
Citation: Serag, H.M.; Almoneef,

A.A.; El-Badawy, M.; Hyder, A.-A.

Distributed Control for

Non-Cooperative Systems Governed

by Time-Fractional Hyperbolic

Operators. Fractal Fract. 2024, 8, 295.

https://doi.org/10.3390/

fractalfract8050295

Academic Editor: Riccardo Caponetto

Received: 21 March 2024

Revised: 8 May 2024

Accepted: 14 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Distributed Control for Non-Cooperative Systems Governed by
Time-Fractional Hyperbolic Operators
Hassan M. Serag 1, Areej A. Almoneef 2,* , Mahmoud El-Badawy 3 and Abd-Allah Hyder 4,*

1 Department of Mathematics, Faculty of Sciences, Al-Azhar University, Cairo 71524, Egypt;
serraghm@yahoo.com

2 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

3 Basic Science Department, School of Engineering, Canadian International College, Cairo 11765, Egypt;
mathscimahmoud@gmail.com

4 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004,
Abha 61413, Saudi Arabia

* Correspondence: aaalmoneef@pnu.edu.sa (A.A.A.); abahahmed@kku.edu.sa (A.-A.H.)

Abstract: This paper studies distributed optimal control for non-cooperative systems involving
time-fractional hyperbolic operators. Through the application of the Lax–Milgram theorem, we
confirm the existence and uniqueness of weak solutions. Central to our approach is the utilization
of the linear quadratic cost functional, which is meticulously crafted to encapsulate the interplay
between the system’s state and control variables. This functional serves as a pivotal tool in imposing
constraints on the dynamic system under consideration, facilitating a nuanced understanding of its
controllability. Using the Euler–Lagrange first-order optimality conditions with an adjoint problem
defined by means of the right-time fractional derivative in the Caputo sense, we obtain an optimality
system for the optimal control. Finally, some examples are analyzed.

Keywords: hyperbolic systems; optimal control; fractional integral; Riemann–Liouville derivative;
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1. Introduction

Consider n ∈ N∗ and Ψ as a limited and open set in Rn with a boundary limit ∂Ψ
of class C2, with κ ∈ Ψ denoting the space variable and ς ∈ (0, T) denoting time. For
a specific T ∈ (0, ∞), we consider U = Ψ × (0, T) and Y = ∂Ψ × (0, T) and discuss the
following 2 × 2 non-cooperative systems:

Dβ
ςu1(κ, ς)− ∆u1(κ, ς) + u1(κ, ς)− u2(κ, ς) = f1(κ, ς), (κ, ς) ∈ U,

Dβ
ςu2(κ, ς)− ∆u2(κ, ς) + u1(κ, ς) + u2(κ, ς) = f2(κ, ς), (κ, ς) ∈ U,

u1(κ, ς) = u2(κ, ς) = 0, (κ, ς) ∈ Y,
I2−β

u1(κ, 0+) = u1,0(κ), κ ∈ Ψ,
I2−β

u2(κ, 0+) = u2,0(κ), κ ∈ Ψ,
∂
∂ς I2−β

u1(κ, 0+) = u1,1(κ), κ ∈ Ψ,
∂
∂ς I2−β

u2(κ, 0+) = u2,1(κ), κ ∈ Ψ,

(1)

such that 3/2 < β < 2,u1,0,u2,0 ∈ H2(Ψ) ∩ H1
0(Ψ),u1,1,u2,1 ∈ L2(Ψ), I2−β

u(κ, 0+) =

limς→0 I2−β
u(κ, ς) and ∂

∂ς I2−β
u(κ, 0+) = limς→0

∂
∂ς I2−β

u(κ, ς), where the β-order inte-

gral Iβ and derivative Dβ
ς are taken in Riemann–Liouville significance. The external force

f1, f2 ∈ L2(U).
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Fractional partial differential equations (FPDEs) are a generalization of classical partial
differential equations (PDEs) in which the derivatives are of fractional order. These equa-
tions use fractional derivatives to reflect the non-local behavior of the underlying system.
The derivatives in classical PDEs reflect the rate of change of a function in relation to its
independent variables. However, fractional derivatives in FPDEs reflect the memory effects,
hereditary features, and anomalous diffusion observed in many physical, biological, and
engineering systems. The Caputo derivative is the most widely used fractional derivative.
Other fractional derivatives, such as the Riemann–Liouville derivative, are used in many
settings as well. The fractional derivative used is determined by the problem at hand; for
more details, see [1–3].

