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Abstract: This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2)
thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by
electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods,
the thermal–mechanical behavior of and thermal stresses in VO2 films can be determined. An
improved Twyman–Green interferometer was used to measure the temperature-dependent residual
stress variations of VO2 thin films at different temperatures. This study found that the substrate
has a great impact on thermal stress, which is mainly caused by the mismatch in the coefficient of
thermal expansion (CTE) of the film and the substrate. By using the dual-substrate method, thermal
stresses in VO2 thin films from room temperature to 120 ◦C can be evaluated. The thermal expansion
coefficient is 3.21 × 10−5 ◦C−1, and the biaxial modulus is 517 GPa.

Keywords: thin film; vanadium dioxide; residual stress; thermal stress; thermal expansion coefficient;
biaxial modulus

1. Introduction

Optical thin films have been applied in various optical components; in particular,
the stability of optical thin film filters in the environment is particularly important [1].
When optical thin films are used in solar panels, optical communications, displays, lasers,
optical detectors, and sensors in the visible and infrared spectra, the operating temperature
range of these components will vary with changes in environmental temperature. As the
temperature of the optical thin film rises, it will be affected by thermal stress, causing
changes in the optical thickness or refractive index of the optical thin films and resulting in
a drift in the center wavelength with temperature changes [2]. Vanadium dioxide (VO2)
has garnered widespread attention due to its unique insulator-to-metal phase transition
characteristics. With temperature variations, VO2 undergoes a reversible transition between
insulating and metallic states, leading to significant changes in its electrical and optical
properties [3]. The metal-to-insulator phase transition (MIT) behavior in VO2 was first
reported by Morin in 1959 [4]. In some study cases, vanadium dioxide (VO2) exhibits a
thermally induced structural phase transition from a monoclinic (M1) to rutile tetragonal (R)
structure at 68 ◦C under no strain. In fact, thermal stress in thin films is complexly affected
by multiple parameters, including the coefficient of thermal expansion (CTE), substrate
properties, film thickness, and thermal conductivity. These factors collectively influence
the overall thermal stress experienced by the thin film system [5,6]. Residual stress is a
major challenge that can induce functional defects, often resulting in significant changes
in shape and structural integrity. These effects may manifest as lamination, buckling, or
even the formation of cracks. In 2012, Tsai and Chin et al. [7] discovered a relationship
between the residual stress of VO2 film deposition and the phase transition temperature
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(Tt). Residual stress was quantitatively measured by X-ray diffraction. It has been verified
that the reduction in the phase transition of polycrystalline VO2 films with (011) orientation
is due to shrinkage caused by residual tensile stress. The degree of crystallization of the
VO2 film will change the residual stress in the deposited state. In 2014, Sakai et al. [8]
reported that substrates with larger thermal expansion coefficients cause larger out-of-plane
lattice spacings in both Pt and VO2 and lower transition temperatures for VO2 films.

In order to address the issue of thermal stress in thin films, Chen et al. [9] reported the
correction of deformation, thermal stress, and temperature relationships along the sample
thickness direction and established models through the analysis of some experimental
methods to determine the thermal expansion coefficient and biaxial modulus of thin film
materials. When small temperature gradients are induced along the sample thickness
direction, it has a significant impact on the accurate measurement of thin film materials and
the biaxial modulus of thermal expansion coefficient and therefore should be considered in
the analysis. If the influence of this temperature gradient is carelessly ignored in physical
modeling, it may lead to errors in the obtained thermal expansion coefficient and biaxial
modulus. Additionally, in order to evaluate the anisotropic stress of thin films, deformation
must be measured in different directions. Tien et al. [10] used the fast Fourier transform
(FFT) method to measure the anisotropic thermal stress in thin films and combined it
with dual-substrate technology to explore the anisotropic thermal expansion coefficient
and biaxial modulus of optical thin films. The functionality and reliability of multi-layer
systems are strongly influenced by thermal elastic stresses. Zhang [11] decomposed the
total strain into uniform strain components and bending strain components and developed
a closed-form solution to overcome the complexity of traditional analysis. Subsequently, an
alternative analytical model was developed based on the curvature radius of the neutral
axis, used for zero normal strains and normal strains at the interface between the substrate
and the thin film. In 2022, Wang et al. [12] investigated the simulation of thermal stress in
VO2 thin films based on a finite element method; their objective was to identify control
parameters via simulation to fine-tune the design of a premium VO2 thin film/substrate
system, aiming for optimized performance and quality.

