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Abstract: This study explores the effects of using space-fractional derivatives and adding multiplica-
tive noise, modeled by a Wiener process, on the solutions of the space-fractional stochastic regularized
long wave equation. New fractional stochastic solutions are constructed, and the consistency of the
obtained solutions is examined using the transition between phase plane orbits. Their bifurcation
and dependence on initial conditions are investigated. Some of these solutions are shown graphically,
illustrating both the individual and combined influences of fractional order and noise on selected
solutions. These effects appear as alterations in the amplitude and width of the solutions, and as
variations in their smoothness.

Keywords: stochastic fractional differential equations; long wave equation; bifurcation method;
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1. Introduction

The long wave equation is a well-known model for studying shallow water environ-
ments. It is a mathematical model that describes the propagation of long waves in certain
physical systems. It is used in modeling various natural phenomena characterized by weak
non-linearity and dispersive waves, and was introduced by Peregrine [1] to describe the
development of an undular bore. The authors in [2] examined the equation as an extension
of the Kortewe–de Vries equation (KdV equation) to model small-amplitude, long surface
gravity waves propagating in one spatial dimension. The regularized long wave (RLW)
equation is a modified version of the long wave equation that includes regularization terms
to account for wave dispersion and improve the accuracy of wave propagation modeling [2].
It is given by the following equation:

Qt +Qx −
m
2
QQx − nQxxt = 0, (1)

where m and n are free constants that control the nonlinear and dispersive effects, respec-
tively. Here, Q(x, t) is the amplitude of the wave function, with t and x being the temporal
and spatial variables, respectively.

The equation in (1) can be used to model a variety of phenomena in physics, including
ion-acoustic plasma waves, dissipative processes in heat conduction, and nonlinear wave
diffusion. The behavior of the RLW equation is influenced by the values of parameters
m and n. For instance, if m = 0 and n = 1, then Equation (1) becomes a linear wave
equation, which describes the behavior of waves with small amplitudes. If m > 0 and
n = 1, it exhibits nonlinear behavior, indicating that the wave’s amplitude can change as
it propagates. For n > 1, it exhibits dispersive behavior, enabling the wave to modify its
shape during propagation due to the variation in wave velocity with frequency. Many
analytical and numerical methods were used to obtain solutions for Equation (1) in [3–6]. It
is worth mentioning that soliton solutions arise from the balancing of the last two terms.
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While classical differential equations have been successful in modeling a wide range
of phenomena [7,8], there are many situations where they may not adequately capture
the underlying dynamics, especially in systems with memory or inherited properties.
Fractional differential equations (FDEs) [9,10] generalize classical differential equations by
allowing non-integer order of derivatives, making them more flexible in modeling complex
phenomena. Nonlinear FDEs offer more precise models for describing nonlinear systems in
fields like fluid mechanics and signal processing. They have been employed in the analysis
of complex physical and biological systems [11–14].

A different generalization of classical differential equations is stochastic differential
equations (SDEs). The SDEs are suitable for modeling systems that are inherently random
or are subject to random effects by adding a stochastic term that represents randomness in
the system. Nonlinear stochastic differential equations are widely used in finance, biology,
physics, and engineering [15–17]. In fact, in several scientific branches, there is a strong
emphasis on incorporating random effects into the modeling, analysis, and simulation
of complex phenomena. This is because noise can generate statistical properties and
behavior that should not be overlooked [18,19]. Fractional derivatives are often preferred
for modeling these phenomena over integer-order derivatives. Using both fractional and
stochastic generalizations in one model offers a more flexible tool for modeling systems that
exhibit both memory effects and randomness. Research on stochastic fractional differential
equations (SFDEs) is a growing area in applied mathematics, e.g., [20–27].

Like most differential equations, the RLW has been generalized using different types of
fractional derivatives, and methods to solve such generalizations were investigated [28–30].

