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Abstract: Wild and forest fires pose a threat to forests and thereby, in extension, to wild life and
humanity. Recent history shows an increase in devastating damages caused by fires. Traditional
fire detection systems, such as video surveillance, fail in the early stages of a rural forest fire. Such
systems would see the fire only when the damage is immense. Novel low-power smoke detection
units based on gas sensors can detect smoke fumes in the early development stages of fires. The
required proximity is only achieved using a distributed network of sensors interconnected via 5G.
In the context of battery-powered sensor nodes, energy efficiency becomes a key metric. Using AI
classification combined with XAI enables improved confidence regarding measurements. In this work,
we present both a low-power gas sensor for smoke detection and a system elaboration regarding
energy-efficient communication schemes and XAI-based evaluation. We show that leveraging edge
processing in a smart way combined with buffered data samples in a 5G communication network
yields optimal energy efficiency and rating results.

Keywords: edge computing; sensor network; machine learning pipeline; explainable AI; energy
efficiency

1. Introduction

The automation of systems and the increasing digitization of processes lead to progress
in many domains [1]. The nationwide implementation of 5G networks enables the realiza-
tion of intelligent systems on a large scale [2]. Smart cities are conceivable applications of
distributed and intelligent systems in urban areas, relying on large-scale communication
networks. However, it is important to note that such intelligent systems are not limited to
urban settings and can also be applied in rural areas [3,4].

The expansion of 5G as a high-performance communication medium allows for re-
thinking conventional application architectures. Instead, very large application scenarios
connect a multitude of sensors, actuators, and processing nodes. These novel concepts
surpass the state-of-the-art implementations in terms of energy efficiency, performance,
latency, and bandwidth [5–7]. The 5G standard foresees three distinct usage profiles, opti-
mizing network coverage toward either low latency, high bandwidth, or a large number
of devices in the network [8] (p. 112). While targeting single-use cases suffices for many
5G applications, projects requiring high performance in all regards are hindered by this
principle. Communication becomes expensive, necessitating computation to be pushed
toward the edge.

Wildfires pose a significant threat to flora and fauna [9]. For instance, between 2001
and 2021, forest areas equivalent to the size of Great Britain were burned worldwide [10].
From 2017 to 2022, the number of international large wildfire disasters ranged between 9
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and 19 [11]. Therefore, wildfire prevention has become a critical task. The rise of artificial
intelligence (AI) motivates the automation of surveillance and early detection systems.
Modern fire detection systems have become cheaper, more reliable, and can be deployed
even in highly rural areas. We present a project that addresses wildfire prevention by
integrating sensor data into a distributed system, including cameras, stationary ground sen-
sors for environmental conditions, novel smoke detection devices, and drone surveillance.
In this work, we introduce a novel smoke detection system based on the Bosch BME688 gas
sensor, augmented with edge classification and the simulation of data transmission costs,
alongside an additional explainable AI (XAI) evaluation using a remote server.

As already alluded to, our case study consists of a smoke gas detection sensor based
on the Bosch BME688 sensor. The evaluation of data samples recorded by this sensor are
classified as smoke-induced air and fresh air. Communication is considered expensive;
therefore, system-level models of energy costs for various communication schemes have
to be explored. Additionally, in the context of wildfire prevention, a dispatcher is faced
with the task of combining all sensor data recorded in the system to make a decision on
setting an alarm for wildfires. This decision can be aided by the additional analysis of the
recorded data samples. We explored explainable AI (XAI) methods of analyzing the raw
data samples at a remote server location.

In this paper, we present the following contributions.First of all, this work explores
and answered the following two research questions:

• RQ1: How can smoke detection be shifted to the edge of large-scale communication
networks when classifying data samples from the Bosch BME688 sensor?

• RQ2: What benefits does XAI offer in the development and live evaluation of artificial
intelligence for edge devices?

Further contributions of the work presented here are as follows:

• An MLP-based classifier for smoke gas deployed and optimized for execution using
an ESP32-platform.

• A holistic system simulation of energy costs for various communication schemes from
the sensor node via BLE.

• A design space evaluation in terms of the energy intensity of various communication
schemes compared to the value of information received by a central server.

The rest of this paper is organized as follows. In Section 2, a case study is shown in
a real-world use case. Section 3 provides an in-depth investigation of smoke detection
on edge devices. Additionally, the benefits and uses of XAI evaluation are described in
Section 4. Further, a comparison of different setups of on-the-edge hardware is described
in Section 5, as well as how XAI is integrated in the verification step in the AI development
pipeline. Finally, the results of our system-level evaluation are shown in Section 6, and
alongside a conclusion, an outlook into further research is presented in Section 7.

2. Case Study—Project 5G-Waldwächter

Forest areas are severely threatened by climate change, and there are additional risk
factors that further increase this threat [12]. Forest fires [10–12] and bark beetle [13,14]
infestations of forest areas are severe threats to the local flora and fauna. Within the scope
of the project 5G-Waldwächter, researchers and partners from the industry collaborated to
present a holistic forest health monitoring and early alert system (5G-Waldwächter is a 5G
pilot project of the district of Görlitz, Germany, funded by the German Federal Ministry of
Digitalization and Transport (BMDV), focusing on the early detection of forest hazards [15]).
In this context, we present the conceived distributed, intelligent detection system.

2.1. Main Idea of 5G-Waldwächter (Context for This Work)

The overall 5G-Waldwächter system uses camera data input, available data from
public weather services, and specific data provided by other public services like EFFIS [16].
All different input data, i.e., camera systems, available weather services, and services for
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wildfires, are processed and grouped into subsystems. After considering all information
and validating each subsystem, a reliable prediction will be made.

One of these subsystems is a network of sensor nodes that can detect smoke. Detecting
smoke is very important for two major reasons. The first reason is that a wildfire starts with
smoke, so instead of detecting a fire with flames upon trees, smoke would be detected much
earlier, and therefore, the ascending fire could be prevented through smaller activities.
The second reason is that if there is dry grass and dead wood on the ground, a fire could
burn with slightly visible information. So, this means that there is time between when the
fire starts, its spreading, and the visual recognition above the peak of the trees. This is why
monitoring the ground of the forest could provide crucial information about a very early
stage of the fire.

However, technically, it is easier to observe big areas visually with cameras, but then
the wildfire is harder to prevent (or to extinguish). The detection of an early stage is, from
a technological viewpoint, harder because there are many open questions such as: “How
many sensors do I need for 1 km2?” But from the viewpoint of the actions necessary to
fight the fire, the effort required is much lower. This is the reason why investigating such
an approach is very fundamental for the early detection of wildfires. Here, a subsystem
that can detect smoke comes into play; this part of the system will be covered in detail in
the following section.

2.2. Subsystem for Smoke Detection on the Edge (Scope of This Work)

To provide details about the smoke detection part of the 5G-Waldwächter system,
we will firstly provide an overview of the topology of this subsystem. This topology
is shown in Figure 1. There are three major components to identify: the sensor node,
the communication node, and the central server. Furthermore, the sensor node consists
of a Bosch BME688 sensor, an ESP32, and one BLE module. The ESP32 MCU interfaces
with the Bosch sensor and the BLE module. With the BLE module, the sensor node can
communicate with the communication node. The communication node then interacts with
the central server.

The ESP32 uses internal buses (SPI, I2C) for communication. Bluetooth Low Energy is
used between a sensor node and a communication node. And the top-level communication
of the system from the communication node to the central server is conducted via 5G.
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Figure 1. In this figure, the context of the edge sensor (i.e., sensor node), is shown. The communication
node, as a transmitter and collector, is in the middle between the nodes and the Central Server.

