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Abstract: The transition from traditional to renewable energy sources is a critical issue in current
energy-generation systems, which aims to address climate change and the increased demand for
energy. This shift, however, imposes additional burdens on control systems to maintain power system
stability and quality within predefined limits. Addressing these challenges, this paper proposes an
innovative Modified Hybrid Fractional-Order (MHFO) automatic voltage regulator (AVR) equipped
with a fractional-order tilt integral and proportional derivative with a filter plus a second-order
derivative with a filter FOTI-PDND2N2 controller. This advanced controller combines the benefits
of a (FOTI) controller, known for enhancing dynamic performance and steady-state response, with
a (PDND2N2) controller to improve system robustness and adaptability. The proposed MHFO
controller stands out with its nine tunable parameters, providing more extensive control options
than the conventional three-parameter PID controller and the five-parameter FOPID controller.
Furthermore, a recent optimization approach using a growth optimizer (GO) has been formulated
and applied to optimally adjust the MHFO controller’s parameters simultaneously. The performance
of the proposed AVR based on the MHFO-GO controller is scrutinized by contrasting it with various
established and developed optimization algorithms. The comparative study shows that the AVR
based on the MHFO-GO controller surpasses other AVR controllers from the stability, robustness,
and dynamic response speed points of view.

Keywords: automatic voltage regulator; fractional-order control; growth optimizer (GO); renewable
energy microgrids; voltage control

MSC: 68N30

1. Introduction

A significant change in the dynamics of electrical power networks has occurred, mostly
as a result of changes in energy sources, grid structure, and power consumption patterns.
The rising prevalence of renewable energy sources in newly installed power systems has
become a particularly noticeable indicator of this transition, resulting in modifications to
the grid’s attributes. These advancements have made maintaining steady voltage levels and
frequencies a crucial objective in control system design. Frequency and voltage variations
can result in a negative impact on integrated loads, reducing their dependability and
durability [1]. These variations in voltage and frequency have a direct impact on a system’s
power losses, as well as its active and reactive power. Even small voltage variations can
have a significant effect on reactive power. When the voltage deviates more than the typical
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±5% from its rated value, it seriously affects the efficiency and operational life of appliances
or other connected power system components [2,3].

In particular, it is possible to effectively reduce the impact by managing voltage
changes in a proper way. Voltage control can be used in the generation, transmission, and
distribution phases of power networks. Several kinds of reactive power compensation
devices can be used in the transmission and distribution phases. Several examples exist in
the literature, including tap changers in transformers, different filtering devices, flexible
AC transmission systems (FACTSs), etc. Automatic voltage regulators (AVRs) are often
used to manage voltage variations at the generating stage as they show high efficiency in
controlling voltage on the synchronous generator’s generation side. However, adjusting the
AVR settings to account for many uncertainties and differences in AVRs, sensors, gains, and
other elements is an essential and crucial issue for the proper operation of these devices [4].

Actually, numerous AVR controllers based on the Proportional–Integral–Derivative
(PID) have been introduced in [5]. The PID controller, as a preferred solution in industrial
applications due to its straightforward structure and the well-understood impact of its
parameters on the output of controlled systems, has a prevalent advantage despite some
limitations existing [3,6]. Various PID controller designs have been addressed for AVR
systems, but traditional PID tuning methods like trial-and-error, Ziegler–Nichols, and root
locus often fall short in handling uncertain system parameters and load disturbances [7].
To address these shortcomings, a conventional PID controller was designed for AVR
systems, employing several metaheuristic algorithms to determine the best controller
parameters [7–10]. These controllers’ performance has been assessed and compared with
other studies.

Several algorithms in the literature for designing PID controllers include the pattern-
searching algorithm (PSA) [11], particle swarm optimization (PSO) [12], artificial bee colony
(ABC) [13], tree-seed algorithm (TSA) [14], grasshopper optimization algorithm (GOA) [15],
whale optimization algorithm (WOA) [16], improved WOA (IWOA) [17], genetic algo-
rithm (GA) [18], sine–cosine-based algorithm (SCA) [19], symbiotic organism searching
(SOS) algorithm [20], salp-swarm-based algorithm (SSA) [21], bacteria-foraging-based opti-
mization algorithm (BFOA) [22], ant–lion optimization (ALO) algorithm [23], differential
evolution algorithm (DE) [13], etc. The PID possesses only three tunable parameters repre-
sented by the gains of its terms (KP in the P-term, KI in the I-term, and KD in the D-term).
The literature shows a weak disturbance rejection capability with high sensitivity to the
process uncertainties of conventional PID control methods.

The conventional PID controller has an integer-order manner, but there has been a
shift towards Fractional-Order PID (FOPID) controllers. The FOPID-based controllers
are more flexible due to the additional included FO operator parameters. Optimization-
algorithm-based FOPID AVR controllers have been proposed in the literature, such as the
marine predator algorithm (MPA) [4], PSO [24,25], GA [25], ABC [26], Chaotic Ant Swarms
(CASs) [27], Multi-objective Extremal Optimizer (MOEO) [28], Cuckoo Searching (CS) [29],
SCA [30], Improved NSGA-II [31], salp swarm optimizer (SSO) [32], etc. Similar algorithms
have been presented using [33,34] PIDD2 based on PSO [35]. The FOPID has five tunable
parameters represented by the gains (KP, KI , and KD) and FO operators (λ in the FO-I term
and µ in the FO-D term). The slime mold optimization algorithm has been employed in [36]
for optimizing FOPID parameters.