In this study, we introduce a generalization of the RLW Equation (1) using Jumarie’s
modified Rieman–Liouville fractional derivative and stochastic process (see Appendix A),
as follows:

dQ+
[
Tp

xQ− m
2
QTp

xQ
]
dt − nT2p

x dQ = ρ
(
Q− nT2p

x Q
)

dH, (2)

where Tp is the Jumarie’s modified Rieman–Liouville fractional derivative of order p, ρ is
the noise strength, H(t) is a white noise (Gaussian process), and QdH is a multiplicative
white noise in the Itô sense. Note that the noise-perturbed term is a combination of two
terms appearing in [31,32].

Finding solutions for stochastic fractional partial differential equations poses a con-
siderable challenge. In this paper, we explore the exact solutions of the SFRLW equation
for different values of the controlling parameters m and n. Utilizing bifurcation theory, we
introduce novel solutions, focusing exclusively on real solutions used in practical applica-
tions, particularly in the context of real wave propagation intervals. These solutions are
novel even when compared to the deterministic form of Equation (2), whether featuring
fractional or integer-order derivatives. We also explore the degeneracy of solutions to
examine the consistency of obtained results and their dependence on initial conditions.
Finally, we analyze the impact of noise and fractional-order derivatives on these solutions,
both individually and together.

The layout of this paper is as follows: In Section 2, we derive a traveling wave
system corresponding to the SFRLW Equation (2). The solution of this system plays an
important role in the construction of the required solutions. Section 3 covers the bifurcation
analysis for the traveling wave system and a concise explanation of the phase plane
trajectories. In Section 4, we introduce some new solutions for the SFRLW Equation (2)
and demonstrate the consistency of these solutions by studying the degeneracy property
through transitions between phase plane orbits. In Section 5, the influence of both the
fractional-order derivative and the noise strength, individually and in combination, on the
obtained solutions is illustrated graphically. Section 6 summarizes the obtained results.
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2. Mathematical Analysis

We seek solutions for Equation (2) of the form

Q(x, t) = M(ξ)eρH(t)− ρ2
2 t, ξ =

kxp

Γ(p + 1)
+ ωt, (3)

where k, ω are arbitrary constants and Γ(·) is the Gamma function [33]. After some compu-
tations, we obtained

dQ= eρH(t)− ρ2
2 t
[

ωM′dt + M
(

ρdH+
ρ2

2
− ρ2

2

)]
, (4a)

Tp
xQ= keρH(t)− ρ2

2 t M′, (4b)

T2p
x Q= k2eρH(t)− ρ2

2 t M′′, (4c)

T2p
x dQ= k2[ωM′′′ dt + ρM′′ dH]eρH(t)− ρ2

2 t, (4d)

where ′ indicates derivatives with respect to ξ and + ρ2

2 M in Equation (4a) is the Itô correc-
tion term. Substituting the expressions in Equation (4) into Equation (2), we obtain

−nωk2M′′′ − mk
2

MM′eρH(t)e−
ρ2
2 t + (ω + k)M′ = 0. (5)

Since H(t) is a Gaussian process, we have E
(

eρH(t)
)
= e

ρ2
2 t. By equating the expecta-

tion on both sides of Equation (5), we obtain

−nωk2M′′′ − mk
2

MM′ + (ω + k)M′ = 0. (6)

Integrating both sides of Equation (6) with respect to ξ, we have

M′′ + 3αM2 − 2βM = 0, (7)

where α and β are given by

α =
m

12nω
, β =

ω + k
2nωk2 . (8)

The integration constant is taken to be zero since it can be reduced to 0 by relocating
the coordinate’s origin.

Equation (7) can be expressed as a Hamiltonian system in the form

M′= N,

N′= M(2β − 3αM),
(9)

with the Hamiltonian function

H =
1
2

N2 + αM3 − βM2, (10)

by using Hamilton’s canonical equations [34,35]. Since H does not explicitly depend on ξ,
the Hamiltonian function (10) is a constant of the motion. Thus, we have

1
2

N2 + αM3 − βM2 = f , (11)
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where f is a free constant. Thus, constructing the solution to the SFRLW equation reduces
to finding those of the Hamiltonian system (9), which describes motion in one dimension
under the two parameters potential function

U = αM3 − βM2. (12)

Inserting expression (9) into the constant of the motion (11) and separating the vari-
ables, we obtain

dM√
W3(M)

= dξ, (13)

where W3(M) is a cubic polynomial of the form:

W3(M) = 2
[

f + βM2 − αM3
]
. (14)

Integrating both sides of Equation (13) requires knowledge of the full range of
parameters f , α, β. One method to determine this range is through the application of
bifurcation theory [36].