After showing the components and their interfaces, the functions are explained in
detail. The target of the distributed sensor nodes is to record data samples of various types,
such as temperature, the humidity of the ground and the surrounding air, and permittivity
and air pressure. Early preprocessing with the ESP (i.e., on the sensor node) could be
accomplished by leveraging AI for the classification of the recorded data samples. This
is performed at defined intervals, e.g., once every hour; the data can be stored or sent to
the communication node. The functionality of the communication node is to collect data
from multiple sensor nodes using Bluetooth Low Energy (BLE) over a short distance. The
data are then buffered in this communication node for a certain period of time and later
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transmitted to a remote server component (i.e., the central server) over a 5G connection.
The proposed communication scheme above can be modified for special requirements.

The reasons (i.e., goals of the system) for adapting the scheme and the entities are
presented in the following. First, all sensor nodes have resource costs, i.e., processing time
and energy, associated with both measuring data, processing data, and transmitting the
information to the next communication node. The longevity of the individual nodes is a
key driver of the design decisions in conceiving the distributed node setup. For optimal
detection, sensor nodes should be placed as close to the source of smoke particles as possible
(i.e., at ground level). However, as the nodes are placed in the forest in a distributed manner,
we cannot supply them with continuous energy (i.e., they are battery-powered). In terms of
transmission errors from the sensor nodes to the communication nodes, a mechanism must
be implemented (e.g., a buffer). A similar mechanism must be implemented for sending
data from a communication node via 5G. All the entities themselves should react in terms
of temporal connection issues.

These uncertainties, with their key premises on energy consumption, lead to the idea
to slightly modify the system components in Figure 1, to address some of the issues that
can arise, and to compare these system variations with each other. Therefore, in this case
study, several operating options are presented and discussed in greater detail. An overview
of the following options is shown in Table 1.

Table 1. Overview over various possible operating profiles of the processing and communication of the
edge sensor node. The following abbreviations are used in the table: M for measuring, E for evaluation,
S for sending, and class for classification. ✓denotes support, while × denotes the lack of such.

Possible Operating Profiles

Costs Data Sample Only Class Only,
No Sample

Class
and Sample

Class and
Multiple Samples

M ✓ ✓ ✓ ✓
E × ✓ (✓) (✓)

S 1 sample <1 sample
(only class)

>1 sample
(class + sample)

>n samples
(class + n samples)

The range of operation modes ranges from transmitting only the raw data samples to
sending an anomaly classification tag and a specified number of buffered samples before the
anomalous data point occurs. The choice in communication profile directly impacts energy
consumption for processing and sending. The influence of all three aspects combined is
estimated based on the costs of the profile that only transmits raw data. In conclusion,
sending the raw data is the minimal use case that can be conducted. Further impacts of
various other communication schemes on the overall system have to be explored. Therefore,
we present an evaluation in terms of both energy and entropy, i.e., the value of information
present at the Centralized Server. In this regard, the following aspects are explored:

• The quality of prediction or classification using AI at the sensor nodes;
• The quality of the overall smoke detection;
• Energy aspects of both the sensor node and the overall system;
• The feasibility of transmitting data over 5G in rural areas from many devices, possibly

at high bandwidths;
• System reliability.

2.3. Constraints and Assumptions

The most important aspect of this system is energy consumption, which necessitates
the use of low-power hardware, with the ESP32 being mandatory. In a broader context, 5G
was selected for the 5G-Waldwächter system as the communication network. This decision
was made because, for observing rural areas, using the newest generation of radio network
is the most practical way of installing such a distributed system. Additionally, 5G supports
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the concept called mMTC (massive Machine-Type Communication), which is a feature
for interacting with a large number of devices (1 million devices per square kilometer),
which could be necessary for observing the ground in terms of wildfires. However, as a
communication alternative, 4G can be used as a fallback mechanism.

The reason for integrating explainable AI (XAI) into the AI validation process is to
improve the machine learning model. With XAI, it is possible to deploy a more efficient
model on the ESP32, enabling better predictions or requiring less power. Integrating XAI
tools in this use case could provide valuable insights and lead to new communication
schemes or usage profiles of the sensor nodes.

To be explicit, the current work is a proof of concept, with a strong focus on architecture
and component design. Features related to privacy and security are considered on a basic
level; however, they will not be the primary focus of this smoke detection system.

Our assumptions are that the BLE connection is highly stable and that the 5G radio
network works properly in most cases. When making assumptions on advertising and
technical limitations, we generally make worst-case assumptions, meaning that in most
cases, the real system will perform better.

In summary, key points from this section include the value of detecting smoke with
sensors at an early fire stage, the placement of smoke sensors on the ground, and their
battery-powered nature. Therefore, the main driver for the system is to develop a reliable,
energy-efficient, distributed, and intelligent system that detects smoke.

3. Smoke Gas Detection
3.1. Related Work

During the last decade, applications around electrical noses (e-noses) based on gas
sensors [17] have gained popularity. This trend is enabled by the accuracy and low power
requirements of state-of-the-art gas sensors. Among many applications, e-noses play an
important role in air-quality monitoring [18–20] and smoke detection systems [21–24].

Among different types of gas sensors, such as electro-chemical gas sensors [25], in-
frared gas sensors [26], and optical gas sensors [27], especially metal oxide semi-conductor
(MOS) gas-sensing devices have found use. While MOS gas sensors are a low-cost option,
they provide low sensing delays and little sensor degradation compared to other sensor
types [27]. MOS sensors are divided into non-resistive devices based on diodes, FETs
and capacitors [28], and resistive sensors. Gas sensing based on resistance is achieved
either through changes in surface properties induced by exposure to gases, or through the
reduced gas adsorption of the metal surface of the MOS leading to low valency and, thus,
changes in conductivity [29].

The Bosch BME688 [30] is a volume-controlled MOS gas-sensing device [31]. It is
widely used in several applications [32,33] thanks to its low cost and accurate classification
capabilities. The evaluation of the raw sensor data recorded by the BME688 is based on
sensor fusion [34]. During a measurement cycle, the sensor performs a sequence of heating
steps while simultaneously providing measurements for the temperature, gas humidity,
pressure, and resistance of the metal surface at different steps of the cycle.

Energy-efficient communication is essential for low-power distributed sensors. Next
to Zigbee, LoRa, and ultra-narrow-band devices, Bluetooth Low Energy (BLE) is a promi-
nent communication standard especially for edge and internet of things applications [35].
Out of non-proprietary communication standards, BLE stands out as requiring very little
power [36]. Sensor applications include proximity-based access control [37], motion track-
ing [38], noise monitoring [39], and medical sensors [40], to only name a few examples.
Tosi presented an extensive study of the BLE performance [41]. While data rates of BLE are
often lower in practice than in theory, they generally enable low-power communication.
Meanwhile, systematic investigations of energy consumption for a given application and
communication setup are required for proper energy evaluatios. According to Tosi, this
aspect in particular is lacking in the literature.



Big Data Cogn. Comput. 2024, 8, 50 6 of 22

In this work, we present a system-level approach to an edge evaluation application
for the Bosch BME688 for smoke detection. The BME688 performs well at detecting
smoke gas. Ref. [34] presented an artificial intelligence-based evaluation model. trained
using random hyperparameter search that achieved a classification prediction of 99%.
Further, Ref. [20] presented an air-pollution measurement to detect traces of wildfires. The
approach presented here, in turn, involves a systematic evaluation of edge processing used
to evaluate the BME688 measurements in the context of XAI for the detection of smoke
particles, a corresponding confidence rating from an XAI evaluation, and the long-term
assembly of datasets for future improvements.