The non-locality of FPDEs and the absence of analytical solutions in the majority
of situations make them difficult to solve. Therefore, numerical methods are typically
employed to approximate the solutions. Finite difference, finite element, and spectral
methods are commonly used to discretize the equations and transform them into a system
of algebraic equations that can be solved numerically [4–8].

FPDEs have applications in a number of disciplines, particularly biological sciences,
economics, and technology. They have been used to model diffusion processes, wave prop-
agation in complex media, fractal behavior, and anomalous transport phenomena, among
others. Additionally, FPDEs have been applied in image processing, signal processing, and
finance to capture long-range dependencies and memory effects; see [9–11].

The intricate domain of optimal control for systems driven by partial differential
equations (PDEs) has been extensively examined in prior research [12–15]. These founda-
tional works have provided crucial insights into the fundamental principles governing
such systems. Expanding upon this groundwork, subsequent investigations [16,17] have
further elucidated the nuanced dynamics of cooperative and non-cooperative systems. By
delving deeper into the interplay of various factors and exploring novel methodologies,
these studies have enriched our understanding and paved the way for advancements in
optimal control theory for PDE-driven systems.

Definition 1 ([18]). For given numbers aij, the systems{
−∆ui + ∑n

i=1 aij uj = fi in Ψ,
∀i = 1, 2, 3, . . . , n,

(2)

are said to be cooperative if for all i, j = 1, . . . , n we have aij > 0 for i ̸= j; otherwise, the systems
are said to be non-cooperative.

Optimal control of fractional non-cooperative hyperbolic systems is a crucial problem
in fields such as physics, engineering, and economics. It involves finding controls that
optimize performance criteria. Pontryagin’s maximum principle is a common approach,
but analytical solutions can be challenging; thus, numerical methods and optimization
algorithms are used to approximate optimal controls. Fractional systems with fractional
derivatives present additional challenges. Traditional optimal control techniques can be
used. Non-cooperative systems introduce strategic aspects; game theory can be used to
model and analyze these interactions. For more details about optimal control of fractional
order, see for example [19,20].

Our investigation delves into the intricate realm of distributed optimal control concern-
ing time-fractional non-cooperative hyperbolic systems governed by fractional derivatives
in the Riemann–Liouville sense. Our contribution lies in the advancement and general-
ization of prior research elucidated by Lions [13,14] to encompass a broader spectrum of
fractional non-cooperative systems. These systems serve as versatile frameworks capable
of encapsulating a myriad of phenomena across disciplines spanning physics, chemistry,
mathematics, and biology. Initially, we substantiate the existence and uniqueness of the
system’s state through the lens of classical control theory, establishing a robust theoretical
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underpinning for subsequent analysis. The crux of our endeavor lies in delineating the
adjoint problem, which serves as a pivotal instrument in characterizing fractional optimal
control. Through rigorous mathematical treatment, we unveil the requisite conditions
for optimality, shedding light on the intricate interplay between system dynamics and
control inputs. Our study unveils theoretical insights into the dynamics of fractional non-
cooperative systems while providing practical implications for the design and optimization
of control strategies across diverse domains. By bridging the theoretical and practical
realms, we aim to foster a deeper understanding of the underlying mechanisms governing
complex dynamical systems with fractional derivatives, paving the way for enhanced
control and manipulation of these systems in real-world applications.

This paper is organized as follows. In Section 2, we recall some definitions and lemmas
related to fractional calculus along with some spaces in which our problem is investigated.
In Section 3, the weak formulation is represented, and the existence and uniqueness of
the solution are proved with the help of the Lax Milgram Theorem. In Section 4, the
optimal control problem is formulated with the linear quadratic cost functional and the
adjoint problem is used to examine the optimality conditions. In Section 5, we provide
some application examples related to our problem. Finally, the conclusion is addressed in
Section 6.

2. Notations

This section provides a review of some notations in fractional calculus theory, outlining
key lemmas for fractional derivatives.

Definition 2 ([21]). The Riemann–Liouville fractional partial integral operator of order β with
respect to ς of a function f (κ, ς) is defined by

Iβ f (κ, ς) =
1

Γ(β)

∫ ς

0

f (κ, s)

(ς − s)1−β
ds, (3)

where f (·, ς) is an integrable function and Γ(·) is the well-known Euler Gamma function.