3. Bifurcation Analysis

This section focuses on studying the bifurcation of the Hamiltonian system (9). The
equilibrium points are the critical points for the potential function (12), i.e., (M0, 0), where
M0 is the solution M0(2β − 3αM0) = 0. Thus, the equilibrium points are A = (0, 0) and
B =

(
2β
3α , 0

)
. According to Lagrange’s theorem [37], the equilibrium points are categorized

based on whether they are maxima or minima of the potential function (12). We clearly have

d2U
dM2 (A) = −2β,

d2U
dM2 (B) = 2β. (15)

When β > 0, the equilibrium point A is a saddle point and B is a center point. Likewise,
when β < 0, A is a center and B is a saddle point. Figures 1 and 2 show the phase portrait
for these cases.
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Figure 1. Phase portrait for the system (9) for β > 0. The black solid circles indicate the equilib-
rium points.

Figure 1. Phase portrait for the system (9) for β > 0. The black solid circles indicate the
equilibrium points.
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points.

To describe the phase portrait, we need the value of the constant of motion at the
equilibrium points A and B. These are

f0 = H(A) = 0, f1 = H(B) = − 4β3

27α2 . (16)

The phase orbits are the energy levels parameterized by f , i.e.,

F f = {(M, N) ∈ R×R : N2 = W3(M)}, (17)

where W3(M) is given by (14). In the following, we provide a brief description of the phase
portraits depicted in Figure 1 and Figure 2, respectively.

(A) Figure 1a illustrates the phase portrait corresponding to the system (9) when (α, β) ∈
R+ ×R+. In this figure, we see a family of unbounded blue orbits F f> f0 . At f = f0,
the homoclinic red orbit emerges, connecting the saddle equilibrium point A with
itself, in addition to two unbounded solutions. When f ∈ ( f1, f0), there are two
families of orbits in green, denoted as F f . One of them is periodic, positioned inside
the homoclinic orbit, while the other is unbounded, lying outside the homoclinic orbit.
When f = f1, there is an unbounded orbit in pink and the equilibrium solution at B,
and when f < f1, there is a family of unbounded orbits in cyan. The homoclinic orbit
and the unbounded pink orbit are referred to as limiting orbits since the other orbits
approach them as the value of f changes. This is called the degeneracy process. The
periodic family of green orbits approaches the homoclinic orbit as f → 0−. Similarly,
the family of unbounded blue orbits also approaches the homoclinic red orbit as
f → 0+. A similar description applies to Figure 1b.

(B) When (α, β) ∈ R− ×R−, the phase portrait for system (9) is shown in Figure 2a. For
f ∈ ( f1, ∞), there is a family of unbounded orbits shown in blue. When f = f1,
system (9) has a homoclinic orbit in red, connecting the saddle point B with itself,
in addition to two unbounded orbits. If f ∈ ( f0, f1), there are two families of green
orbits: one is a bounded periodic family located inside the homoclinic orbit, while
the other is unbounded and appears outside the homoclinic orbit. For f = f0, there
is a pink unbounded orbit and the equilibrium solution at A. For f < f0, there is an
unbounded family of cyan orbits. The two orbits F f= f1 and F f= f0 are termed limiting
orbits and play an essential role in studying the degeneracy property of the solutions,
as we will see later. A similar description applies to Figure 2b.

Figure 2. Phase portrait for the system (9) for β < 0. The black solid circles indicate the
equilibrium points.

To describe the phase portrait, we need the value of the constant of motion at the
equilibrium points A and B. These are

f0 = H(A) = 0, f1 = H(B) = − 4β3

27α2 . (16)

The phase orbits are the energy levels parameterized by f, i.e.,

F f =
{
(M, N) ∈ R×R : N2 = W3(M)

}
, (17)

where W3(M) is given by (14). In the following, we provide a brief description of the phase
portraits depicted in Figures 1 and 2, respectively.