This study presents a thermal stress evaluation method for vanadium dioxide thin
films. The values of thermal stress, the coefficient of thermal expansion (CTE), and the
biaxial modulus of VO2 thin films were determined by the proposed method. The thermal
stress in VO2 thin films may exhibit greater complexity due to stress redistribution caused
by their phase transitions. There are not many relevant studies in the literature on the
thermal stress of VO2 films. This study intends to explore the thermal stress changes of
VO2 films and measure the biaxial modulus and thermal expansion coefficient (CTE) of
VO2 thin films deposited on different substrates by ion-assisted electron beam evaporation.
The results can be used as a reference for the process design of VOx-based multi-layer film
structure applications.

2. Materials and Methods
2.1. Thin Film Preparation

In this study, B270 and H-K9L glass substrates were characterized by their known
Young’s modulus and coefficient of thermal expansion. For the residual stress evaluation,
we used two different glass substrates, with one side of each substrate surface being a
rough surface and the other side polished to a flatness of one wavelength. The size of each
glass substrate was 1.5 mm in thickness and 25.4 mm in diameter. These glass substrates
utilized in the experiment were carefully cleaned with a cleaning agent, and then acetone
was used in the ultrasonic cleaner for the final cleaning step. During the coating process,
vanadium dioxide thin films were deposited on B270 and H-K9L glass substrates by using
a SHOWA electron beam evaporation system with an ion-assisted deposition technique.
Before initiating the film deposition process, the vacuum chamber underwent evacuation to
achieve a base pressure of less than 9.0 × 10−4 Pa. The substrate heating temperature was
set at 250 ◦C during the process. The coating material was bombarded by the electron beam
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generated by the electron gun and then deposited onto the substrate in an upward direction.
The process vacuum was set at higher than 1.0 × 10−3 Pa. The high-vacuum evaporation
system was outfitted with an optical monitor and a quartz crystal to ensure precise control
over film thickness and deposition rate. The physical thickness and deposition rate of the
films during the process were monitored using quartz monitoring, and the deposition rate
in this study was set at 0.1 nm/s. The thin film deposition process involved operating the
electron gun at a maximum power output of 10 kW, with voltage and current settings of
10 kV and 1 A, respectively. For ion-assisted deposition, the anode current ranged from
0.5 to 10 A, while the anode voltage varied from 80 to 300 V, with ion energy levels between
50 and 200 eV. The film thickness of the VO2 layer was set to 60 nm, and the argon gas flow
rate was maintained at 16 sccm.

2.2. Residual Stress Measurement

The intrinsic stresses within a film cause bending of the film/substrate system, thereby
promoting partial relaxation. Tensile stresses occur when the substrate bends concavely up-
ward, while compressive stresses occur when the substrate bends in the opposite direction.
Figure 1 shows an illustration of the tensile stress and compressive stress behaviors. If the
thin film generates compressive stress and tends to expand relative to the substrate, then
the substrate is bent outward into a convex shape. On the contrary, a thin film containing
internal tensile stress causes the substrate to bend upwards into a concave shape.
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Figure 1. Schematic diagrams of the thin film/substrate system under tensile or compressive stress.