Recent advancements in the FOPID include variable-order modifications [37]. Addition-
ally, state-feedback PID controllers have been developed [5,38], with a robust two-degree-of-
freedom (2DOF) state-feedback PI controller [5] that eliminates steady-state errors using
integral control, in addition to outperforming the one-degree-of-freedom (1DOF) PI con-
troller. Further enhancements to the 2DOF state-feedback PI controller employed a dynamic
weighted state-feedback method [20], offering flexibility under varying system conditions.
For the AVR, a distinct robust state-feedback controller was proposed, considering bounded
system uncertainties and external disturbances in its design [39]. To tackle AVR system
uncertainties, a non-fragile PID controller, optimized with a genetic algorithm, and a model
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predictive controller using Angle of Arrival (AOA) optimization were also introduced
in [40,41], respectively.

Although there has been a significant amount of study conducted on PID controllers,
the literature also showcases a wide range of control strategies. The use of a strong
controller that combines H∞ and µ-synthesis techniques is suggested to enhance resilience
against uncertainties and disturbances that are parametric and structured in nature [42].
The research work [43] introduced a model reference adaptive control method with a
fractional order, which was optimized using a genetic algorithm. In addition, a neural
network predictive controller for the AVR was optimized using an imperialist competitive
algorithm [44]. In [45], the researchers created an Emotional Deep Learning Programming
Controller (EDLPC) for AVR systems. The EDLPC incorporates an Emotional Deep Neural
Network (EDNN) structure and an artificial emotional Q-learning algorithm. Furthermore,
a recent investigation conducted in [46] focuses on improving AVR systems by employing
a deep deterministic policy gradient (DDPG) agent. This strategy prioritizes enhancing
the AVR’s ability to quickly and effectively adapt to changes in its environment, such as
variations in the load and alterations in the parameters, while also ensuring its resilience
and stability.

An extensive overview of the several optimization strategies for the AVR control
system tuning is shown in Table 1. It draws attention to the wide variety of methods
used in the literature to modify AVR controller structures. Each of these algorithms has
a different working principle, which determines its effectiveness. The various employed
objective functions are summarized in Table 2.

Table 1. Literature review for AVR controllers and employed design algorithms.

Method Controller TF Reference Algorithm No. of Tunable Parameters

PID C(s) = KP + KI
s + KD s

[11] PSA

3 (KP, KI , KD)

[12] PSO
[13] ABC
[14] TSA
[15] GOA
[16] WOA
[17] I-WOA
[18] GA
[19] SCA
[20] SOS
[21] SSA
[22] BFOA
[23] ALO

FOPID C(s) = KP + KI
sλ + KD sµ

[4] MPA

5 (KP, KI , KD, λ, µ)

[24] PSO
[25] GA
[26] NC-ABC
[27] CAS
[28] MOEO
[29] CS
[30] SCA
[31] NSGA-II
[25] PSO
[32] SSO

PIDF C(s) = KP + KI
s + KD s

N f s+1 [12] BBO 4 (KP, KI , KD, N f )

PIDD2 C(s) = KP + KI
s + KD s + KDD s2 [47] enAO 4 (KP, KI , KD, KDD)

PIDND2N2 C(s) = KP + KI
s + KD

N1s
s+N1

+ KDD
(N2s)2

(s+N2)2 [48] b-AOA 6 (KP, KI , KD, KDD N1, N2)

Proposed C(s) = Kts−
1
n + KI

sλ + KP + KD
N1s

s+N1
+ KDD

(N2s)2

(s+N2)2 Proposed GO 9 (KP, KT , KI , KD, KDD, n, λ, N1N2)
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Table 2. Employed single- and multi-objective cost functions from the literature.

Type Reference Cost Function

Single

[26] Obj = IAE =
∫
|ev|dt

[26] Obj = ISE =
∫

e2
vdt

[32] OF = ITAE =
∫

t · |ev|dt
[25] Obj = (ω1 · OS)2 + ω2 · T2

s + ω3
dV2

max

[24] Obj = ω1 · OS + ω2 · Tr + ω3 · Ts + ω4 · Ess +
∫
(ω5 · |ev|dt + ω6 · Vf (t)2)dt + ω7

Pm
+ ω8

Gm

[27] Obj = (1 − e−β) · (OS + Ess) + e−β · (Ts − Tr)
[25] Obj = ω1 · OS + ω2 · Ts + ω3 · Ess + ω4 ·

∫
|ev|dt + ω5 ·

∫
u2dt

Multiples
[28] Obj1 = IAE, Obj2 = 1000|Ess|, Obj3 = Ts
[31] Obj1 = ωc f , Obj2 = Pm
[49] Obj1 = ITSE =

∫
t · e2

vdt, Obj2 =
∫

t · ∆u2(t)dt, Obj3 = ITSE =
∫

t · e2
loaddt

Obj = objective, ISE = integral squared error, IAE = integral absolute error, ITSE = integral time-squared error,
ITAE = integral time absolute error, OS = overshoot, Ts = settling time, Tr = rise time, Ess = steady-state error,
u = control signal, ev = error voltage, eload = error signal during load disturbance, Gm = gain margin, Pm = phase margin,
ωc f = gain crossover frequency, ω1–ω8 = weighting factors, dVmax = maximum point of voltage signal derivative.