(A) Figure 1a illustrates the phase portrait corresponding to the system (9) when (α, β) ∈
R+ ×R+. In this figure, we see a family of unbounded blue orbits F f> f0 . At f = f0,
the homoclinic red orbit emerges, connecting the saddle equilibrium point A with
itself, in addition to two unbounded solutions. When f ∈ ( f1, f0), there are two
families of orbits in green, denoted as F f . One of them is periodic, positioned inside
the homoclinic orbit, while the other is unbounded, lying outside the homoclinic orbit.
When f = f1, there is an unbounded orbit in pink and the equilibrium solution at B,
and when f < f1, there is a family of unbounded orbits in cyan. The homoclinic orbit
and the unbounded pink orbit are referred to as limiting orbits since the other orbits
approach them as the value of f changes. This is called the degeneracy process. The
periodic family of green orbits approaches the homoclinic orbit as f → 0− . Similarly,
the family of unbounded blue orbits also approaches the homoclinic red orbit as
f → 0+ . A similar description applies to Figure 1b.

(B) When (α, β) ∈ R− ×R−, the phase portrait for system (9) is shown in Figure 2a. For
f ∈ ( f1, ∞), there is a family of unbounded orbits shown in blue. When f = f1,
system (9) has a homoclinic orbit in red, connecting the saddle point B with itself,
in addition to two unbounded orbits. If f ∈ ( f0, f1), there are two families of green
orbits: one is a bounded periodic family located inside the homoclinic orbit, while
the other is unbounded and appears outside the homoclinic orbit. For f = f0, there
is a pink unbounded orbit and the equilibrium solution at A. For f < f0, there is an
unbounded family of cyan orbits. The two orbits F f= f1 and F f= f0 are termed limiting
orbits and play an essential role in studying the degeneracy property of the solutions,
as we will see later. A similar description applies to Figure 2b.
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4. Solutions Formulation

In this section we obtain all possible solutions for Equation (1) by considering the
bifurcation constraints on the parameters α and β, and consequently, on the parameter f.
We consider each case separately.

For the case where (α, β) ∈ R+ ×R+, we have the following:

(a) If f > 0, system (9) has unbounded orbit in blue intersecting the M-axis in a single
point representing the only real root for the polynomial (14). The polynomial W3 can
be written as W3 = 2α(r1 − M)(M − r2)(M − r∗2), where r1 ∈ R, r2 ∈ C, and * is the
complex conjugation. The real solution interval is M ∈ (−∞, r1). Taking M(0) = r1
and integrating both sides of Equation (13), we obtain

M(ξ) = A1 + r1 −
2A1

1 + cn
(√

2A1αξ, k1
) , (18)

where A2
1 = (Re r2 − r1)

2 + Im r2)
2, k2

1 = 1
2A1

[A1 + r1 − Re r2]. By employing the
transformation (3), we obtain a new solution for Equation (2) in the form

Q(x, t) =


A1 + r1 −

2A1

1 + cn
(√

2A1α
(

kxp

Γ(p+1) + ωt
)

, k1

)


eρH(t)− ρ2

2 t. (19)

(b) If f = f0 = 0, there is a homoclinic orbit in red and two unbounded orbits as illustrated

in Figure 1a. Substituting f = 0 in (14), we obtain M = 2αM2
(

β
α − M

)
. The real

solution intervals are (−∞, 0) and
(

0, β
α

)
. We examine each interval separately.

1. The interval
(

0, β
α

)
corresponds to the homoclinic orbit in red (see Figure 1a);

we assume M(0) = β
α and integrate both sides of Equation (13) to obtain

M(ξ) =
β

α
sech2

(√
β

2
ξ

)
. (20)

Inserting the last expression into (3), we obtain

Q(x, t) =
β

α
sech2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))
eρH(t)− ρ2

2 t, (21)

which is a new solution for the SFLRW Equation (2).
2. The interval (−∞, 0) corresponds to the unbounded orbits in red (see Figure 1a).