3.2. System Model

With the target of detecting smoke gas outlined, we now go into the detail of the sensor
setup. As already alluded to by other works, the Bosch BME688 is a volume-controlled MOS
sensor [20,23,34]. One BME688 consists of a total of four sensors for temperature, humidity,
pressure, and resistance, i.e., the actual gas detection. Measurements are performed in
heating cycles [30]. During a heating cycle, the internal metal plate of the BME688 is heated
to a sequence of defined temperatures for defined periods of time. At multiple points
in time during one heating cycle, measurements of all four sensors are taken. The set
of recorded values represents one data sample. The heating profile used in this work is
presented in Figure 2a. In total, it consists of ten measurements, resulting in a data sample
consisting of 40 values.
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Figure 2. MLP and heating profile. (a) Heating profile. (b) Multi-Layer Perceptron used for classification.

Our goal was the evaluation of data samples on the edge, i.e., before transmitting the
sample to a remote server. For this, we trained a simple Multi-Layer Perceptron (MLP),
shown in Figure 2b, for classification into categories of smoke induced air and fresh air. The
inputs of the MLP correspond to the sensor reading during the measurement profile shown
in Figure 2a. With the data samples, we focus exclusively on the resistances among the
40 measured values, as they impact classification the most. This reduces the amount of data
to ten values, thus resulting in less processing time. To mitigate the uncertainty in these
measurements, we utilize batch normalization techniques during preprocessing. Following
the normalization, the data are propagated through three hidden layers consisting of
20 neurons each. The final probabilistic classification is achieved with two neurons in the
output layer.

The dataset used for training was recorded at a controlled wildfire. This ensures
consistency in the environmental conditions between all measurements and that the re-
sulting model can detect smoke not only under favorable conditions. Note that due to the
circumstances of the dataset creation and a low number of recorded samples, we achieved
a comparably low classification accuracy compared to other works [34].

As stated before, we intended to classify data samples at the edge, i.e., calculate the
neural network on an ESP32-equipped FeatherS3 microcontroller board. The BME688 was
connected to the introduced board, as shown in Figure 1. This allowed for the use of the



Big Data Cogn. Comput. 2024, 8, 50 7 of 22

ESP32 SIMD instruction set extension for the efficient execution of the inference task in
the trained model. Compared to a naive execution, i.e., without using SIMD instructions,
we achieved an improvement of 55% in the execution time. All weights of the MLP were
stored as C-macros, allowing for optimizations at compile time.

One key metric of a smoke gas detection system is the delay of detection. In the
presented implementation, there are two factors, which together determine this delay. First
of all, the pure detection period limits the detection delay. As indicated by the heating
profile of the sensor (Figure 2a), one measurement takes 18 s. Compared to this, the
classification and data transmission times are negligible. With some time spent establishing
the BLE connection itself, the detection delay is less then 20 s. The second factor, which
impacts the responsiveness of the system, is the measurement frequency. In our models,
we assumed a frequency of one measurement each hour.

This concludes the recording and classification of data samples. Communication to the
remote server is handled over BLE and 5G, as alluded to before. The communication node
structure, in our case, is given by the overall setup described in Section 2. Energy-efficient
execution and communication are the core goals. For this purpose, various communication
schemes were modeled, as discussed in Section 5.

4. XAI

At this juncture, explainable artificial intelligence (XAI) was introduced as a field of
study within the domain of artificial intelligence, accompanied by an explanation of its
associated focuses and terminology. While traditional classification yields a labeling of
data samples, the motivation for said labeling typically remains unclear. In the context of
recorded sensor data, this issue hinders confidence in the correctness of said labeling. XAI
achieves explainability of the classification and, thus, can aide decision processes.

Minh et al. [42] (p. 3511) defined XAI in their survey article as “the study of ex-
plainability and transparency for socio-technical systems, including AI”. The 2019 XAI
Taxonomy by Arya et al. [43] introduced essential terms in explainable artificial intelligence.
Subsequently, Liao et al. [44] utilized this taxonomy as a decision-making tool to select ap-
propriate explanatory algorithms for the IBM AIX 360 tool. The tree structure of Liao et al.’s
taxonomy was transformed into a tabular format and can be observed in Figure 3.

This section aims to provide a brief overview of explanatory models applicable to the
proposed use case. The table excludes the data leaf, and there is currently no information
in the interactive path. Model explainability takes both a local and a global path, i.e., it
distinguishes between explaining a data sample and explaining the predictive model. Local
interpretations of a single data instance can be conducted ante hoc, where the predictor is
comprehensible enough that a closer look serves as an explanation, for example, in the case
of a simple decision tree (ML model).

On the other hand, the XAI post hoc methods require at least one execution of the
predictor to provide information about the decision process of the ML model. The global
model explanation is divided into two parts: direct methods, which involve direct inter-
pretable notions and could be considered ante hoc, and post hoc methods, which generate
explanations after executing the predictor.

model
local global

ante-hoc post-hoc direct post-hoc
samples features surrogate visualize

Figure 3. Modified algorithm overview based on the IBM XAI Taxonomy. It was derived from the deci-
sion tree presented in [44] and is a guide to the selection of an appropriate XAI method. This overview
specifically emphasizes the model explanation aspect and does not present specific algorithms.
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For the prediction problem proposed in the case study, a variety of XAI approaches
capable of explaining any classifier would aid in providing objective explanations for
predictions. According to the described taxonomy, post hoc algorithms that explain each
feature of an instance could improve our understanding of the model’s decision-making
process. A selection of potential explainer methods is outlined in Table 2.

Table 2. Three distinct operational XAI algorithms are introduced with the aim of gaining insights
into the decision-making process behind the predictions. These algorithms meet specified constraints,
and their conceptual approaches, along with their sources, are provided.

XAI Method Constraints Approach (Background) Sources

LIME (Section 4.1)
creates a surrogate model
(functional approximation) [45,46]

SHAP (Section 4.2) fulfilled
shapely values are approximated
(game theory) [46,47]

CIU (Section 4.3)
perturbed instances
are used for Multiple Criteria
Decision Making (MCDM)

[46,48]

4.1. LIME in Detail

LIME operates by treating the local model as a black-box entity. The approach involves
introducing perturbations to an initial data point, feeding it into the black-box model,
and utilizing the resulting predictions to train an interpretable surrogate model. This
surrogate model serves as a local approximation to the predictions made by the black-box
model. The explanation generated by LIME is determined by

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (1)

In Equation (1), ξ represents the explanation for the instance x, obtained through an
optimization task. The function g denotes an interpretable local model chosen from the
class G of potentially interpretable models. The function f serves as the original predictor,
and πx defines a sampling distribution concentrated on the local neighborhood of instance
x. The optimization task seeks the optimal interpretable local model g by minimizing a
composite term. This term includes the loss function L, which gauges the accuracy of
predictions around x, concerning both the interpretable model g and the original prediction
of f within the area of πx around the initial prediction. Additionally, Ω acts as a complexity
measure for g and serves as a penalty function [45].