This study used a homemade, improved Twyman–Green interferometer [13] to mea-
sure residual stress in thin films. The interferometer is equipped with a heater and an
NIR thermal imager, as shown in Figure 2. The measurement system uses a helium–neon
laser with a wavelength of 632.8 nm as the light source, forming a point source of laser
light through a spatial filter. The light then passes through a collimating lens to generate a
uniform parallel beam, splitting into two beams through a beamsplitter. These two beams
are reflected by a reference mirror and the surface of the test object, then recombined into
a single beam by the beamsplitter, forming an image on a rotating screen and creating
interference fringes. Finally, the interference pattern is captured using a CCD camera, and
the thin film surface profile is reconstructed by fast Fourier transform and phase retrieval
methods to detect the curvature radius value of the test object. Subsequently, the residual
stress in the thin films can be calculated using the Stoney formula, as follows [14].

σ = σi + σth =
1
6

Es

(1 − vs)

ts
2

t f

1
R

,
1
R

=
1

R2
− 1

R1
, (1)

where σ is the residual stress; σi represents the internal stress; σth represents the thermal
stress, Es represents the Young’s modulus of the base material; νs is the Poisson’s ratio of
the substrate material; ts is the thickness of the substrate; tf is the thickness of the film;
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R1 and R2 are the curvature radius values of the substrate before and after the coating
process; and R represents the change in the curvature radius of the substrate before and
after coating.
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The thermal stress (σth) arises from the mismatch in thermal expansion between the
thin film and the substrate. The thermal stress can be written as follows:

σth =
(

αs − α f

) E f

1 − ν f
(T2 − T1), (2)

where αf and αs represent the thermal expansion coefficients of the substrate and film,
respectively, and Ef and νf are the Young’s modulus and Poisson’s ratio of the thin film.

E f
1−v f

is the biaxial modulus of the film. T1 and T2 are the thin film temperature differences
before and after substrate heating. From Equation (2), it can be proven that the slope of the
experimental stress–temperature curve is equal to the following:

dσ

dT
= (αs − α f )

E f

1 − ν f
. (3)

Here, it is assumed that the values of αs, αf, Ef, and νf are independent of temperature.

Given the lack of information on either αf or
E f

1−v f
, both values can be obtained by simply

determining dσ/dT on each of two substrates with known values of αs and solving two

equations in the form of Equation (3) for αf and
E f

1−v f
simultaneously. This approach is

called the double substrate method [15]. The principle is to deposit the same thin film
on substrates made of different materials in order to measure the stress–temperature
curve relationship of the thin film on different glass substrates. The thermal expansion
coefficient and biaxial modulus of the thin films are determined by simultaneously solving
Equations (4) and (5) [16,17].

α f =
αs1

σ2
T − αs2

σ1
T

σ2
T − σ1

T
(4)
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E f

1 − ν f
=

σ2
T − σ1

T
α2 − α1

(5)

where αs1 and αs2 are the thermal expansion coefficients of different glass substrates; αf is
the thermal expansion coefficient of the thin film; Ef and νf are the biaxial modulus and
Poisson’s ratio of the thin film material, respectively; and σ1

T and σ2
T are the two slope values

of the stress–temperature curves of the thin film deposited on two different substrates.
Table 1 indicates the physical parameters of the two different glass substrates.

Table 1. Physical parameters of different glass substrates.

Glass Substrate B270 H-K9L

CTE (◦C−1) 8.2 × 10−6 7.6 × 10−6

Young’s modulus (GPa) 71.5 79
Poisson ratio 0.219 0.214

Thickness (mm) 1.5 1.5

3. Results

As the temperature rises from ambient temperature to 120 ◦C, the average residual
stress significantly increases. The increase in temperature causes the residual stress of
the VO2 thin film deposited on the B270 and H-9KL glass substrates to shift towards a
more tensile state. The coefficient of thermal expansion (CTE) of the VO2 thin films can be
determined by analyzing the stress–temperature relationship using the double substrate
method, which takes into account factors such as the substrates’ properties, film thickness,
and temperature variations. The residual stress variation of the VO2 film coated on the
B270 and H-9KL glass substrates during heating is approximately linear.