In this study, a new modified hybrid FO (MHFO) AVR based on the FO tilt integral
(FOTI) proportional derivative with a filter double derivative with a filter (PDND2N2)
controller, namely FOTI-PDND2N2, is proposed. The proposed FOTI-PDND2N2 controller
combines the benefits of using the FOTI controller with the PDND2N2 for ensuring better
dynamic performance and steady-state response and for enhancing controller robustness
and flexibility. Moreover, thanks to the authors’ knowledge, a new application of the growth
optimizer (GO) is proposed in the paper for optimally tuning the controller parameters
to obtain better system performance compared to the other controller or metaheuristic
methods in the literature. The major contributions of this paper can be summarized
as follows:

• A new modified hybrid FO (MHFO) controller is proposed for AVR applications in
this paper. The new proposed MHFO AVR method is developed based on the FO
tilt integral (FOTI) proportional derivative with a filter double derivative with a fil-
ter (PDND2N2) controller, namely FOTI-PDND2N2. The newly proposed controller
merges the benefits of the FOPID, PIDF, and TID controllers, leading to better perfor-
mance and enhanced characteristics. The tuning process of the control parameters is
made offline, which benefits the power and speed of recent microprocessor technologies.

• The proposed FOTI-PDND2N2 controller combines the benefits of the FOTI controller
with PDND2N2 for ensuring better dynamic performance and steady-state response,
and for enhancing controller robustness and flexibility. Also, the inclusion of filters
with derivative terms improves their responses, reduces noise, smooths the control
action, and has better stability.

• New practical applications of the recently developed growth optimizer (GO) method
is introduced in this paper for optimally optimizing the proposed FOTI-PDND2N2

controller’s parameters in a simultaneous manner. Both the recent GO algorithm’s
benefits and the associated benefits of the proposed FOTI-PDND2N2 controller are
combined to provide a more robust and wide-ranging, stable AVR control method.
Moreover, the GO algorithm guarantees the optimum parameter set together for
achieving minimization of the defined objective function.

The remainder of the paper is organized as follows: Section 2 provides the mathemati-
cal and structure representation of the AVR system. The proposed MHFO AVR controller is
presented in Section 3. The proposed design and optimization algorithm are detailed in
Section 4. Section 5 presents the obtained performance evaluation and comparison results.
Finally, the paper’s conclusions are provided in Section 6.
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2. Mathematical Representations of AVR Systems

The main elements of the AVR system include the generator, sensing, the AVR con-
troller, the amplifier, and the excitation system, as shown in Figure 1. The main objective of
the AVR controller is the regulation of the generator’s output voltage with various load
variations and disturbances. The control is achieved through controlling the generator’s
excitation system based on the error signal fed into the AVR controller.

The AVR system is affected by the connected electrical loads at its terminals. When
there is an increase in the connected loads, the AVR terminal voltage Vout drops. In
accordance, error voltage signal Ev (between measured signal Vm and reference setting
Vre f ) increases in the positive value direction. This, in turn, increases generator excitation,
reducing steady-state error voltage till reaching its minimum. In the steady state, generator
excitation is preserved constant to maintain stable voltage supply for all of the connected
loads, whereas in the load-reduction condition, terminal voltage Vout increases, leading to a
decrease in the error signal in the negative value direction. In the same way, excitation is
decreased till having the minimized steady-state error.

Ls

Ls

Ls

n

Amplifier

Sensor Power grid 

system
Power transformer

Generator

Exciter

R
ec

ti
fi

er

Vt

GG

Va
GE

GA

GS

Vs

Vref AVR Controller

Connected 

loads

Figure 1. Overall structure of AVR components connected to the grid system.