4.2. SHAP in Detail

The foundation of SHAP lies in game theory, specifically in assessing the contribution
or non-contribution of a coalition (a set of features) to a particular classification using
Shapley values. This approach is based on the implementation introduced by Lundberg
and Lee [47]. This implementation, referred to as SHap Additive exPlanations, calculates
the Shapley values to quantify the influence of each feature in the coalition. The subsequent
definition outlines how the algorithm generates explanations [47,49]:

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i (2)

In Equation (2), the function g represents the explanatory model, and z′ denotes the
data instance to be interpreted. Notably, z′ may consist of only a subset of all features.
The explanation is derived from a linear model, where ϕi ∈ R, and z′i takes binary values
(either zero or one) to signify the presence or absence of a feature from the set z′ [47].
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4.3. CIU in Detail

The third model-agnostic algorithm, influenced by Decision Theory and Multiple
Criteria Decision Making (MCDM), separates measured importance and attribute utility,
emphasizing contextual importance (CI) based on feature relevance [48,50].

CIj(C⃗, {i}) =
Cmaxj(C⃗, {i})− Cminj(C⃗, {i})

absmaxj − absminj
(3)

The explanation model CIU calculates the relevance of feature i in the feature vector C⃗
for a specific output label (value) j using the function CIj. The function Cmaxj determines
the maximum prediction output for label j considering the presence of feature i, while a
similar approach is followed for the calculation of Cminj . The functions absmaxj and absminj
establish the highest and lowest prediction outputs from the entire dataset, providing a
reference range.

In essence, CIj normalizes the range of predictions for label j in the context of fea-
ture i within C⃗ by comparing it to the overall range of predictions across all contexts
and feature sets. For a more comprehensive understanding, refer to the paper by Kary
Främling [48,50,51].

5. Idea and Methodology

In conclusion for the previous section, XAI achieves the desired explainability of sam-
ple classification. To make use of this, data samples have to be processed at a Centralized
Server. The processing of XAI algorithms at the edge is infeasible due to the correspond-
ing high energy costs. The following section discusses the modeling of the energy and
power requirements of the sensor node. The simulation is based on various evaluation
and data emission strategies targeted at achieving the desired transmission of samples to
the Centralized Server and leverages physical measurements of power consumption. The
physical sensing and network structure itself are presented in Section 3. Data are collected
with the sensor on the ESP32-equipped microcontroller board. Communication over BLE
requires advertising to establish a connection, as well as the actual data transmission. The
evaluation of the data can be performed either on the edge, i.e., using the sensor-equipped
microcontroller itself, or with the server.

There are two methods of lowering the cost of communication: fewer communication
cycles or a reduced payload of transmitted data. One communication cycle, as alluded to,
consists of both advertising and data transmission. In general, having fewer communication
cycles, i.e., buffering data, cuts down on the cost of advertising, but not on the actual
transmission of data. The preprocessing of data before transmission achieves the opposite
effect: the number of communication cycles remains constant, but the payload of each cycle
is reduced. Further, joint communication schemes can save even more energy.

We modeled the presented set of communication schemes by calculating the energy
required to execute each one. Therein, each individual step, such as a measurement of the
sensor or transmission of data are inferred from the physical power measurements of the
ESP32-platform. This procedure provides an accurate energy estimation for each profile and
thus enables a holistic system overview. Theoretical power draws of the individual phases
of execution as well as actual measurements are presented in Table 3. Note that the literature
provides little information on the power draw during advertisement. Further, the time
required for successfully establishing the BLE connection, i.e., advertisement, varies a lot. In
our model, we approximate the time with 0.5 s. By choosing a relatively small advertising
delay, we ensure a pessimistic modeling of the communication. In practice, larger delays
increase the cost per communication cycle. Therefore, the proposed preprocessing and
communication schemes are even more relevant compared to the presented baseline.
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Table 3. Overview over theoretical (if applicable) and measured power draw of the ESP32. For BLE
advertisement (denoted by), no clear information is given in the literature.

Theory Measured
Phase Power Power Time

Measurement 8 µA 1.7 mA 18.2 s
Evaluation 72.4 mA 168 mA 47 µs
Advertisement * 116 mA 0.5 s
Transmission L

275 B s−1 116 mA L
275 B s−1

In the following, first, various steps of the system execution will be discussed in detail.
Afterward, we explain our simulation model in detail, which provides results for the design
space of evaluation and transmission configurations.

5.1. Execution Steps
5.1.1. Measurement

Each data sample is recorded using the Bosch BME688 sensor connected to the mi-
crocontroller using the heating profile presented in Figure 2a. During the measurement
step, the ESP32 does not perform any additional computations. As the duration of the
measurement cycle is known in advance, deep sleep is used to save energy. According to
the specification of the ESP32 [52], we expect a power draw of 10 µA. Our measurements
indicate a power draw of 1.7 mA, which is due to the connected sensor and board periphery.

5.1.2. Evaluation

First of all, data have to be collected from the BME688 sensor. The BME setup is
explained in Section 3. For each measurement cycle, ten measurements of temperature,
pressure, humidity, and resistance are recorded. Optionally, each data sample is evaluated
using the MLP presented in Section 3.2.

We achieve efficient execution for the MLP for evaluation by leveraging the ISE of the
ESP32. The ESP32 supports SIMD via vector instructions, which our MLP implementation
leverages. Due to the small size of the MLP, a single execution time cannot be measured.
Therefore, we provide an average execution time, as well as a power draw over 20,000 se-
quential executions. In total, our measurements indicate a power draw of 168 mA over an
average execution time of 47 µs per classification.

5.1.3. Transmission

As alluded to previously, data transmission from the ESP32-based platform is con-
ducted via BLE. Communication consists of an advertising period followed by the trans-
mission itself. As advertising delays are highly inconsistent, in our simulations, we con-
servatively approximated the delay by 0.5 s. The transmission time period itself depends
on the transmitted data payload. Our setup is not representative of optimal (laboratory)
environments; on average, we achieved a data rate of 275 B s−1.

Each sample of measured data consists of readings from four sensors over ten time
steps, each value encoded as a single precision floating point. Therefore, one data sample
consists of 160 B. Evaluated data, on the other hand, consist of the classification results
only, i.e., 8 B of data. Note that exceeding the obvious options of sending raw data, in
the classification, raw data, if any, can also be buffered and sent at a later time. We
define the payload L as the number of bytes to be transmitted in one communication cycle
(Equation (4)). L depends on buffered data samples b and classification setting cc ∈ 0, 1,
which determines whether classification results are included in the transmission.

L = b × 160 B + cc × 8 B (4)

In practice, even more communication setups are viable. From a system perspective,
the relevance of the measured data sample depends on the classification result, i.e., when-



Big Data Cogn. Comput. 2024, 8, 50 11 of 22

ever smoke is detected, the corresponding data samples should be available for further
examination using the presented XAI methods at the central server. We extended the model
of the data transmission load to the one presented in Equation (5) with the classification
result constraint cr ⇔ 1, if the classification indicates smoke, otherwise, 0.

L = cr × b × 160 B + cc × 8 B (5)

5.2. System Model

Based on the various behavior configurations of the system, a multitude of commu-
nication and evaluation schemes follow. The chosen metric for our models is the energy
spent for the given device behavior. We present the holistic simulation used to explore this
design space, which is created by the following constraints:

• The place of executing the evaluation;
• Transmit data samples or raw data;
• Buffer data samples.

Each of the below-presented modes represents one cycle of collecting and handling
a measurement sample. Additionally, each model contains one sleep step. During this
sleep step, the sensor node is inactive. In our model, each configuration sleeps for the same
amount of time. This does not infringe on the validity of our modeling, as the time for
recording and handling data is very short compared to the relatively long sleep periods.