3.1. VO2 Coated on B270 Substrate

Firstly, we observe the thermal stress changes of the VO2 thin film deposited on the
surface of the B270 glass. Figure 3 shows the NIR thermal images, interference fringes,
and 3D surface profile of the VO2 film coated on the B270 glass substrate at different
heating temperatures. The changes in the 3D contour map also indicate that as the heating
temperature increases, the contour of the film surface changes from slightly concave to
more concave, indicating that the radius of curvature changes from large to small. Figure 4
shows that as the heating temperature increases from room temperature to 120 ◦C, the
compressive stress decreases and transforms into tensile stress. As the heating temperature
increases, the stress value varies from −0.238 to 0.819 GPa. The residual stress changes
from compressive stress to tensile stress in the heating process. We found that there is no
significant difference in the thermal stress changes of VO2 thin films deposited on B270
glass substrates during heating and cooling processes. The residual stresses in the VO2
thin films on the B270 glass change almost proportionally to temperature changes during
heating and cooling cycles, as shown in Figure 4. The residual stress is related to the
morphology, texture, and grain size of the VO2 thin films, typically including tensile stress
formed during island structure coalescence and compressive stress generated by defects,
vacancies, and impurities. It was found that the transmittance loop of the VO2 films when
thermally cycled differs between films with different manufacturing conditions, resulting
in a different transition temperature (Tt) than that of a strain-free VO2 single crystal [18].
However, when the temperature changes between 60 and 70 ◦C, the stress changes rapidly,
which is speculated to be related to the phase transition temperature of the VO2 film. It is
known that VO2 undergoes a structural phase transition from monoclinic to tetragonal, and
each structure is stable at temperatures below and above the transition temperature. When
the temperature rises above the phase transition temperature, a transition from compressive
stress to tensile stress occurs, which is consistent with the expected volume expansion
(~0.32%) associated with the transformation from monoclinic to tetragonal crystals [19].
The local volume change is related to the change in the relative position of V and O atoms.
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The contraction and expansion of V-O bonds cause octahedral deformation, providing a
basis for reversible stress changes during the phase transition process.
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Figure 4. Residual stress vs. heating temperature for VO2 film coated on B270 glass.

By conducting curve fitting in Figure 4, we determined that the slope of the stress–
temperature plot for VO2/B270 glass is 5.6 × 10−3 GPa/◦C. This indicates a transition in the
stress state of the VO2 film deposited on the B270 glass. The observed behavior suggests a
gradual shift in residual stress from compressive to tensile as the heating temperature rises.
This transition underscores the influence of temperature fluctuations and the mismatch in
the coefficient of thermal expansion (CTE) on thermal stress.

3.2. VO2 Coated on H-K9L Substrate

Figure 5 shows the NIR thermal images, the interference fringes, and the 3D surface
profile of the VO2 thin film deposited on the H-K9L glass substrate, which were examined
at various heating temperatures. The measurement results show that the number of
interference fringes gradually increases with increasing temperature. The changes in the 3D
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profile also show that as the heating temperature increases, the film’s surface profile changes
from slightly concave to more concave, which means the radius of curvature changes from
a large value to a smaller value. Figure 6 illustrates the residual stress in the VO2 thin
film deposited on H-K9L glass substrates plotted against temperature. The plot shows the
measured average stress (open circles) data versus heating temperature. When examining
the impact of temperature on the average residual stress, we assess changes in substrate
curvature before and after film deposition in all radial directions. As the temperature
increases, the film stress values fluctuate within the range of −0.247 to 0.825 GPa. The
residual stress changes from compressive stress to tensile stress in the heating process.
We found a linear correlation between residual stress and heating temperature. As the
temperature rises from room temperature to 120 ◦C, the residual stress in the VO2/H-K9L
sample transitions from compressive to tensile stress. Both samples display a rise in residual
stress with increasing heating temperatures, depicting the stress function of VO2 films on
various substrates in response to temperature changes. Through curve fitting in Figure 6,
we determined that the slope of the stress–temperature plot for the VO2/H-K9L sample is
3.2 × 10−3 GPa/◦C. It should be noted that a significant stress alteration in the VO2 thin film
coated on the H-K9L glass occurs when the temperature exceeds 60 ◦C. As the temperature
rises, a transition from compressive to tensile stress in the VO2 film can be observed.
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3.3. Evaluation of the CTE and Biaxial Modulus for VO2 Thin Films