We assume M(0) = −∞ and integrate both sides of Equation (13) to obtain

M(ξ) = − β

α
csch2

(√
β

2
ξ

)
. (22)

Utilizing the transformation (3), we obtain a new solution for the SFLRW
Equation (2) in the form

Q(x, t) = − β

α
csch2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))
eρH(t)− ρ2

2 t. (23)

(c) For f ∈ ( f1, 0), the system (9) has two different types of orbits in green, as shown
in Figure 1a. These orbits intersect the M-axis at three points, namely, the real zeros
of the polynomial (14). Hence, W3(M) = 2α(r4 − M)(M − r5)(M − r6), where r4 <
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0 < r5 < r6. The real solution intervals are M ∈ (r5, r6) ∪ (−∞, r4). We obtain the
solutions for each of these intervals separately.

1. The interval (r5, r6) corresponds to periodic orbits; we assume M(0) = r6 and
integrate both sides of Equation (13) to obtain

M(ξ) = r6 − (r6 − r5) sn2
(√

α

2
(r6 − r4)ξ, k2

)
, (24)

where k2 =
√

r6−r5
r6−r4

. Using expression (3), we obtain

Q(x, t) =
[

r6 − (r6 − r5) sn2
(√

α

2
(r6 − r4)

(
kxp

Γ(p + 1)
+ ωt

)
, k2

)]
eρH(t)− ρ2

2 t, (25)

which gives a novel solution for the SFRLW Equation (2).
2. The interval (−∞, r4) corresponds to unbounded orbits in green as shown in

Figure 1a. Assuming M(0) = −∞ and integrating both sides of Equation (13),
we obtain

M(ξ) = r6 − (r6 − r4) ns2
(√

α

2
(r6 − r5)ξ, k2

)
. (26)

Substituting the last expression in (3), we obtain a new wave solution for the
SFRLW Equation (1) in the form

Q(x, t) =
[

r6 − (r6 − r4) ns2
(√

α

2
(r6 − r5)

(
kxp

Γ(p + 1)
+ ωt

)
, k2

)]
eρH(t)− ρ2

2 t,

(27)
which agrees with solution (23).

(d) When f = f1, in addition to the equilibrium solution at B, the system (9) has an
unbounded pink orbit intersecting the M-axis in exactly one point. Hence, the polyno-
mial (14) is written as W3 = 2α(r6 − M)(M − r7)(M − r∗7), where r6 ∈ R and r7 ∈ C.
Assuming M(0) = r6 and integrating both sides of Equation (13), we obtain

M(ξ) = A2 + r6 +
2A2

1 + cn
(√

2A2αξ, k3
) , (28)

where A2
2 = (Rer7 − r6)

2 + Imr7)
2, k2

3 = 1
2A2

[A2 + r6 − Rer7]. Using the transforma-
tion (3), a new solution for the SFLRW Equation (2) is constructed, given by

Q(x, t) =


A2 + r6 +

2A2

1 + cn
(√

2A2α
(

kxp

Γ(p+1) + ωt
)

, k3

)


eρH(t)− ρ2

2 t. (29)

(e) For f ∈ (−∞, f1), the system (9) has one of the unbounded orbits shown in cyan. The
solutions corresponding to these orbits take the form in Equation (29), with different
arguments.

The following lemma is crucial for constructing the solutions.

Lemma 1. The dynamical system (9) is invariant under the following transformations:

i. (α, β) → (−α, β), (M, N) → (−M,−N),

ii. (α, β) → (−α,−β), (M, N) →
(

2β
3α − M, N

)
,

iii. (α, β) → (α,−β), (M, N) →
(

M − 2β
3α , N

)
.
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Finding solutions for the SFRLW Equation (2) is equivalent to solving the dynamical
system (9). Thus Lemma 1 can be used to obtain the solutions depicted in Figures 1b and 2a,b
from (19), (21), (23), (25), (27), and (29).

Remark 1.

1. By setting ρ = 0, the solutions (19), (21), (23), (25), (27), and (29) give new solutions for the
deterministic version of Equation (2) (FLRLW).

