning process of the system. This refers to how the neuron’s different spiking
patterns affect the learning process. The sub-figures of Figure 5 are distinctively unique
from each other, especially in terms of their visual characteristics. Table 3 displays the
optimal performance achieved in both training and testing by the parametric analysis. The
ideal setup consisted of the t type ACAN with a register size (R) of 128 and a time constant
(τ) of 10. This setup achieved an accuracy of 80.12% on the test set. The data shown in
Table 3 help us choose the optimal settings for our system considering the limitations of the
particular application we are dealing with.

Table 3. Accuracy results for various ACAN neuron types on the novel movement dataset. Each type
has an accuracy (%) score, as well as values for the register size (R) and time constant (τ).

ACAN Model Training Testing

Types R τ Accuracy % R τ Accuracy %

a 128 5 80.75 128 10 79.7
c 256 5 80.87 128 10 79.62
f 128 5 80.77 64 10 79.53
g 128 5 80.87 128 10 79.53
j 128 5 80.87 128 10 79.86

m 128 5 80.81 256 5 79.53
s 256 5 80.79 256,128 5, 10 79.87
t 256 5 80.86 128 10 80.12
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(a) (c)

(f) (g)

(j) (m)

(s) (t)

Figure 5. Parametric analysis of different ACAN neuron types for the MNIST hand-written digit
dataset. The analysis was carried out by adjusting the register range (R), time constant (τ), and
ACAN neuron configuration parameters. Left to right, top to bottom: (a,c,f,g,j,m,s,t)ACAN model
parameters were used as presented in Table 2. The figures illustrate the influence of varying the size
of the ACAN’s register (R) and the time constant (τ) of ReSuMe on the training accuracy (in blue)
and the test accuracy (in red).

4.4. Novel Movement Dataset

We applied the ACAN spiking network to the new movement dataset, following the
preprocessing steps described in Section 2. The samples were set to be S = 100 frames long,
resulting in the creation of matrices sized 114 × 100. The normalized data were converted
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into spike trains and utilized to train the SNN by using a specified 90/10 training/test split.
Incorporating velocity data enhanced performance and led to input matrices of dimensions
228 × 100. The MNIST experiment utilized certain settings for training by using ReSuMe:
τ = 15, α = 1, and lr = 0.0001, respectively. The training lasted for 75 epochs. The SNN
accurately identified new data points with an accuracy of 78.9%, as shown in Figure 6.

Figure 6. Confusion matrix of SNN performance on the test set of the first experiment with a
prediction accuracy of 78.9%.

The accuracy scores achieved were satisfactory, as demonstrated in comparable re-
search cited in [39]; nonetheless, several factors might impact performance. The number
of data is a crucial factor, since a larger dataset can lead to a more effective classifier. The
network’s single-layer architecture may restrict its performance; multi-layered spiking neu-
ral networks often achieve higher accuracy. The model’s ability to learn may be restricted
by the training method. Sequential data in a real-world scenario are likely to be highly
correlated due to sharing most frames and belonging to the same sample class, perhaps
resulting in more accurate results. The specific moment when a significant movement
starts and the moments around it are not dependable indicators of the type of movement
occurring might be crucial to enhancing classification accuracy.

Another approach to enhancing the network’s performance was attempted by consid-
ering input features as distinct and autonomous, similar to how the image’s pixels were
handled in the MNIST hand-written digit classification experiment. With the identical
conditions as the MNIST experiment, but with 10 time step units per input instead of 30,
the input size increased to an 11,400 × 10 matrix, which is a thousand times larger than
that in the previous experiment. This has a substantial impact on execution times (about
∼2800 s each epoch). By using an 85/15 training/test split, the data setup achieved a test
accuracy of 83.3%, indicating a 4.5% improvement, as shown in Figure 7.
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Figure 7. Confusion matrix of SNN performance on the test set of the second experiment with a
prediction accuracy of 83.3%.

5. Conclusions and Future Work

The study has successfully demonstrated the effectiveness of the ACAN model within
the domain of SNNs for AAL applications, emphasizing its precision and versatility in
elderly activity recognition. This research focuses on experimentally validating the ACAN
model’s capability to reproduce several types of known neural spiking activity, showcasing
its promise for diverse neuromorphic applications. The study incorporates a thorough para-
metric analysis to pinpoint essential settings for enhancing learning speed and accuracy in
various circumstances. The experiment we conducted on human movement categorization
by using SNNs showcased the model’s robust capabilities and offered valuable insights
into sample processing and training techniques. The experiment obtained an accuracy of
83.3% in classifying five unique types of motions. This accuracy is regarded satisfactory
considering the limitations of FPGA-based implementation and the novelty of the dataset.
It is also in line with findings from comparable research as found in the literature [39].
Moreover, the results show the promise of neuromorphic computing in the field of AAL.

Our method shows great promise for real-time applications in fields that require
low-energy, real-time processing, such as wearable technology, edge computing, and
robotics. Although the reported accuracy limits are notable, they offer valuable guidance
for enhancing future model versions. This study significantly contributes to the area of
SNNs and human-based movement classification, establishing a foundation for future
advancements in real-time, energy-efficient computing systems.

In the future, we aim to improve the ACAN model’s performance and relevance.
Future research will focus on integrating continuous learning algorithms to tackle the
discrete aspects of the training process and enhance logical continuity between subsequent
samples. In addition, attempts will be made to expand the model’s relevance to a broader
spectrum of motions and situations, encompassing complex, unstructured environments
seen in actual AAL settings. Investigating the compatibility with various neuromorphic
hardware and sensors, along with assessing the possibilities for scaling and personalization
to meet particular user requirements, will be essential. Our goal is to close the gap between
the present constraints and the extensive capabilities of SNNs in real-time, adaptive, and
energy-efficient applications.
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The following abbreviations are used in this manuscript:

AAL ambient assisted living
SNN spiking neural network
DNN deep neural network
ACAN asynchronous cellular automata-based neuron
ReSuMe remote supervised learning
RC Reservoir Computing
MCG Magnetocardiogram
EEG Electroencephalogram
FPGA field-programmable gate array
STDP spike-timing-dependent plasticity
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuit
MNIST Modified National Institutes of Standards and Technology
NN neural network
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