The results of the residual stress versus heating temperature show that VO2 thin films
coated on the HK9L and B270 glass substrates exhibit compressive stress after coating. As the
temperature increases from 60 to 100 ◦C, the compressive stress gradually moves toward the
tensile stress state. Figure 7 shows the linear fitting diagram of the residual stress vs. heating
temperature for the VO2 films coated on the B270 and H-K9L glass substrates.
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The CTE and biaxial modulus are determined using linear regression analysis over the
temperature range from room temperature to 120 ◦C. Intuitively, the expected average CTE
of the VO2 film over the analyzed temperature range is estimated to be 3.21 × 10−5 ◦C−1,
assuming the physical properties of the film and substrate remain constant over the elastic
range. The biaxial modulus of the VO2 film was determined to be 517 GPa. These findings
are consistent with CTE data reported in the literature [20,21].

The observation of the relationship between residual stress and temperature can be
divided into two parts. When a 60 nm thick VO2 thin film is deposited on B270 and
HK9L, the residual stress is negative due to the compressive stress relationship at lower
temperatures of 30–50 ◦C. However, as the surface temperature of the thin film increases,
a significant decrease in compressive stress is observed. When the heating temperature
exceeds 60 ◦C, the residual stress value is positive due to the tensile stress, and the residual
stress value increases with temperature. At a temperature of 70 ◦C, the residual stress value
slightly increases, which may be related to the thermochromic nature of VO2 films, causing
it to deviate from a linear relationship.

It can be observed from the linear fitting plots of the residual stress vs. heating tem-
peratures of the B270 and HK9L substrates that there are some slight fluctuations between
60 and 70 ◦C. Currently, it is inferred that this is due to changes in the internal structure,
and it cannot be determined whether it is affected by thermal stress. The distribution of
thermal stress growth shows linear growth. Through calculations based on simultaneous
equations, it is found that the thermal expansion coefficient of vanadium dioxide composite
films is 3.21 × 10−5 ◦C−1, and the biaxial modulus is 517 GPa. Based on the above data, it
can be inferred that the thermal stress of the B270 and HK9L substrates shows linear growth
from 30 ◦C to 120 ◦C at different temperatures, with significant fluctuations at 60–70 ◦C. As
thermal stress results from discrepancies in the thermal expansion coefficients between the
substrate and the thin film, resulting in size variations, the thermal stress of the film does
not increase significantly before and after 60 ◦C and exhibits linear growth. From this, it
can be inferred that the intrinsic stress may be affected by changes in the internal structure
of the film, and further research is needed to determine the actual changes in the internal
structure of the film.
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4. Conclusions

This experiment was conducted by measuring vanadium dioxide films that were
simultaneously coated on B270 and H-K9L glass substrates, and we measured the residual
stress from room temperature to 120 ◦C. Although the VO2 phase transition mechanism
remains controversial, considerable progress has been made in the modification of phase
transitions in recent years. In this work, the experimental investigation focused on exploring
the temperature-dependent coefficient of thermal expansion (CTE), the residual stress, and
the biaxial modulus of VO2 thin films. When thermal gradients cause thermal stress, it may
lead to the failure of the thermochromic thin film structure. Therefore, for the measurement
of the thermal–mechanical characteristics of optical thin films, a thorough understanding
of thermal stress in the thin film structure is necessary. By using the dual-substrate method,
thermal stresses in VO2 thin films from room temperature to 120 ◦C can be evaluated. The
thermal expansion coefficient is 3.21 × 10−5 ◦C−1, and the biaxial modulus is 517 GPa.
The experimental findings provide valuable insights for optimizing the excellent VO2
film/substrate system settings, enhancing its potential for various applications in smart
windows, optoelectronic switches, and intelligent heat dissipation devices.
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