2. By setting p = 1, the solutions (19), (21), (23), (25), (27), and (29) give new solutions for the
stochastic version of Equation (2) (SLRLW) with integer-order derivatives.

3. By setting p = 1 and ρ = 0, the solutions (19), (21), (23), (25), (27), and (29) give new
solutions for the deterministic Equation (2) (RLW) with integer-order derivatives.

Solution Degeneracy

In this section, we examine the consistency of the solutions obtained above by studying
their degeneracy through the transition between phase plane orbits.

(a) The family of periodic orbits in green shown in Figure 1a approaches the homoclinic
orbit in red as the parameter f approaches zero. Thus, we can obtain the homoclinic
solution by taking r4 = r5 = 0 and r6 = β

α , and the solution (25) becomes

Q(x, t)=
β

α

[
1 − sn2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

)
, 1

)]
eρH(t)− ρ2

2 t,

=
β

α

[
1 − tanh2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))]
eρH(t)− ρ2

2 t,

=
β

2
sech2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))
eρH(t)− ρ2

2 t,

(30)

which agrees with solution (21). Likewise, the family of unbounded orbits in green
will approach the unbounded orbit in pink when f approaches zero. Hence, for the
later orbit, the solution in (27) becomes

Q(x, t)=
β

α

[
1 − ns2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

)
, 1

)]
eρH(t)− ρ2

2 t,

=
β

α

[
1 − coth2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))]
eρH(t)− ρ2

2 t,

= − β

α
csch2

(√
β

2

(
kxp

Γ(p + 1)
+ ωt

))
]eρH(t)− ρ2

2 t.

(31)

(b) When f tends to 0, the family of unbounded orbits in blue approaches the homoclinic
orbit in red, as shown in Figure 1a. Therefore, we can obtain the solution by taking
r1 = β

α and r2 = r∗2 = 0, resulting in the solution given by Equation (19), becoming

Q(x, t)=
2β

α


1 − 1

1 + cn
(√

β
(

kxp

Γ(p+1) + ωt
)

, 1
)


eρH(t)− ρ2

2 t,

=
2β

α


1 − 1

1 + sech
(√

β
(

kxp

Γ(p+1) + ωt
)

, 1
)


eρH(t)− ρ2

2 t,

=
2β

α
[
1 + cosh

(√
2βξ

)] = β

α
sech2

√
β

2
ξ,

(32)
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which is consistent with the solution given in Equation (21).

This subsection demonstrates the correctness of the solutions and their consistency.

5. Physical Interpretations

In this section, we aim to study some of the solutions obtained previously, especially
the ones in (21) and (25). We will investigate the distinct effects of fractional order and
noise on these solutions, both separately and in combination.

We illustrate the solutions of the equations with fractional derivatives and/or varying
levels of noise with 2D and 3D graphics generated using Mathematica.

Let us assume m = 0.1, n = 0.4. Equation (2) becomes

dQ+
[
Tp

xQ− 0.05QTp
xQ
]
dt − 0.4T2p

x dQ = ρQdH. (33)

Let us assume that Equation (33) has a solution of the form (3) with ω = 2 and k = 10.
Using Equation (8), we obtain α = 0.01041666667 and β = 0.07500000000. Since α > 0 and
β > 0, Equation (33) has solutions given by (19), (21), (23), (25), (27), and (29).

We examine these solutions in each interval with real solutions.

1. For f = −0.25 ∈ ( f1, 0) = (−0.5759999997, 0), Equation (33) has a solution (25) which
is given by

Q(x, t)= [6.658708455 − 4.470368312sn2(
1.525882312xp

Γ(p + 1)

+0.3051764624t, 0.7336383764)]eρH(t)− ρ2
2 t.