5.2.1. Buffered Send Mode

The first configuration considers the naive sensor node, which does not perform
evaluation on an edge but transmits every data sample. Further, samples can be buffered.
This saves energy, as the number of advertising rounds for establishing the BLE connection
are reduced. For a given sample buffer size b, Equation (6) shows the energy of the buffered
send mode. The various stages are labeled as sleep (S), measure (M), advertise (A), and
transmission (T). For means of readability, we introduce abbreviations for the given
stages, i.e., ES, EM, EA, and ET represent the energy of the sleep, measure advertise, and
transmission stages, respectively.

E =
UIS
tS︸︷︷︸
ES

+
UIM
tM︸ ︷︷ ︸
EM

+
1
b

UIA
tA︸︷︷︸
EA

+160 B × fTUIT︸ ︷︷ ︸
ET

(6)

Note that for b = 1, the trivial sensor node behavior follows, which sends every
recorded data sample without buffering.

5.2.2. Classification-Based Mode

As already alluded to, we expect the majority of data packages to be negative classifica-
tions, i.e., the detection of no smoke. In turn, data samples classified positively are relevant
for further evaluation in the context of the overall system. XAI methods, such as the ones
presented in Section 4, allow for access to further information on the data samples. Therefore,
it is desirable to transmit these samples to the server, while the negative ones are disregarded.
Communication behavior in this mode is strictly dependent on the classification outcome.
Data samples are only transmitted if classified positively. Additionally, a window of recently
buffered measurements w is transmitted. The energy of the classification mode is given
in Equation (7), where C indicates the classification stage. Most notably, the energy
depends on the probability p of detecting a positive smoke sample.

E = ES + EM +
UIC
tC︸︷︷︸
EC

+p(EA + w × 160 B × ET) (7)
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Note that for w = 1, this behavior reflects a configuration of sending positively
classified samples only. Further, we chose a relatively high value of p = 20

365 for our models.
Similar to the estimation of the advertising period, this resembles a pessimistic assumption;
as said, p would correlate with 20 days of forest fire each year.

5.2.3. Buffered Classification Mode

Previous modes discussed have been implemented with various ways of transmitting
data samples. When evaluating data on the sensor node itself, this is not necessary though.
The overall communication load is decreased, which leads to energy savings. In turn, further
processing with XAI algorithms at the server becomes infeasible. For the classification mode,
all classification results are sent immediately post evaluation, while the transmission of data
samples is omitted entirely. The energy of this mode is given in Equation (8). As with the
buffered send mode, energy can be saved by buffering results and advertising less.

E = ES + EM +
1
b

EA + 8 B × ET (8)

5.2.4. Standalone Mode

Similar to the concept of the classification-based modes, the previously presented
classification mode can also be extended to only emit positive classification results.
While this behavior leads to further immediate energy savings, the functionality of the
sensor node cannot be guaranteed. It can be assumed that the negative classifications
are not only the norm, but also, the greatest part of the classifications turn out negative.
Thus, differentiation between a dysfunctional sensor node and a functional sensor node
becomes infeasible over long periods of time. We propose a rare but regular emission of
negative classification results as a sign of life. Such a signal is sent with frequency fL, and
the corresponding energy is given by Equation (9):

E = ES + EM + (p + fL)(EA + 8 B × ET) (9)

5.3. Power Evaluation

Based on the various modes presented in Section 5.2, we present an evaluation of
several communication models. A general overview is given in Table 4.

The first category of communication modes are send modes. Data samples are trans-
mitted (mostly) without prior classification at the edge. Key differences between the
presented modes are the number of buffers used. Four buffer sizes are presented ranging
from one to four. The naive send mode is equivalent to the buffered send mode with a buffer
size of one. Additionally, classification can be performed by the sensor node, and results can
also be transmitted. Said behavior is modeled by the send mode, including classification.

The second category of modes are classification modes. These modes leverage the
edge processing of classification at the sensor node and, thus, can achieve lower power
requirements. This is especially true for the probabilistic modes, as these transmit data
only upon positive classification results, i.e., once smoke is detected. With the environ-
mental dependency at play, we chose a comparatively high value for said probability at
p = 20

365 . We ensured to model a worst case performance, as this probability value is
equivalent to smoke being detected on 20 days in a single year. Further, data samples
may be buffered and transmitted at once. Note that while pure send modes benefit from
buffered samples, the same is not true for classification-based modes. With the increased
payload per communication cycle by buffering samples, we observed an increase in the
power requirements.
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Table 4. Overview of energy, power, and capacity for various modes. The chosen probability is
p = 20

365 .

Name Buffer Energy (J) Power (mW) Capacity (As)

Send Mode (incl. Classification) 1 23.754 299.4 7.198
Send Mode 1 23.752 235.6 7.197
prob. Classification Mode 1 23.337 154.6 7.197
prob. Classification-Only Mode 1 23.334 154.6 7.181

Classification Buffer Mode
2 23.616 261.1 7.214
3 23.608 248.3 7.231
4 23.632 242.0 7.248

prob. Classification Buffer Mode

1 23.337 154.6 7.197
2 23.340 154.6 7.214
3 23.343 154.6 7.231
4 23.346 154.6 7.248

Buffered Send Mode

1 23.752 235.6 7.197
2 23.560 187.8 7.197
3 23.496 171.8 7.197
4 23.464 163.8 7.197

Finally, there is a baseline requirement for any sensor node setup, i.e., the sensing using
the BME688 sensor. This represents the bare minimum in terms of energy consumption.
At this point, no data are transmitted to the server at all; thus, this is not a realistic
scheme. The previously mentioned standalone mode requires slightly more energy than
the probabilistic classification-only mode, as it emits sign-of-life signals at a regular interval.
The energy requirements of all modes presented are compared in Figure 4. The lower and
upper line represent the baseline, i.e., sensing only, and the naive send mode without any
buffering, respectively. From this overview, the energy efficiency of the probabilistic modes
can immediately be inferred. For reference, we equipped our sensor node with a 10 Ah
battery. In this setup, and using the probabilistic classification buffer mode with a window
of 1, the node stays alive for 5002 cycles, or just over 208 days. The next evaluation step is
the XAI evaluation followed by the combination of all the results in Section 6.2.

Baseline

Send Mode (incl. C
lassifi

cation)

Send Mode

prob. Classifi
cation Mode

Classifi
cation-Buffer Mode

prob. Classifi
cation-Only Mode
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cation-Buffer Mode
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Model
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Figure 4. Comparison of energy requirements for models with various buffer sizes. The lines represent
the minimum energy required for measuring and sleeping, and the base line of the naive model.
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6. Results

This section begins by presenting the results of the XAI evaluation in a clear and
intuitive manner. Subsequently, these results are contextualized to provide a comprehensive
understanding of energy consumption, system performance, and optimization mechanisms
tailored to the requirements of the 5G-Waldwächter project.

6.1. XAI Evaluation

As proposed in Section 4, integrating XAI into the development process can provide
insights into the model’s decision-making process. This information can be leveraged to
streamline the model architecture, thereby reducing energy consumption, or to identify
the best-performing predictors and, importantly, the most significant features. Explanation
methods can also be employed to detect bias in the ML model.

Initially, the XAI algorithms were solely interpreted. For example, the results of
the LIME algorithm are depicted in Figure 5. The figure illustrates the 25–75 quartile of
the feature importance values, including the median, the remaining distributions, and
any outliers.
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Figure 5. Comparison of of the explanation algorithm LIME for both labels. (a) Feature importance
values for smoke detection. (b) FIV for detecting the absence of smoke.