For any n − 1 < β < n, n ∈ N, the Riemann–Liouville and Caputo fractional partial
derivative operators are defined as follows:

Definition 3 ([21]). The left Riemann–Liouville fractional partial derivative of order β of a function
f (κ, ς) with respect to ς is defined by

Dβ
ς f (κ, ς) =

1
Γ(n − β)

∂n

∂ςn

∫ ς

0

f (κ, s)

(ς − s)β−n+1 ds, (4)

where the function f (·, ς) has absolutely continuous derivatives up to order (n − 1).

Definition 4 ([21]). The right Caputo fractional partial derivative of order β with respect to ς of a
function f (κ, ς) is defined as

CDβ
ς f (κ, ς) =

(−1)n

Γ(n − β)

∫ T

ς

1

(s − ς)β−n+1
∂n f (κ, s)

∂sn ds, (5)

where the function f (·, ς) has absolutely continuous derivatives up to order (n − 1).

In all of the aforementioned definitions, we presume that integrals exist.
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Lemma 1 ([22]). Assume u ∈ C∞(U), χ ∈ C∞(U), where U is the closure of U. Let A be a linear
partial differential operator and let A∗ be its adjoint. Then, we gain the following equality:∫

U(Dβ
ςu(κ, ς) +Au(κ, ς))χ(κ, ς)dκdς

=
∫

Ψ χ(κ, T) ∂
∂ς I2−β

u(κ, T)dκ −
∫

Ψ χ(κ, 0) ∂
∂ς I2−β

u(κ, 0+)dκ
−
∫

Ψ I2−β
u(κ, T) ∂χ

∂ς (κ, T)dκ +
∫

Ψ I2−β
u(κ, 0) ∂χ

∂ς (κ, 0)dκ
+
∫

Y u(κ, ς) ∂χ
∂v (κ, ς)dκdς −

∫
Y

∂u
∂v (κ, ς)χ(κ, ς)dσdς

+
∫
U u(κ, ς)

(
CDβ

ς χ(κ, ς) + A∗χ(κ, ς)
)

dκdς.

where ∂ f
∂v = ∇ f .v is the normal derivative of f .

Lemma 2 ([22]). Let u ∈ C∞(U) and χ ∈ C∞(U), given χ|∑ = 0, χ(κ, T) = 0, χ′(κ, T) = 0, A
as a linear partial differential operator, and A∗ as its adjoint. Then, we have∫

U(Dβ
ςu(κ, ς) +Au(κ, ς))χ(κ, ς)dκdς

= −
∫

Ψ χ(κ, 0) ∂
∂ς I2−β

u(κ, 0+)dκ
+
∫

Ψ I2−β
u(κ, 0) ∂χ

∂ς (κ, 0)dκ +
∫

Y u(κ, ς) ∂χ
∂v (κ, ς)dκdς

+
∫
U u(κ, ς)

(
CDβ

ς χ(κ, ς) + A∗χ(κ, ς)
)

dκdς.

We require the following function space in order to fully explore our issue:

Wβ
2,2

(
0, T; H1

0(Ψ), H−1(Ψ)
)
=

{
u : u ∈ L2

(
0, T; H1

0(Ψ)
)

, Dβ
ςu(ς) ∈ L2

(
0, T; H−1(Ψ)

)}
with the embedding given as follows:

L2
(

0, T; H1
0(Ψ)

)
↪→ L2(0, T; L2(Ψ)) ↪→ L2

(
0, T; H−1(Ψ)

)
(6)

which is continuous and compact, where H−1(Ψ) is the dual of H1
0(Ψ); see [23,24].

3. Existence and Uniqueness of the Solution

Well-posedness problems can be analyzed by transforming them into weak formula-
tions, extending to Sobolev spaces, and interpreting them as abstract variational problems
using Lax–Milgram Theorem.