(34)

Figure 3 illustrates the impact of noise on the solution (34) for Equation (33) with an
integer-order derivative, i.e., p = 1. Figure 3a shows that the solution, shown in blue, is
periodic in the deterministic case (when ρ = 0). As the strength of the noise ρ increases,
both the amplitude and the width of the solution decrease. The surface of the solution (34)
is initially periodic and smooth; however, as the noise strength increases, it nearly loses its
periodicity and becomes somewhat rough.
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Figure 4 shows the impact of fractional derivatives on the solution (34) for Equation (33)
in the deterministic case, i.e., when ρ = 0. The 2D representation in Figure 4a shows that
the solution, shown in blue, is periodic when p = 1. As the fractional order p decreases, the
solutions remain periodic, but the period lengthens. Meanwhile, the solution’s amplitude
stays nearly constant, but its width expands as p decreases. Figure 4b shows that the
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Figure 4 shows the impact of fractional derivatives on the solution (34) for Equation (33)
in the deterministic case, i.e., when ρ = 0. The 2D representation in Figure 4a shows that
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the solution, shown in blue, is periodic when p = 1. As the fractional order p decreases, the
solutions remain periodic, but the period lengthens. Meanwhile, the solution’s amplitude
stays nearly constant, but its width expands as p decreases. Figure 4b shows that the surface
depicting the solution (34) is periodic and smooth for all possible values of the fractional
order p.
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Figure 5 shows the combined influence of noise strength and using fractional-order
derivatives on the solution (34). As shown in Figure 5a, the solution is periodic in the
classical case (ρ = 0, p = 1). However, as the fractional order diminishes and the noise
grows, the solution remains approximately periodic, but its period increases significantly.
Its amplitude remains approximately constant and its width increases. The surface depict-
ing the solution (34) (Figure 5b) is periodic and smooth in the classical case (p = 1, ρ = 0)
but loses its smoothness as the noise strength increases.
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Figure 5 shows the combined influence of noise strength and using fractional-order
derivatives on the solution (34). As shown in Figure 5a, the solution is periodic in the
classical case (ρ = 0, p = 1). However, as the fractional order diminishes and the noise
grows, the solution remains approximately periodic, but its period increases significantly.
Its amplitude remains approximately constant and its width increases. The surface depict-
ing the solution (34) (Figure 5b) is periodic and smooth in the classical case (p = 1, ρ = 0)
but loses its smoothness as the noise strength increases.
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2. When f = 0, Equation (33) admits a solution of the form (21):

Q(x, t) = 7.199999998 sech2
(

1.936491673xp

Γ(p + 1)
+ 0.3872983346 t

)
eρH(t)− ρ2

2 t. (35)

Figure 6a shows the effect of noise strength on the solution (35) to the SFLRW
Equation (33) with integer derivatives. In the deterministic case, that is, in the absence
of noise, the solution (35) is solitary, as shown in blue. As the noise level increases, the
amplitude of the solution remains roughly the same, but its width decreases. Figure 6b
displays the surface depicting the solution (35) in the deterministic case. The solution is
symmetric and smooth. However, as the noise increases, this surface becomes rough and
loses its symmetry.
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Figure 7 illustrates the influence of the fractional order p on the solution (35) in the
absence of noise, i.e., ρ = 0. Figure 7a shows the solution is solitary and symmetric when
the fractional-order derivative is one. As the fractional order decreases from one, the
solution loses its symmetry and both its amplitude and width decrease. Figure 7b shows
the surface representing the solution (35). This surface is smooth and symmetric when
p = 1 and loses its symmetry as the order of fractional derivatives decreases.

p=1.0 p=0.3 p=0.1

-1.0 -0.5 0.5 1.0
x

1

2

3

4

5

6

7

Q

p=1 p=0.4

(a) 2D representation (b) 3D representation

Figure 7. The impact of the fractional order p on the solution (34) in the deterministic case with
different values of the fractional order p.