According to RQ1, identifying the most relevant features for the classification process
can significantly aid in fine-tuning the model. The median, denoted by a straight orange
line within the boxplots in Figure 5a, serves as an initial indicator of the feature impor-
tance. For the top three most relevant features, the results are r4, r6, and r7 in descending
order. To assess the distribution and evaluate result reliability, the spread of the values
is considered. Among these three crucial features, the boxplot from LIME exhibits the
widest spread. However, beyond the median up to Q3 (the third quartile), no other feature
exerts as significant an influence as r4, indicating its paramount importance. Feature r6
demonstrates that values between the median and Q3 are tightly clustered, with the maxi-
mum value aligning with r7. Consequently, r6 may be considered more reliable above the
median. In summary, the trustworthiness evaluation in LIME ranks r6 highest, followed by
r7, and then r4. An overview of the LIME evaluation results is presented in Table 5.

Table 5. The results of the individual evaluations of the XAI methods are based on two aspects: the
importance (i.e., relevance) and trustworthiness of the explanations generated by different explainers.

Intra Algorithmic
LIME SHAP CIU

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

relevance(trust) r43rd r61st r72nd r42nd r31st r53rd r31st r22nd r43rd

As a validation of the top three features for Label 1 (indicating smoke detected), there
is no indication that the importance values of Label 0 (indicating no smoke) play a role in
this analysis.
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In the SHAP algorithm, as shown in Figure 6b, feature r4 emerged as the most promi-
nent, followed by r3, and finally r5, completing the top three. Among these, r3 stands out as
the most reliable feature. When considering values from the median to the maximum value,
encompassing 50% of the data, r4 exhibits greater reliability than r5. However, if all values
above the first quartile (Q1), where 75% of the data lie, are taken into account, r5 appears
more trustworthy than r4. Nevertheless, since no other feature surpasses the median value
of r4, and 50% of the crucial values are concentrated within a narrower range compared to
r5, the confidence in r3 remains the highest, followed by r4, and then r5. This evaluation
summary is presented in Table 5.
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Figure 6. (a) Boxplot of the feature importance values of the SHAP algorithm for Label 1, i.e., for
detecting smoke. (b) Boxplot of feature importance values of the SHAP algorithm for Label 0, i.e., for
detecting the absence of smoke.

In comparison to Label 0 (indicating no smoke), feature r3 also exhibits significance,
reinforcing its role in the decision-making process for both smoke and no-smoke scenarios.

The top three importance features of CIU are, as shown in Figure 7b, r3, r2, and, finally,
r4 based on the median. The confidence of these top three, considering the upper 50% of
the values, results in r3, r2, and finally r4.

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
features

0.0

0.2

0.4

0.6

0.8

1.0

im
po

rta
nc

e 
va

lu
e

CIU - label = 1

(a)

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9
features

0.0

0.2

0.4

0.6

0.8

1.0

im
po

rta
nc

e 
va

lu
e

CIU - label = 0

(b)

Figure 7. (a) Boxplot of feature importance values of the CIU algorithm for Label 1, i.e., for de-
tecting smoke. (b) Boxplot of feature importance values of the CIU algorithm for Label 0, i.e., for
detecting the absence of smoke.

Compared to Label 0, the same features play a crucial role in the prediction process
without smoke. This supports the importance and the key role in the decision process for
the CIU algorithm. An overview of these results is given in Table 5.

In the proposed use case, a framework of three different XAI algorithms with various
calculation models was used. The result of applying these three algorithms to the predictor
over the whole test dataset is shown in Figure 8.
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Figure 8. Here, a comparison of the three XAI methods is shown. The inputs for all XAI algorithms
were the ML model and the test dataset. The comparison of the three should reveal the most important
gas resistant features for detecting fire.

As shown in Figure 8, the gas resistance feature resistance4 (r4) has an outstanding
impact across all three algorithms and has to be considered in the decision process. The fea-
ture importance value for feature resistance8 (r8) shows great variations. This means that it
is not a relevant feature and should not be considered. The feature resistance3 (r3) is above
average in LIME and SHAP, but in CIU, it shows great significance, suggesting that it is
important. Compared to with LIME and SHAP, the feature resistance9 (r9) shows, only in
SHAP, an average impact for classification. In LIME and especially in CIU, this significance
is not present, and therefore, it should not be considered. Another feature that shows
inferior performance is resistance1 (r1). A closer look reveals that it performs not well in
LIME, but it has only an average importance in SHAP and a greater negative influence
in CIU. Overall, this feature should not be considered. After this analysis, while peeking
inside the black box, i.e., the predictor, the three features (resistance1 (r1), resistance8
(r8), and resistance9) should not be considered in an improved version of the ML model.
A summary of this evaluation is presented in Table 6.

Table 6. Here, is a comparison of the feature importance values. Confidence in the explanations was
neglected due to the clarity of the diagram. On the other hand, this comparative approach allows for
the easy identification of less relevant features in the comparison, which is an aspect that is gained
with this evaluation technique.

Inter Algorithmic
Combined Result

Top Worst

relevanceoverall rank r41st r32nd r8 r9 r1

After evaluating the explanations using two different comparison approaches—within
an algorithm and between algorithms—the results are summarized. The question “What
are the most relevant features?” can be confidently answered with the finding that r4
consistently plays a major role in every algorithm, as indicated in Table 5. This conclusion
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is strongly supported with the comparison of ‘inter-algorithmic relevance’ in Table 6.
Additionally, the significance of feature r3, highlighted in Table 5, is also evident in Table 6,
further reinforcing the findings of the ‘intra-algorithmic relevance’ analysis.

The aspect of trustworthiness, examined within the ‘intra-algorithmic relevance’, can
serve as an indicator of the certainty of an explanation. This aspect can be useful for
fine-tuning the predictor and for interpreting the quality of the explanations—whether they
are consistent or require careful consideration.

Another optimization option lies in the information about the least important features
revealed in Table 6. These data can address optimization queries such as “Can we reduce
computational steps by omitting certain features to save energy?”. Clearly, there are
compelling reasons to implement an eXplainable AI pipeline for identifying optimization
approaches and assessing the effectiveness of optimization steps.

6.2. Joint Evaluation

In the previous sections, the experimental setup consisting of the sensor, the ESP32 for
the evaluation, and the communication pipeline were presented. Furthermore, the design
space of the communication schemes and the XAI evaluation was discussed. The following
section presents an evaluation based on the previously discussed communication models
jointly with the quality of the XAI evaluation. There are several metrics at play here. First
and foremost, we evaluated the energy requirements of the sensor node. This is most
important, as this edge node is battery dependent. Secondly, we rate the information
available to the central server or database. Two use cases were identified for the application
of XAI in the presented domain:

• Data credibility rating;
• Long-term improvement of datasets.

Firstly, the results from the XAI evaluation will be used as additional information pro-
vided to the dispatcher. Secondly, we use the positively classified samples in combination
with negative samples underlying equal exterior conditions for a new holistic dataset.

The evaluation of information gained by the application of XAI algorithms is not
straightforward. In turn, we define the gained information based on the two presented use
cases. Classification credibility relies on the data sample being available at the server. Any
communication model omitting the transmission of the samples themselves does not satisfy
this requirement. To create new datasets in the long term, not only positively classified data
samples have to be available, but also a window of corresponding negative data samples
should be stored. Therefore, any model that is able to buffer samples achieves this second
condition. The value of information degrades with the number of additional samples being
available. We propose the following simple cost model for the value of the information VI
based on buffered samples b, as presented in Equation (10):

VI =
1

log b + 2
(10)

Based on this cost model and the power and energy evaluation presented in Section 5.3,
Figure 9 presents an overview of all explored models.