Definition 5. For each ς ∈ (0, T),u = (u1,u2) and χ = (χ1, χ2), we define a family of bilinear
forms µ(ς;u, χ) on (H1

0(Ψ))
2 by

µ(ς;u, χ) = (−∆u1 + u1 − u2, χ1)L2(Ψ) + (−∆u2 + u2 + u1, χ2)L2(Ψ),u, χ ∈ (H1
0(Ψ))

2
,

which can be written as

µ(ς;u, χ) =
∫

Ψ
(∇u1(κ)∇χ1(κ) +∇u2(z)∇χ2(κ))dκ +

∫
Ψ
[u1χ1 + u2χ2 − u2χ1 + u1χ2]dκ. (7)

Lemma 3. The bilinear form µ(ς;u, χ) in (7) is bounded, symmetric, and satisfies the coercive
condition on

(
H1

0(Ψ)
)2, meaning that for u = (u1,u2) we have

µ(ς;u,u) ≥ C ∥ u ∥2
(H1

0 (Ψ))
2 , C > 0. (8)

Proof. Replacing χ with u µ(ς;u, χ) in (7), we obtain
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µ(ς;u,u) =
∫

Ψ(∇u1(κ)∇u1(κ) +∇u2(κ)∇u2(κ)dκ +
∫

Ψ[u1u1 + u2u2 − u2u1 + u1u2]dκ
≥ K∥ ∇u1(κ) ∥2

L2(Ψ) + K∥ u1(z) ∥2
L2(Ψ) + ∥ u1(κ) ∥2

L2(Ψ)

+K∥ ∇u2(κ) ∥2
L2(Ψ) + K∥ u2(κ) ∥2

L2(Ψ) + ∥ u2(κ) ∥2
L2(Ψ)

≥ C1∥ u1 ∥2
H1

0 (Ψ) + C2∥ u2 ∥2
H1

0 (Ψ) ≥ C∥ u ∥2
(H1

0 (Ψ))
2 , C = max(C1, C2) > 0.

□

In addition, we assume that ∀u, χ ∈ (H1
0(Ψ))

2 the function. ς → µ(ς;u, χ) is continu-
ously differentiable in [0, T], and the bilinear form µ(ς;u, χ) is symmetric,

µ(ς;u, χ) = µ(ς; χ,u) ∀u, χ ∈
(

H1
0(Ψ)

)2
. (9)

Lemma 4. If (8) and (9) hold, then the problem in (1) admits a unique solution u(ς) =

(u1(ς),u2(ς)) ∈ (Wβ
2,2

(
0, T; H1

0(Ψ), H−1(Ψ)
)2.

Proof. By implementing Lax–Milgram theorem and the coerciveness criterion, a unique
element u can be found in

(
H1

0(Ψ)
)2 such that

(Dβ
ςu, χ)

(L2(U))
2 + µ(ς;u, χ) = L(χ) ∀χ = (χ1, χ2) ∈ (H1

0(Ψ))
2

(10)

where L(χ) is a continuous linear form on
(

H1
0(Ψ)

)2 and takes the form

L(χ) =
∫
U ( f1(κ, ς)χ1(κ, ς) + f2(κ, ς)χ2(κ, ς))dκdς

−
∫

Ψ χ1(κ, 0)u1,1dκ +
∫

Ψ u1,0
∂χ1
∂ς (κ, 0)dκ

−
∫

Ω χ2(κ, 0)u2,1dκ +
∫

Ω u2,0
∂χ2
∂ς (κ, 0)dκ.

(11)

Then, Equation (10) is equivalent to the existence of a unique solution u = (u1,u2) ∈
(H1

0(Ψ))
2 for

(Dβ
ςu1 − ∆u1 + u1 − u2, χ1)L2(U) + (Dβ

ςu2 − ∆u2 + u2 + u1, χ2)L2(U) = L(χ), (12)

which is equivalent to the time-fractional wave equations below.{
Dβ

ςu1 − ∆u1 + u1 − u2 = f1

Dβ
ςu2 − ∆u2 + u2 + u1 = f2

(13)

Via fractional integration by parts in reverse order, we can determine whether the
original formulation can be restored. Multiplying both sides of (13) χ = {χ1, χ2} and
applying the formula for fractional integration by parts, we have∫

U(Dβ
ςu1(κ, ς) −∆u1(κ, ς) + u1(κ, ς)− u2(κ, ς))χ1(κ, ς)dκdς

= −
∫

Ψ χ1(κ, 0) ∂
∂ς I2−β

u1(κ, 0+)dκ +
∫

Ψ I2−β
u1(κ, 0) ∂χ1

∂ς (κ, 0)dκ
+
∫

Y u1(κ, ς) ∂χ1
∂ν (κ, ς)dκdς +

∫
U u1(κ, ς)(CDβ

ς χ1(κ, ς)− ∆χ1(κ, ς))dκdς
+
∫
U (u1(κ, ς)− u2(κ, ς))χ1(κ, ς)dκdς =

∫
U f1(κ, ς)χ1(κ, ς)dκdς

(14)