Figure 8 illustrates how the solution (35) for the SFLRW Equation (33) is influenced by
both the strength of noise and fractional derivatives. Figure 8a shows the solution as solitary
and symmetric in the classical case, i.e., when p = 1 and ρ = 0. As the fractional derivative
order declines and the intensity of noise increases, the solution loses its symmetry, and its
amplitude decreases. The surface representing the solution (35) is symmetric and smooth

Figure 6. The effect of the noise strength on the solution (35) with p = 1 and different values of the
noise strength ρ.
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absence of noise, i.e., ρ = 0. Figure 7a shows the solution is solitary and symmetric when
the fractional-order derivative is one. As the fractional order decreases from one, the
solution loses its symmetry and both its amplitude and width decrease. Figure 7b shows
the surface representing the solution (35). This surface is smooth and symmetric when
p = 1 and loses its symmetry as the order of fractional derivatives decreases.
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Figure 8 illustrates how the solution (35) for the SFLRW Equation (33) is influenced by
both the strength of noise and fractional derivatives. Figure 8a shows the solution as solitary
and symmetric in the classical case, i.e., when p = 1 and ρ = 0. As the fractional derivative
order declines and the intensity of noise increases, the solution loses its symmetry, and its
amplitude decreases. The surface representing the solution (35) is symmetric and smooth
in the classical case. However, it becomes rough and non-smooth as the order of fractional
derivatives decreases from one and the noise strength increases.
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6. Conclusions

This study explores how spatial fractional derivatives and the multiplicative Wiener
process affect analytical solutions of the (1 + 1)-dimensional regularized long wave equation.
We introduce new solutions of this equation and study their bifurcation. These solutions
are also new for the deterministic version of Equation (2), with fractional- or integer-order
derivatives, and for the stochastic version of Equation (2) with integer-order derivatives.
The utilization of bifurcation theory offers several advantages. It allows us to construct
real solutions only by introducing the concept of intervals of real propagation. When the
parameters are fixed, there are multiple intervals of real wave propagation. The solutions
corresponding to each interval differ significantly from the mathematical and physical
perspectives. Thus, e.g., for (α, β) ∈ R+ ×R+ and f ∈ ( f1, 0), there are two intervals of
real propagation. One of them is (r5, r6), a bounded interval where the corresponding
solution (25) is bounded and periodic, while the other is unbounded (−∞, r4) with the
corresponding solution (29) being unbounded. The utilization of these intervals of real
propagation is essential to the study of the solution. The exact solutions obtained can
be used to characterize a wide range of properties in the evolution of long waves. We
graphically explored the influence of fractional derivative orders and noise strength, both
separately and in combination, on some of the obtained solutions. These effects are evident
in the width, amplitude, smoothness, and periodicity of the solutions. Moreover, the
smooth surface of the solution in the deterministic case was roughened by the introduction
of a noise term and lost its periodicity as a consequence of the fractional-order derivatives.

This work offers several options for researchers desiring to advance the topic by explor-
ing Equation (2) in the presence of additive noise and conducting numerical investigations
to support our findings.
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Appendix A. Jumarie’s Modified Riemann–Liouville Derivative and Standard
Wiener Process

Definition A1 ([38]). Let f : R → R be a function and p ∈ R the fractional derivative of f of
order p in the sense of Jumarie’s modified Riemann–Liouville form, defined as

Tp
t ( f )(t) =





1
Γ(−p)

d
dt

∫ t
0 (t − s)−p−1[ f (s)− f (0)]ds, p < 0

1
Γ(1−p)

d
dt

∫ t
0 (t − s)−p[ f (s)− f (0)]ds, 0 < p < 1

(
f (n)(t)

)(p−n)
, n ≤ p < n + 1, n ≥ 1

. (A1)

This modified Riemann–Liouville derivative has the following properties that will be used
in this paper:

1. Tp
t (t

s) =
Γ(1+s)

Γ(1+s−p) ts−p,

2. Tp
t f [u(t)] = f ′u[u(t)]T

p
t u(t).

for any p− differentiable function f , f1, f2 at t, in the sense of Jumarie’s modified Riemann–
Liouville form.

Definition A2 ([39]). A Stochastic process {H(t)}t≥0 is a standard Wiener process if the following
are true:

1. H(0) = 0,
2. H(t) is a continuous function for t ≥ 0,
3. For t3 < t2 < t1,H(t1)−H(t2) and H(t2)−H(t3) are independent,
4. H(t2)−H(t1) has a normal distribution with mean zero and variance t2 − t1.
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