A pareto plot (Figure 9 shows a clear winner for the communication schemes. The
pareto frontier is dominated by the probabilistic classification-based mode with buffer
windows. Further, the baseline and the standalone mode are part of the pareto frontier.
Note that the baseline here does not reflect an actual communication scheme, as it considers
the cost of recording samples only. The standalone mode, to no surprise, has the lowest
communication overhead. Information, i.e., data samples, available at the central server
location increases with the buffer window size. The same holds also for the buffered
transmission mode without any evaluation, but it is more expensive in general. Again,
this simulation is based on pessimistic assumptions about the advertising period and the
probability of detecting smoke. In a real-world application, we can expect the probabilistic
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classification based-mode with buffer windows to outperform the buffered transmission
mode even more.
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Figure 9. Pareto plot of energy cost and the value of information transmitted to the server. The infor-
mation rating was calculated according to Equation (10). The black line marks the pareto frontier.

7. Conclusions and Future Work

The following section presents a conclusion of the presented work. Then, an outlook
into future research directions extending our work is provided.

7.1. Conclusions

The underlying case study presents an intriguing use case for preventing large wild-
fires. We introduced a gas sensor, referred to as the sensor node, which serves as a smoke
detector. This is coupled with an edge evaluation and a system-level energy simulation
for various communication schemes directed toward a central server. Furthermore, we
demonstrated the value of XAI methods in providing additional insights from recorded
data samples, which is a key benefit of integrating XAI (answering RQ2).

To provide a comprehensive system overview, we presented two use cases for pro-
cessing data samples centrally after evaluating at the edge. We utilize SIMD instructions
to accelerate inference in MLPs. Firstly, data samples were used to create larger datasets
that accurately reflect environmental conditions, independent of laboratory conditions. Sec-
ondly, by leveraging live XAI evaluations, we established a confidence rating for recorded
data samples. This rating can serve as additional information in the overall system, guiding
dispatching decisions or indicating impaired sensor nodes. The buffered transmission
of data samples upon positive smoke classification poses the best trade-off as an energy-
efficient communication strategy that also gives rise to centralized confidence ratings from
an XAI evaluation.

The first research question (RQ1) can be answered affirmatively: it is possible to
shift accurate predictions to the edge with the same level of confidence as processing
at a central server. However, additional mechanisms need to be implemented when
shifting calculations to the edge, particularly in handling communication errors, such as
network downtime. One approach is to implement a buffer or integrate external storage
for a period of time. Further research is needed to address such challenges. There is
no exact sensing range forof our Bosch-BME688 based sensor node, as this capability
depends on many environmental variables, such as terrain properties or wind conditions.
In general, the smoke gas detection range of one sensor is in the range of 20 m. Our
investigation relies on two key assumptions: firstly, the consistent functionality of the 5G
network, and secondly, the efficiency of the MLP calculation. To ensure sustained system
performance, implementing a cyclic adaptation process for the model would be beneficial
for continuous improvement.

In summary of the second research question (RQ2), considering all aspects of integrat-
ing XAI into such a system, three primary benefits emerge. Firstly, it offers insights into the
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model, enhancing our understanding of the detected values. The integration of an XAI tool
chain for long-term model enhancement is feasible. Secondly, this additional information
can aid dispatchers in discerning when to trust the system and when to exercise caution in
their decisions. Lastly, XAI enables the detection of biases, particularly important when
creating large datasets, thereby addressing issues arising from underrepresented data.

7.2. Future Work

From here, there are several aspects to explore. In this paper, we show that individual
features provide confidence scores of MLP classifications. The same XAI evaluation can
provide even more desirable information. In combining multiple features through different
XAI algorithms, a more sophisticated confidence score can be generated. In addition, XAI
can provide long-term support for the MLP design process. In reducing the computational
accuracy of unimportant features and changing the network structure, the overall cost
of evaluating data samples can be reduced without compromising the quality of the
classification. The same applies to the measurement step. Optimized heating profiles
can be implemented by comparing the effects of time steps in the measurement cycle on
classification with the heating periods and temperatures of the measurement.

As already alluded to, a long term study of the active sensor and communication
system is required to evaluate the benefit of applying XAI to improve datasets. Our
approach to XAI yields confidence scores for recorded data samples. This additional
information is useful for balancing datasets pre-training. In this way, long-term data
collection can be leveraged to improve the MLP classifier of the smoke gas sensor node.

A further shortcoming of the presented work is the evaluation with regard to the
stability of communication. All presented simulations were based on the assumption of
functional communication without the loss or corruption of data. In reality, this condition
is not always met. Further work on the presented energy simulations should regard the
instability of communication as an additional factor.

Many more aspects can be elaborated upon in future work. In the presented work,
we did not account for the distance of the gas sources to the sensor. Further, environmen-
tal effects, such the composition of the environment and effects from the wind or sun,
can impact the data samples and, thus, the quality of the classification. Finally, the se-
curity of the communication of classification results and raw data samples is open for
future investigation.

All sources will be made public in the future. This includes the set of data samples
that the Bosch BME688 collected at a controlled wild-fire scenario, as well as further
data collected at the experiment, such as temperature, humidity and images from nearby
firewatch towers. Further, the simulation framework, as well as the neural network and the
mapping framework, will be made public.

Author Contributions: Conceptualization, A.L., F.G. and M.R.; Methodology, A.L.; Software, J.D.
and F.J.; Validation, J.D.; Formal analysis, A.L.; Investigation, F.G., J.D. and F.J.; Data curation, J.D.
and F.J.; Writing—original draft, A.L. and F.G.; Writing—review & editing, A.L., F.G., J.D. and M.R.;
Visualization, F.G. and F.J.; Supervision, A.L., F.G. and M.R.; Project administration, M.R.; Funding
acquisition, M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Digitalization and Transport
(BMDV) under grant number 45FGU108_D.

Data Availability Statement: The data used in this work is part of a holistic data set collection
consiting of smoke-gas sensor readings, environmental sensor readings such as temperature, air
pressure and humidity of the air and the ground, image data (pictures, rgb, acromatic, near-infrared,
temperature) and video footage captured by drones. The authors plan on making the holistic dataset
of a wild-fire publicly available in the future. At this point, the legal processes for publishing the data
have not been finalized yet.

Conflicts of Interest: The authors declare no conflicts of interest.



Big Data Cogn. Comput. 2024, 8, 50 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence;
XAI Explainable Artificial Intelligence;
FIV Feature Importance Value;
MLP Multi-Level Perceptron;
SIMD Single-Instruction, Multiple-Data;
BLE Bluetooth Low Energy;
MOS Metal Oxide Semi-Conductor.

References
1. Horvat, D.; Kroll, H.; Jäger, A. Researching the effects of automation and digitalization on manufacturing companies’ productivity

in the early stage of industry 4.0. Procedia Manuf. 2019, 39, 886–893. [CrossRef]
2. Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers,

architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [CrossRef]
3. Li, T.; Li, D. Prospects for the application of 5g technology in agriculture and rural areas. In Proceedings of the 2020 5th

International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 2176–2179.

4. Najjuuko, C.; Ayebare, G.K.; Lukanga, R.; Mugume, E.; Okello, D. A survey of 5G for rural broadband connectivity. In
Proceedings of the 2021 IST-Africa Conference (IST-Africa), Virtual, 10–14 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10.