The AVR system elements’ transfer functions (TFs) are normally represented by the
Laplace transform of each block. Different elements of the AVR (including the generator,
amplifier, sensing system, and exciter) are modeled based on linearized first-order TFs to
facilitate the representation process. Their TFs (amplifier GA(s), generator GG(s), exciter
GE(s), and sensing system GS(s)) and their associated parameters’ range from the literature
are as follows [30,50]:

GA(s) =
KA

1 + sTA
, with

10 ≤ KA ≤ 400, and 0.02 s ≤ TA ≤ 0.1 s
(1)
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GE(s) =
KE

1 + sTE
, with

1 ≤ KE ≤ 10, and 0.4 s ≤ TE ≤ 1 s
(2)

GG(s) =
KG

1 + sTG
, with

0.7 ≤ KG ≤ 1, and 1 s ≤ TG ≤ 2 s
(3)

GS(s) =
KS

1 + sTS
, with

1 ≤ KS ≤ 2, and 0.001 s ≤ TS ≤ 0.06 s
(4)

where KA, KS, KG, and KE are gains and TA, TS, TG, and TE are time constants for the
amplifier, voltage sensing, generator, and exciter, respectively. The AVR’s complete mod-
eling using first-order TFs for its elements is represented in Figure 2. The voltage error
between desired reference Vre f (1 p.u., normally) and sensed voltage Vm represents the
controller input signal. The AVR controller functionality is to continuously minimize this
error, leading to a zero steady-state value in efficient control design.

Based on Figure 2, the complete AVR TF with the controller TF of C(s) is represented
by Gsys(s). The TF input/output is expressed as:

Gsys(s) =
C(s)GA(s)GE(s)GG(s)

1 + C(s)GA(s)GE(s)GG(s)GS(s)
(5)

More details about the characteristics of the AVR system response without the con-
troller can be found in [4,48,51]. The dynamics of the AVR system without the controller
(with C(s)=1 in (5)) exhibits very low values of the damping ratio for the existing complex
poles, which indicates the need for enhancing the uncontrolled AVR system’s performance.

 1+ sTA

KA 

Amplifier

 1+ sTE

KE 

Exiter

 1+ sTG

KG

Generator

 1+ sTS

KS 

Sensor

AVR Controller 
structure

∑ 
Ev

Vref

Vm

Vout

+
─

VEVA

Figure 2. First-order-based TF of AVR elements.

3. Proposed MHFO-AVR Controller
3.1. FOC Modeling and Theory

In various and wide applications in the literature, the FO control (FOC) has proven
itself as more flexible with the possibility of a higher degree of control optimization. The
inclusion of FO operators in FOC increases the number of tuning parameters of the control
systems. This, with proper design, can enhance the stability and response of different
processes. In FOC, the general representation Dα|ta is categorized as:

Dα|ta =


α > 0 → dα

dtα FO derivative (FOD)
α < 0 →

∫ tf
t0

dtα FO integrator (FOI)

α = 0 → 1 Integer Order (IOC)

(6)

The principal theories to represent FOC using the FO derivative (FOD) are summarized
as follows:
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1. Grunwald–Letnikov (GL)-based FOD representation: The αth FOD is represented by a
function ( f ) within [a – t] boundaries as:

Dα|ta = lim
h→0

1
hα

t−a
h

∑
r=0

(−1)r
(

n
r

)
f (t − rh) (7)

where h refers to the sampling period, and n can be used for fulfilling (n − 1 < α and
α < n). The associated binomials’ coefficients can be determined as:(

n
r

)
=

Γ(n + 1)
Γ(r + 1)Γ(n − r + 1)′

(8)

Γ(n + 1) =
∫ ∞

0
tx−1e−t dt. (9)

2. Riemann–Liouville (RL)-based FOD representation: In the RL-based FOD, summa-
tions and bounds are avoided and the IO-based derivative is employed. The FOD is
defined as:

Dα|ta =
1

Γ(n − α)

(
d
dt

)n ∫ t

a

f (τ)
(t − τ)α−n+1 dτ (10)

3. Caputo-based FOD representation: The FOD based on the Caputo definition is defined
as: Another representation of the FO derivative was made by Caputo, and it is defined
as follows:

Dα|ta =
1

Γ(n − α)

∫ t

a

f (n)(τ)
(t − τ)α−n+1 dτ (11)

From the practical implementation and discretization point of view, Oustaloup’s recur-
sive approximation (ORA) is the best way and has found several real-time implementation.
It can be programmed easily using digital control platforms, leading to simplifying its use
and widening its industrial applications. Moreover, it represents a suitable and familiar
way for tuning the procedures of the optimum control design. Accordingly, ORA is focused
on and employed in this work due to its dominance. In the ORA method, the αth FOD (sα)
is defined as:

sα ≈ ωα
h

N

∏
k =−N

s + ωz
k

s + ω
p
k

(12)

where ω
p
k refers to the poles and ωz

k refers to the zeros within ωh. Their mathematical
definitions are expressed as follows:

ωz
k = ωb(

ωh
ωb

)
k+N+ 1−α

2
2N+1 (13)

ω
p
k = ωb(

ωh
ωb

)
k+N+ 1+α

2
2N+1 (14)

ωα
h = (

ωh
ωb

)
−α
2

N

∏
k=−N

ω
p
k

ωz
k

(15)

in which this approximated representation possesses (2N + 1) poles/zeros, whereas N
defines the order of the ORA’s filter within (2N + 1). The ORA representation in this work is
based on using (N = 5) within (ω ∈ [ωb, ωh]), and is set within the [10−3, 103] rad/s range.
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3.2. Some Related AVR Methods

Generally, the IOC methods based on the PI and PID have found wide application in
several industrial processes and the AVR as well. The PI-based IOC is shown in Figure 3a,
and its TF is as follows:

C(s) =
Y(s)
E(s)

= KP +
KI
s

(16)

Y (s)

PK

1/s 

Σ

IK

Ev (s)

(a)

Y (s)

PK

1/s ΣIK

DK s 

Ev (s)

(b)

Y (s)

PK

1/s ΣIK

DK s 

Ev (s)

DDK  2s

(c)
Figure 3. Block diagrams for some of the existing IOC methods. (a) IOC based on PI control. (b) IOC
based on PID control. (c) IOC based on PIDD control.