and∫
U(Dβ

ςu2(κ, ς) −∆u2(κ, ς) + u2(κ, ς) + u1(κ, ς))χ2(κ, ς)dκdς

= −
∫

Ψ χ2(κ, 0) ∂
∂ς I2−β

u2(κ, 0+)dκ +
∫

Ψ I2−β
u2(κ, 0) ∂χ2

∂ς (κ, 0)dκ
+
∫

Y u2(κ, ς) ∂χ2
∂v (κ, ς)dκdς +

∫
U u2(κ, ς)(CDβ

ς χ2(κ, ς)− ∆χ2(κ, ς))dκdς
+
∫
U (u2(κ, ς) + u1(κ, ς))χ2(κ, ς)dκdς =

∫
U f2(κ, ς)χ2(κ, ς)dκdς.

(15)
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Comparing the sum of (14) and (15) with (11) such that χ|∂Ψ = 0, χ(T) = 0, χ′(T) = 0 in Ψ,
we obtain

−
∫

Ψ χ1(κ, 0) ∂
∂ς I2−β

u1(κ, 0+)dκ +
∫

Ψ I2−β
u1(κ, 0) ∂χ1

∂ς (κ, 0)dκ
+
∫

Y u1(κ, ς) ∂χ1
∂ν (κ, ς)dκdς −

∫
Ψ χ2(κ, 0) ∂

∂ς I2−β
u2(κ, 0)dκ

+
∫

Ψ I2−β
u2(κ, 0) ∂χ2

∂ς (κ, 0)dκ +
∫

Y u2(κ, ς) ∂χ2
∂ν (κ, ς)dκdς

= −
∫

Ψ χ1(κ, 0)u1,1dκ +
∫

Ψ u1,0
∂χ1
∂ς (κ, 0)dκ

−
∫

Ψ χ2(κ, 0)u2,1dκ +
∫

Ψ u2,0
∂χ2
∂ς (κ, 0)dκ.

Then, we can deduce that

u1(κ, ς) = u2(κ, ς) = 0, (κ, ς) ∈ Y,
I2−β

u1(κ, 0+) = u1,0, κ ∈ Ψ,
∂
∂ς I2−β

u1(κ, 0+) = u1,1, κ ∈ Ψ,

I2−β
u2(κ, 0+) = u2,0, κ ∈ Ψ,

∂
∂ς I2−β

u2(κ, 0+) = u2,1, κ ∈ Ψ,

(16)

This means that for smooth solutions and data, the two formulations (12) and (13) are
equivalent (coherence principle). □

4. Existence and Uniqueness of an Optimal Control: A First Optimality Condition

In this section, we look at our problem’s adjoint state as well as the first-order nec-
essary and sufficient optimality requirements. Let U = (L2(U))

2 be the space of con-
trols. For a control w ∈ (L2(U))

2, the state of the system is represented as u(w) ∈
Wβ

2,2
(
0, T; H1

0(Ψ), H−1(Ψ)
)2. The observation equation is provided by x(w) = u(w). Let

the set of admissible controls Uad be a closed convex subset of U . For a given desired state
xd ∈ (L2(U))

2, the control problem is to find the minimization of the following quadratic
cost functional:

min J(w) =
1
2
∥ u(v)−xd ∥2

(L2(U))
2 +

λ

2
∥ v ∥2

(L2(U))
2 , ∀v ∈ Uad, λ ≥ 0 (17)

subject to 

Dβ
ςu1 − ∆u1 + u1 − u2 = f1 + w1, (κ, ς) ∈ U,

Dβ
ςu2 − ∆u2 + u1 + u2 = f2 + w2, (κ, ς) ∈ U,

u1 = u2 = 0, (κ, ς) ∈ Y,
I2−β

u1(κ, 0+) = u1,0(κ), κ ∈ Ψ,
I2−β

u2(κ, 0+) = u2,0(κ), κ ∈ Ψ,
∂
∂ς I2−β

u1(κ, 0+) = u1,1(κ), κ ∈ Ψ,
∂
∂ς I2−β

u2(κ, 0+) = u2,1(κ), κ ∈ Ψ.