5. Li, S.; Da Xu, L.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [CrossRef]
6. Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [CrossRef]
7. Hakak, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Ramu, S.P.; Parimala, M.; De Alwis, C.; Liyanage, M. Autonomous Vehicles in 5G

and beyond: A Survey. Veh. Commun. 2023, 39, 100551. [CrossRef]
8. Trick, U. 5G: An Introduction to the 5th Generation Mobile Networks; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021.
9. Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing wildfire, changing forests: The effects of climate change on fire regimes and

vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [CrossRef]
10. Bousfield, C.G.; Lindenmayer, D.B.; Edwards, D.P. Substantial and increasing global losses of timber-producing forest due to

wildfires. Nat. Geosci. 2023, 16, 1145–1150. [CrossRef]
11. IMF. Number of Large Wildfire Disasters Worldwide from 1980 to 2022. 2023. Available online: https://www.statista.com/

statistics/1342206/number-of-large-wildfire-disasters-worldwide/ (accessed on 24 February 2024).
12. Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [CrossRef]
13. Frühbrodt, T.; Schebeck, M.; Andersson, M.N.; Holighaus, G.; Kreuzwieser, J.; Burzlaff, T.; Delb, H.; Biedermann, P.H. Ver-

benone—The universal bark beetle repellent? Its origin, effects, and ecological roles. J. Pest Sci. 2024, 97, 35–71. [CrossRef]
14. Marvasti-Zadeh, S.M.; Goodsman, D.; Ray, N.; Erbilgin, N. Early detection of bark beetle attack using remote sensing and

machine learning: A review. ACM Comput. Surv. 2023, 56, 1–40. [CrossRef]
15. Görlitz, L. 5G-Waldwächter—Projekt Kann Beginnen. 2022. Available online: https://www.kreis-goerlitz.de/01-Aktuelles/

Bekanntmachungen/5G-Waldwaechter-Projekt-kann-beginnen.html? (accessed on 30 January 2024).
16. Joint Research Centre, E. European Forest Fire Information System EFFIS. 2023. Available online: https://effis.jrc.ec.europa.eu/

(accessed on 23 February 2024).
17. Kar, A.; Patra, A. Recent development of core–shell SnO 2 nanostructures and their potential applications. J. Mater. Chem. C 2014,

2, 6706–6722. [CrossRef]
18. Kumar, S.; Rani, S.; Singh, R. A review: E-nose and air purifier system based on emerging technology for smart city applications.

In Proceedings of the 4th Smart Cities Symposium (SCS 2021), Online Conference, Bahrain, 21–23 November 2021; pp. 14–19.
[CrossRef]

19. Marinov, M.B.; Ganev, B.T.; Nikolov, D.N. Indoor Air Quality Assessment Using Low-cost Commercial Off-the-Shelf Sensors.
In Proceedings of the 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), Sofia,
Bulgaria, 24–26 March 2021; pp. 1–4. [CrossRef]

20. Connerton, P.; Nogueira, T.; Kumar, P.; Ribeiro, H. Use of Low-Cost Sensors for Environmental Health Surveillance: Wildfire-
Related Particulate Matter Detection in Brasília, Brazil. Atmosphere 2023, 14, 1796. [CrossRef]

21. Panteli, C.; Stylianou, M.; Anastasiou, A.; Andreou, C. Rapid Detection of Bacterial Infection Using Gas Phase Time Series
Analysis. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [CrossRef]

22. Carta, F.; Loru, D.; Putzu, M.; Zidda, C.; Fadda, M.; Girau, R.; Anedda, M.; Giusto, D.D. A Social IoT-Based Solution for
Real-Time Forest Fire Detection. In Proceedings of the 2023 IEEE 13th International Conference on Consumer Electronics—Berlin
(ICCE-Berlin), Berlin, Germany, 3–5 September 2023; pp. 15–20. [CrossRef]

23. Pettorru, G.; Fadda, M.; Girau, R.; Anedda, M.; Giusto, D. An IoT-based electronic sniffing for forest fire detection. In Proceedings
of the 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2023; pp. 1–5.
[CrossRef]

http://doi.org/10.1016/j.promfg.2020.01.401
http://dx.doi.org/10.1109/JSAC.2016.2525418
http://dx.doi.org/10.1016/j.jii.2018.01.005
http://dx.doi.org/10.1109/ACCESS.2015.2461602
http://dx.doi.org/10.1016/j.vehcom.2022.100551
http://dx.doi.org/10.1186/s42408-019-0062-8
http://dx.doi.org/10.1038/s41561-023-01323-y
https://www.statista.com/statistics/1342206/number-of-large-wildfire-disasters-worldwide/
https://www.statista.com/statistics/1342206/number-of-large-wildfire-disasters-worldwide/
http://dx.doi.org/10.1002/fee.2359
http://dx.doi.org/10.1007/s10340-023-01635-3
http://dx.doi.org/10.1145/3625387
https://www.kreis-goerlitz.de/01-Aktuelles/Bekanntmachungen/5G-Waldwaechter-Projekt-kann-beginnen.html?
https://www.kreis-goerlitz.de/01-Aktuelles/Bekanntmachungen/5G-Waldwaechter-Projekt-kann-beginnen.html?
https://effis.jrc.ec.europa.eu/
http://dx.doi.org/10.1039/C4TC01030B
http://dx.doi.org/10.1049/icp.2022.0305
http://dx.doi.org/10.1109/EFEA49713.2021.9406260
http://dx.doi.org/10.3390/atmos14121796
http://dx.doi.org/10.1109/SENSORS56945.2023.10324881
http://dx.doi.org/10.1109/ICCE-Berlin58801.2023.10375667
http://dx.doi.org/10.1109/ICCE56470.2023.10043411


Big Data Cogn. Comput. 2024, 8, 50 21 of 22

24. Pettorru, G.; Fadda, M.; Girau, R.; Sole, M.; Anedda, M.; Giusto, D. Using Artificial Intelligence and IoT Solution for Forest Fire
Prevention. In Proceedings of the 2023 International Conference on Computing, Networking and Communications (ICNC),
Honolulu, HI, USA, 20–22 February 2023; pp. 414–418. [CrossRef]

25. Moon, W.J.; Yu, J.H.; Choi, G.M. Selective Gas Detection of SnO2-TiO2 Gas Sensors. J. Electroceramics 2004, 13, 707–713. [CrossRef]
26. Qing, W.; Yong-ping, L.; Wei-long, L. Development of a Multi-component Infrared Gas Sensor Detection System. J. Phys. Conf. Ser.

2019, 1229, 012068. [CrossRef]
27. Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [CrossRef]
28. Tang, W.; Wang, J. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors. Acta Phys.-Chim. Sin. 2016,

32, 1087–1104. [CrossRef]
29. Chai, C.; Peng, J.; Yan, B. Preparation and gas-sensing properties of α-Fe2O3 thin films. J. Electron. Mater. 1995, 24, 799–804.

[CrossRef]
30. GmbH, B.S. Gas Sensor BME688. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/gas-

sensors/bme688/ (accessed on 13 September 2023).
31. Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO2 nanostructured materials used as gas sensors for the

detection of hazardous and flammable gases: A review. Nano Mater. Sci. 2022, 4, 339–350. [CrossRef]
32. Chen, W.; Li, Q.; Xu, L.; Zeng, W. Gas Sensing Properties of ZnO–SnO2 Nanostructures. J. Nanosci. Nanotechnol. 2015,

15, 1245–1252. [CrossRef]
33. Yu, Q.; Zhu, J.; Xu, Z.; Huang, X. Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance

gas sensors. Sens. Actuators B Chem. 2015, 213, 27–34. [CrossRef]
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