On the other hand, the IOC based on the PID controller is shown in Figure 3b, and it
can be expressed as follows:

C(s) =
Y(s)
E(s)

= KP +
KI
s

+ KD s (17)
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in which KP, KI , and KD refer to the proportional (P-term), integral (I-term), and differential
(D-term) gains in the IOC based on the PID controller. The IOC PID method represents
a simple structure and easily implementable controller. However, the IOC PID method
loses its high performance with disturbances. Also, the PID possesses only three tunable
parameters in its design. Thence, wide concerns and the focus are targeted at developing
more robust, more flexible, and intelligent control methods for AVR applications. Another
PID with the double derivative is shown in Figure 3c, and it is represented as follows:

C(s) =
Y(s)
E(s)

= KP +
KI
s

+ KD s + KDD s2 (18)

The alternative and general method is using FOC methods with the extra added FO
operators, leading to more flexibility with a higher number of parameters to tune. The
FOC-based PID (FOPID) structure is widely used and has become more common. Figure 4a
presents the FOPID block diagram with the FOI and FOD terms. It is expressed as:

C(s) =
Y(s)
E(s)

= KP +
KI

sλ
+ KD sµ (19)

where λ and µ refer to the FOI operator and FOD operator, respectively. In AVR applications,
λ and µ can be tuned within the range [0, 2]. It can be seen that extra flexibility with better
performance are obtained through using FOC methods. Also, the FOPID has shown in the
literature a wide ability to deal with existing disturbances. The FOPID control is capable of
simultaneously handling multiple objectives at wide dynamical operating ranges compared
with their IOC-based counterparts. Another FOC based on the tilt integral—derivative
(TID) control method has been presented. Figure 4b presents the TID block diagram, and it
is mathematically represented as follows:

C(s) =
Y(s)
E(s)

= KT s−( 1
n ) +

KI
s

+ KD s (20)

where KT represents the tilt gain and n refers to the tilt component’s FO operator. The
inclusion of n presents a simpler tuning process, enhancing the disturbance rejection ability
and improving the system robustness against the parameters’ uncertainties. A hybrid
FOPID with the TID is presented, named the FOTID, as shown in Figure 4c. Its TF is
represented as follows:

C(s) =
Y(s)
E(s)

= KT s−( 1
n ) +

KI

sλ
+ KD sµ (21)

Y (s)

PK

λs/1 ΣIK

DK  µs

Ev (s)

(a)
Figure 4. Cont.
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Y (s)

TK

1/s ΣIK

DK s 

Ev (s)

)n/1(- s

(b)

Y (s)

λs/1 ΣIK

DK  µs

Ev (s)

TK )n/1(- s

(c)
Figure 4. Block diagrams for some of the existing FOC methods. (a) FOC based on FOPID control.
(b) FOC based on TID control. (c) FOC based on FOTID control.

3.3. The Proposed MHFO AVR Controller

The proposed AVR control method is based on a modified hybrid FO (MHFO) con-
troller for regulating the voltage. The proposed MHFO AVR controller combines the
advantages and features of IOC methods with FOC methods to provide a new modified
structure. It employs the FOC integral (FOI) and FOC tilt (FOT) from the FOTID control
method in the first part. In addition, it employs the IOC proportional (P)–derivative with
a filter (DN), and the double derivative with a filter (D2N2). Hence, a modified structure
with five branches is proposed with the FOT, FOI, P, DN, and D2N2 terms, forming a new
MHFO (FOTI-PDND2N2) controller. The hybridization of the IOC with FOC enhances the
system robustness and stability, in addition to increasing the controller flexibility. Also, the
number of tunable control parameters is increased from 5 to 9 parameters in the case of
the FOPID compared to the proposed FOTI-PDND2N2 controller. This, in turn, leads to
increased system capability to reject disturbances and keep the system stable even with
parameter uncertainty.