(18)

Theorem 1. Assume that (8) and (9) are satisfied. If the cost functional is provided by (17), then
there exists an optimal control w ∈ Uad, which is characterized by the following equations:

CDβ
ς p1 − ∆p1 + p1 + p2 = u1 − xd1 in U,

CDβ
ς p2 − ∆p2 − p1 + p2 = u2 − xd2 in U,

p1 = p2 = 0 on Y,
p1(κ, T) = p2(κ, T) = 0 in Ψ,
∂p1(κ,T)

∂ς = ∂p2(κ,T)
∂ς = 0 in Ψ,

(19)
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with ∫ T

0

∫
Ψ
(p(w) + λw)(v − w)dκdς ≥ 0 (20)

where p(w) = {p1(w), p2(w)} ∈ (L2(0, T;
(

H1
0(Ψ)

)2 is the adjoint state.

Proof. If w ∈ (L2(U))
2 is the optimal control, then it is characterized by

J′(w)(v − w) ≥ 0 ∀v ∈ Uad, (21)

which is equivalent to

(u(w)− xd,u(v)− u(w))
(L2(U))

2 + (λw, v − w)
(L2(U))

2 ≥ 0. (22)

Because (B∗p,u) = (p, Bu), where

Bu= B{u1(w),u2(w)}

= {Dβ
ςu1 − ∆u1 + u1 + u2, Dβ

ςu2 − ∆u2 − u1 + u2}

for u ∈ (Wβ
2,2

(
0, T; H1

0(Ψ), H−1(Ψ)
)
)

2
, then

(p, Bu) = (p1, Dβ
ςu1 − ∆u1 + u1 − u2) + (p2, Dβ

ςu2 − ∆u2 + u2 + u1)

= (p1, Dβ
ςu1 − ∆u1)− (p1,u1)− (p1,u2) + (p2, Dβ

ςu2 − ∆u2)
−(p2,u1)− (p2,u2)

= (CDβ
ς p1 − ∆p1,u1)− (p1,u1)− (p1,u2) + (CDβ

ς p2 − ∆p2,u2)
−(p2,u1)− (p2,u2)

= (CDβ
ς p1 − ∆p1 + p1 + p2,u1) + (CDβ

ς p2 − ∆p2 + p2 − p1,u2)
= (B∗p,u);

hence,

B∗p(w) = B∗{p1(w), p2(w)}
= {CDβ

ς p1(w)− ∆p1(w) + p1(w) + p2(w), CDβ
ς p2(w)− ∆p2(w) + p2(w)− p1(w)}.

Thus, we can introduce the adjoint systems as follows:{
CDβ

ς p1(w)− ∆p1(w) + p1(w) + p2(w) = u1(w)− xd1 in U,
CDβ

ς p2(w)− ∆p2(w) + p2(w)− p1(w) = u2(w)− xd2 in U,
(23)

and by substituting (23) into (22), we obtain

(CDβ
ς p1(w)− ∆p1(w) + p1(w) + p2(w),u1(v)− u1(w))L2(U)

+(CDβ
ς p2(w)− ∆p2(w) + p2(w)− p1(w),u2(v)− u2(w))L2(U)

+(λw, v − w)
(L2(U))

2 ≥ 0.

Now, applying the formula for fractional integration by parts, we obtain
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∫ T
0