Therefore, the proposed FOTI-PDND2N2 controller combines the benefits and the
features from the IOC and FOC methods. It can be mathematically expressed as follows:

C(s) =
Y(s)
E(s)

=

(
Kts−

1
n +

KI

sλ

)
+

(
KP + KD

N1s
s + N1

+ KDD
(N2s)2

(s + N2)2

) (22)

The block diagram for the proposed FOTI-PDND2N2 controller is shown in Figure 5. It
can be seen that the proposed FOTI-PDND2N2 controller has 5 different branches compared
to the 3 branches in the FOPID and TID controllers. In addition, the proposed structure
has 9 tunable control parameters compared with the 5 parameters in the FOPID and the
4 parameters in the TID controller. Therefore, the proposed FOTI-PDND2N2 controller
provides better flexibility with a higher degree of freedom due to having more parameters to
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tune. The increased parameters enable providing better control robustness and performance.
In addition, proper parameter tuning is necessary for optimizing the proposed FOTI-
PDND2N2 controller’s performance. Recently developed metaheuristic optimizers have
proven to be easier and accurate ways for tuning different control methods in a wide variety
of applications. The control parameters can be optimized and determined simultaneously
using optimization algorithms based on the set objective function for the optimization
problem. In this work, the recent powerful growth optimizer (GO) is presented for a new
implementation in determining the control parameters for AVR applications.

Y (s)

λs/1 ΣIK

Ev (s)

TK )n/1(- s

DK

DDK

s 1N

1N+ s 

Σ

2)s 2N(
2)2N+ s (

PK

Σ

Figure 5. The proposed MHFO AVR controller based on new modified FOTI-PDND2N2 control method.

4. Optimum Design of Proposed MHFO-AVR Controller
4.1. Growth Optimization Algorithm

The growth optimization algorithm (GO) is a metaheuristic algorithm for optimizing
processes [52]. It is mainly inspired by the learning performed by individuals and its
reflection mechanisms on their growth in the society. Thence, the GO algorithm is composed
of two main phases: learning-based phase and reflection-based phase. The learning-based
phase is the first stage of the process, in which individual persons use their knowledge
about people’s differences in practice, whereas, in the reflection-based phase, individual
persons use different techniques for identifying and correcting their shortcomings in the
learning process [52].

The solutions in the GO algorithm for a certain problem are called individuals [52],
whereas decision variables are represented by necessary elements for individuals, such as
emotions, morality, beliefs, perseverance, cultivation, etc. A society or a population with a
certain number of individuals is represented by a set of decision variables as the matrix.
For the ith individual with i ∈ {1, 2, 3, . . . , N}, within the search space, is represented by
xi ∈ {xi,1, xi,2, . . . , xi,D}, where xi,D represents the Dth element of the ith individual. The
speed of individuals’ growth in the GO algorithm is defined according to the growth
resistance (GR). In general, the objective function of the optimization process receives
the ith individual, then it returns its corresponding output, represented by GRi of the
ith individual. With lower GR of the individual, it absorbs more knowledge, and hence,
it is possible to be an elite member in the society. In the GO algorithm, population xi
representing the problem solution is generated as [52]:

Xi = r × (U − L) + L , i = 1, 2, . . . , N (23)
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where r stands for a random value and U and L stand for the search domain’s limits of the
optimization problem, whereas N stands for the solutions’ total number within xi. In GO,
xi is split into three different parts based on setting parameter P1, with P1 = 5 based on [52].
In the first part, the leader and elites are compromised between 2 and P1. In the second
part, the middle level from P1 + 1 to N − P1 is included, whereas, the bottom level from
N − P1 + 1 to N is contained. The best solution among the individuals is represented by
the leader of the upper level.

4.1.1. Learning Phase

The progress of the individuals is greatly enhanced through confronting disparities
among individual people, examining the causes behind their differences, and learning
from them. The learning phase of the GO simulates four different key gaps, which that are
formulated as [53]:

G1 = Xb − Xbt
G2 = Xb − Xw
G3 = Xbt − Xw
G4 = Xr1 − Xr2

(24)

where Xb, Xbt, and Xw refer to the best, better, and worst solutions, respectively. Moreover,
Xr1 and Xr2 refer to two randoms solutions. Gk (with k ∈ {1, 2, 3, 4}) denotes the employed
gap to improve the learned skills of individuals and to decrease the differences among
them. In addition, the learning factor (LF) represents a parameter to be applied to reflect
the variations among groups. The parameter LF is formulated as follows [54]:

LFk =
||Gk ||

∑4
k=1 ||Gk ||

(25)

Based on [52], each individual assesses the learned knowledge through parameter
(SFi), which is represented as [52]:

SFi =
GRi

GRmax
(26)

where GRmax and GRi are the maximum GR of X and the growth of individual Xi, re-
spectively. Based on the collected information from LFk and SFi, new knowledge can be
received for every Xi from the solution related to each gap Gk using knowledge acquisition
(KAk), which is determined as [53]:

KAk = SFi × LFk × Gk , k = 1, 2, 3, 4 (27)

Afterwards, the solution Xi can enhance its information through using the following [54]:

Xi(t + 1) = Xi(t) +
4

∑
k=1

KAk (28)

The quality of the updated Xi value is calculated and compared with the last value to
define if they are significantly different. The value of Xi(t + 1) is determined as [53]:

Xi(t + 1) =


Xi(t + 1) if f t+1

i < f t
i

Xi(t + 1) if r1 < P2 and
ind(i) = ind(1)

Xi(t) else

otherwise
(29)

where r1 represents a random number and P2 represents the probability of retention (P2 = 0.001),
whereas ind(i) represents the Xi ranking in ascending order using the fitness value.
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4.1.2. Reflection Phase

As explained earlier, the GO algorithm is based on the learning and reflection phases.
Thence, individuals have to learn how to reflect instead on only learning. Thence, individu-
als have to check and identify all their weakness areas. In addition, a systematic learning
process is whenever understanding particular issues cannot be solved. They have to learn
from their outstanding individuals to repair their bad issues. In addition, they should retain
and continue their good aspects. Accordingly, the reflective process in the GO algorithm is
mathematically represented as follows [52]:

Xi(t + 1) =

{
Xm(t) if r2 < P3

Xi(t) Otherwise
(30)

where Xm(t) is represented as follows [54]:

Xm(t) =

{
r4 × (U − L) if r3 < AF
Xi(t) + r5 × (XR − Xi(t)) else

(31)

AF = 0.01 + 0.99 × (1 − FEs

macFE
) (32)

where r3, r4, and r5 stand for random variables. XR stands for the defined solution by the
top P1 + 1 solutions within X, whereas AF stands for the attenuation factor, which relies on
the evaluated function FE and the total number for the function evaluations maxFE. After a
complete reflection phase, Xi have to determine its growth as in the learning phase. Thence,
(29) can be employed for this evaluation.

4.2. Application to Optimum Design of Proposed MHFO AVR Controller

A schematic diagram representing the optimization process of the proposed MHFO
AVR controller is shown in Figure 6. In addition, the main procedures for the entire
operation of the GO algorithm are shown in Figure 7. Firstly, the system is modeled and
the controller is connected to the AVR system, enabling adjusting the parameters through
the m-file by the optimization algorithm to search for the optimum values. Secondly, the
optimization algorithm is run, and in every iteration, the objective function is calculated and
compared with the previous global optimum objective function. The objective function is
updated when there are smaller values in the current iteration. Finally, when the maximum
number of iterations is reached, the final optimum control parameters with the optimum
objective function and convergence curves are output and used for the AVR system’s
simulation and evaluations.

On the other hand, the performance of the AVR system is highly determined according
to the employed objective function type. The objective function is responsible for driving
the optimization process. As shown in the literature, there are several objective functions
for single and multiple objectives. In general, the combination of different tunable control
parameters is designed and optimized in a way to continuously minimize the set objective
function. The measurement of the output voltage with the reference voltage is employed
to form the error-based objective function. In the literature, there are four principal error
ei-based objective functions, as follows:

1. Integral-squared error (ISE):

ISE =
∫ m

∑
i=1

(e2
i ) dt (33)

2. Integral time-squared error (ITSE):

ITSE =
∫ m

∑
i=1

(e2
i ) t.dt (34)
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3. Integral absolute error (IAE):

IAE =
∫ m

∑
i=1

abs(ei) dt (35)

4. Integral time absolute error (ITAE):

ITAE =
∫ m

∑
i=1

abs(ei) t.dt (36)
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Figure 6. Schematic diagram of GO-based optimization of proposed MHFO AVR controller.

In this work, the ITAE objective function is selected for optimizing the proposed
MHFO AVR controller. The error voltage signal eV is utilized for evaluating the objective
function in each iteration of the GO algorithm. The ITAE is preferred in this paper as it
provides a better control response in AVR system. The ITAE integrates the absolute error,
which is suitable for the case of the AVR system with error less than 1. Moreover, it makes
the integration of time, which leads to having zero steady-state error. The process of the
searching mechanism within the search space is determined by the GO optimizer, and
finally, a set of the best nine parameters to minimize eV is output from the algorithm. The
parameter search space boundaries are set as the problem constraint as follows:

Kmin
T ≤ KT ≤ Kmax

T

Kmin
I ≤ KI ≤ Kmax

I

Kmin
P ≤ KP ≤ Kmax

P

Kmin
D ≤ KD ≤ Kmax

D

Kmin
DD ≤ KDD ≤ Kmax

DD

nmin ≤ n ≤ nmax

λmin ≤ λ ≤ λmax

Nmin
1 ≤ N1 ≤ Nmax

1

Nmin
2 ≤ N2 ≤ Nmax

2

(37)

in which ( f )min and ( f )max refer to the lower/upper limiting boundaries of each parameter,
respectively. The parameters Kmin

T , Kmin
I , Kmin

P , Kmin
D , and Kmin

DD are set at 0.0, and Kmax
T , Kmax

I ,
Kmax

P , Kmax
D , and Kmax

DD are set at 3.0. Also, λmin is set at 1, whereas λmax is set at 2 within the
GO-based algorithm. The values for nmin and nmax are set at 2 and 10, respectively. The
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filter coefficients Nmin
1 , and Nmin

2 are set at 50, whereas Nmax
1 is set at 500 and Nmax

2 is set at
1000 in the proposed optimization procedures.