∫
Ψ (CDβ

ς p1(w)− ∆p1(w) + p1(w) + p2(w))(u1(v)− u1(w))dκdς

+
∫ T

0

∫
Ψ (CDβ

ς p2(w)− ∆p2(w) + p2(w)− p1(w))(u2(v)− u2(w))dκdς

= −
∫

Ψ
∂
∂ς I2−β(u1(v,κ, 0)− u1(w,κ, 0)) ∂

∂ς p1(κ, 0)dκ +
∫

Ψ p1(κ, 0)I2−β(u1(v,κ, 0)− u1(w,κ, 0))dκ
−
∫

Ψ p1(κ, T) ∂
∂ς I2−β(u1(v;κ, ς)− u1(w;κ, ς))dκ +

∫
Ψ I2−β(u1(v;κ, ς)− u1(w;κ, ς)) ∂p1

∂ς (κ, T)dκ
−
∫ T

0

∫
∂Ψ p1(κ, ς) ∂

∂ν (u1(v;κ, ς)− u1(w;κ, η))dY +
∫ T

0

∫
∂Ψ

∂
∂ν p1(κ, ς)(u1(v;κ, ς)− u1(w;κ, ς))dY

−
∫

Ψ
∂
∂ς I2−β(u2(v,κ, 0)− u2(w,κ, 0))p2(κ, 0)dκ +

∫
Ψ

∂
∂ς p2(κ, 0)I2−β(u2(v,κ, 0)− u2(w,κ, 0))dκ

−
∫

Ψ p2(κ, T) ∂
∂ς I2−β(u2(v;κ, T)− u2(w;κ, T))dκ +

∫
Ψ I2−β(u2(v;κ, T)− u2(w;κ, T)) ∂p2

∂ς (κ, T)dκ
−
∫ T

0

∫
∂Ψ p2(κ, ς) ∂

∂ν (u2(v;κ, ς)− u2(w;κ, ς))dY +
∫ T

0

∫
∂Ψ

∂
∂ν p2(κ, ς)(u2(v;κ, ς)− u2(w;κ, ς))dY

+
∫ T

0

∫
Ψ p1(κ, ς)(Dβ

ς (u1(v;κ, ς)− u1(w;κ, ς))− ∆(u1(v;κ, ς)− u1(w;κ, ς)))dκdς

+
∫ T

0

∫
Ψ p2(κ, ς)(Dβ

ς (u2(v;κ, ς)− u2(w;κ, ς))− ∆(u2(v;κ, ς)− u2(w;κ, ς)))dκdς

+
∫ T

0

∫
Ψ (p1(κ, ς) + p2(κ, ς))(u1(v;κ, ς)− u1(w;κ, ς))dκdς

+
∫ T

0

∫
Ψ (p2(κ, ς)− p1(κ, ς))(u2(v;κ, ς)− u2(w;κ, ς))dκdς.

Using (18), we obtain 
p1 = p2 = 0 on Y,
p1(κ, T) = p2(κ, T) = 0 in Ψ,
∂p1(κ,T)

∂ς = ∂p2(κ,T)
∂ς = 0 in Ψ

and ∫ T
0

∫
Ψ (CDβ

ς p1(w)− ∆p1(w) + p1(w) + p2(w))(u1(v)− u1(w))dκdς

+
∫ T

0

∫
Ψ (CDβ

ς p2(w)− ∆p2(w) + p2(w)− p1(w))(u2(v)− u2(w))dκdς

=
∫ T

0

∫
Ψ p1(w)(v1 − w1)dκ +

∫ T
0

∫
Ψ p2(w)(v2 − w2)dκdς;

hence, (22) is equivalent to∫ T

0

∫
Ψ

p1(w)(v1 − w1)dκdς +
∫ T

0

∫
Ψ

p2(w)(v2 − w2)dκdς + (λw, v − w) ≥ 0, (24)

which is reduced to ∫ T

0

∫
Ψ
(p(w) + λw)(v − w)dκdς ≥ 0. (25)

Thus, the proof is complete. □

Remark 1. We can generalize our results to n × n non-cooperative fractional hyperbolic systems
as follows:

minJ(w) =
1
2

n

∑
i=1

∥ ui(v)− xdi ∥2
L2(U) +

λ

2
∥ v ∥2

(L2(U))
n∀v ∈ Uad, (26)

subject to 
Dβ

ςui(κ, ς)− ∆ui(κ, ς) + ∑k
j=1 aijuj = fi + wi, (κ, ς) ∈ U,

ui(κ, ς) = 0, (κ, ς) ∈ Y,
I2−β

ui(κ, 0+) = ui,0(κ), κ ∈ Ψ,
∂
∂ς I2−β

ui(κ, 0+) = ui,1(κ), κ ∈ Ψ,

where

aij =

{
−1, i < j
1, i ≥ j.
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The optimal control is characterized by the following equations:
CDβ

ς pi − ∆pi + ∑n
j=1 aji pi = ui − xdi in U,

pi = 0 on Y,
pi(κ, T) = 0 in Ψ,
∂pi(κ,T)

∂ς = 0 in Ψ,

(27)

with ∫ T

0

∫
Ψ
(p(w) + λw)(v − w)dκdς ≥ 0. (28)

5. Applications

In this section, we provide specific application examples to demonstrate the effective-
ness of our results and justify the real contribution of these results.

Example 1. In the case with no constraints on the control, i.e., Uad = U , (20) reduces to

P + λw = 0,

and we may put w = − 1
λ p from Equations (18) and (19). Then, the optimal control is provided by

the following system of fractional partial differential equations:

Dβ
ςu1 − ∆u1 + u1 − u2 = f1 − 1

λ p1, (κ, ς) ∈ U,

Dβ
ςu2 − ∆u2 + u1 + u2 = f2 − 1

λ p2, (κ, ς) ∈ U,
u1 = u2 = 0, (κ, ς) ∈ Y,
I2−β

u1(κ, 0+) = u1,0(κ), κ ∈ Ψ,
I2−β

u2(κ, 0+) = u2,0(κ), κ ∈ Ψ,
∂
∂ς I2−β

u1(κ, 0+) = u1,1(κ), κ ∈ Ψ,
∂
∂ς I2−β

u2(κ, 0+) = u2,1(κ), κ ∈ Ψ,
CDβ

ς p1 − ∆p1 + p1 + p2 = u1 − xd1 in U,
CDβ

ς p2 − ∆p2 − p1 + p2 = u2 − xd2 in U,
p1 = p2 = 0 on Y,
p1(κ, T) = p2(κ, T) = 0 in Ψ,
∂p1(κ,T)

∂ς = ∂p2(κ,T)
∂ς = 0 in Ψ,

a system that provides a rigorous framework for determining the optimal control strategy when
there are no constraints on the control. By reducing the problem to a set of equations involving the
Lagrange multiplier λ, we arrive at a solution that balances the system dynamics with the given
objective function and boundary conditions. This solution, characterized by the equations governing
the controls u1 and u2, as well as the associated state variables p1 and p2, offers insights into the
optimal allocation of resources over time. Further analysis and numerical techniques can make it
possible to explore the implications of this optimal control strategy in various real-world scenarios,
contributing to the advancement of control theory and its applications.

Example 2. If we take

Uad = {v
∣∣∣v ∈ L2(U), v ≥ 0 almost everywhere in U} ,
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Then (20) is equivalent to
w ≥ 0, almost everywhere in U,
p(w) + λw ≥ 0, almost every where in U,
w(p(w) + λw) = 0, almostevery where in U,

(29)

a formulation highlighting the interplay between the control input w and the state variable p.
This formulation demonstrates that the optimal control strategy must not only satisfy the system
dynamics but also adhere to the specified non-negativity constraint. By addressing such constraints
in the optimization process, this example contributes to a more comprehensive understanding of
optimal control problems in practical applications where physical or operational constraints need
to be considered. Further analysis and numerical techniques can help to elucidate the implications
of these constraints on the optimal control strategy, facilitating the design of effective and feasible
control solutions.

Example 3. Considering the case where Uad = {v|ξ0(κ, ς) ≤ v(κ, ς) ≤ ξ1(κ, ς) almost
everywhere in U, ξ0, ξ1 given functions in L∞((U)}, (20) is equivalent to the local condition

(p(κ, ς; w) + λw(κ, ς))(ξ − w(κ, ς)) ≥ 0, ∀ξ ∈ [ξ0(κ, ς)) , ξ1(κ, ς) )], (30)

which simplifies to the following conditions:
p(κ, ς; w) + λw(κ, ς) > 0, w(κ, ς) = ξ0(κ, ς),
p(κ, ς; w) + λw(κ, ς) < 0, w(κ, ς) = ξ1(κ, ς),
p(κ, ς; w) + λw(κ, ς) = 0, w(κ, ς) = − 1

λ p(κ, ς; w).
(31)

this example contributes to a deeper understanding of optimal control problems in scenarios where
control inputs are subject to specific bounds. Such insights are crucial for designing control
strategies that optimize performance while adhering to practical constraints, thereby enhancing
the applicability and effectiveness of optimal control techniques in real-world systems. Further
analysis and computational techniques can facilitate the application of these findings to diverse
control problems, fostering advancements in control theory and practice.

6. Conclusions

In the current article, the problem of distributed optimal control for non-cooperative
systems involving time-fractional hyperbolic operators has been investigated. Using the
Lax–Milgram theorem, the solution of the considered system has been shown to exist
and to be unique. The optimal conditions are established for these systems using Euler–
Lagrange equations with the assistance of the adjoint problem and the quadratic cost
functional. Moreover, the extension of classical control theory forms the foundation upon
which we build our analysis of fractional non-cooperative systems. As discussed in [13,14],
classical results provide invaluable insights into system dynamics and control strategies.
However, the fractional nature of our systems necessitates adaptations and extensions of
these classical tools to guarantee further applications. Finally, the results obtained from our
fractional problems tend to be the same as in the classical case when the fractional order β
approaches 2.
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