Initialization Stage:

1- Define GO settings N, P1=5, P2=0.001, P3=0.3, and D 

2- Define maximum iteration number (MaxFE)

3- Define parameters boundaries (U, L) as L= (f)min and U=(f)max in (37)

4- Setting desired Objective for optimization process using (36)

5- Initalize Population Xi using (23)

Start the optimization procedures

Is FEs > MaxFEs ? 

Output process solution of the best nine controller parameters

Ending the optimization procedures

FEs = FEs + 1

Set FEs=1:MaxFE

No

Learning Phase:

1- For i=1:N, Evaluate the better and worse solution values

2- Evaluate G1, G2, G3, and G4, as in (24) 

3- Calculate LFk, with k=1, 2, 3, and 4, as in (25)

4- Calculate SFi, as in (26)

5- Calculate KAs, with k=1, 2, 3, and 4, as in (27)

6- Complete learning phase for ith individuals as in (28) and update using (29)

Reflection Phase:

1- For i=1:N,  complete reflection stage for ith individuals once using (30), (31) and (32) 

2-  Update the ith individual based on (29) 

3- Real time updating of the best solution 

Figure 7. Main phases and entire operation of GO algorithm.
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5. Simulation Results

This part discusses the performance testing of the proposed FOTI-PDND2N2 control
scheme in controlling the AVR system by investigating its performance with different
loading situations such as full load, no load, and multi-step load perturbations (MLP)
against the uncertainties of the AVR system parameters. Moreover, the performance
validation of the proposed controller is examined by comparing it with the conventional
PID controller, which is tuned by the differential evolution (DE) technique as method (A).
It is further compared to method (B) of the FOPID-based salp swarm algorithm (SSA),
method (C) of PIDD2-based particle swarm optimization (PSO), method (D) of the FOPID-
based Manta Ray-Foraging Optimization (MRFO), and method (E) of the FOPID-based
marine predator optimization algorithm (MPA) control methods. The optimized controller
parameters for every method are shown in Table 3. Moreover, the discrete implementation
realization of the proposed FOTI-PDND2N2 controller is tested utilizing the MATLAB
SIMULINK R2022a software, which is interfaced with the programming GO M-file code to
select the optimal parameters of the proposed controller using the integral time absolute
error (ITAE) objective function via a personal computer with an Intel® i7 2.7GHz processor
and 16 GB of RAM. The optimization process of the proposed GO has been executed
using 50 iterations and 30 populations and compared with the MPA, MRFO, SSA, PSO,
and DE, as depicted in the convergence curve of Figure 8, which proves the best and
flat performance of GO against the other processes. The tested comparison scenarios are
organized as follows:

Table 3. Controllers parameters.

Method Controller Optimizer KP Kt Ki Kd1 Kd2 n λ µ N1 N2

A PID-DE 1.9499 - 0.4430 0.3427 - - - - - -
B FOPID-SSA 1.9982 - 1.1706 0.5749 - - 1.14 1.17 - -
C PIDD2-PSO 2.7784 - 1.8521 0.9997 0.0739 - - - - -
D FOPID-MRFO 1.6506 - 0.7878 0.3932 - - 1.21 1.21 - -
E FOPID-MPA 1.7061 - 0.8068 0.4 - - 1.13 1.22 - -

Proposed MHFO-GO 2.5105 2.9582 2.7086 1.9033 0.1558 7.19 1.12 - 92.23 375.2
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Figure 8. Convergence curve comparisons of GO algorithm with the literature.

5.1. Scenario 1: Full-Load Condition

The performance of the proposed method to enhance the AVR system output is
examined under a step change in the reference voltage at the initial instant of the simulation
time and the full-load condition at (KG = 1) in this scenario. Figure 9 shows the voltage
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response of the AVR system in this case. It is shown in this figure that the proposed
controller-based GO offers remarkable performance with a 1.039 p.u peak value compared
to 1.053 p.u and 1.061 p.u with method (D) and method (E), respectively, while the voltage
peak reaches to about 1.15 p.u when using the method (C) controller and 1.23 p.u with
the method (B) controller. Despite method (A) having a peak of only 1.02 p.u, it does not
settle down and is fixed at this value, whereas the methods (A), (B), (D), and (E) have
settling time values of 3.5 s, 2.7 s, 1.1 s, and 1.05 s, respectively. However, the proposed
method has the fastest settling time with ts = 0.088 s and a rise time of tr = 0.032 s. Table 4
summarizes all numerical results of this scenario, which proves that the proposed method
has robust performance compared to other AVR controllers in terms of ts, tr, tp, and Mp.
The obtained results clarify the effectiveness of the second-order derivative and filter parts
via the performance of the proposed controller.

Table 4. AVR time domain specifications of the proposed controller.

Scenario Case Peak Value (p.u.) TP(s) Tr(s) Ts(s)

(1) Full Load (Kg = 1) 1.0545 0.0630 0.0293 0.0879
(2) No Load (Kg = 0.7) 1.0007 0.3580 0.0514 0.0892
(3) MLP 1.1004 8.0124 0.0293 8.0424
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Figure 9. The AVR output in the full-load scenario with a step change in the reference voltage.

5.2. Scenario 2: No-Load Condition

This scenario investigates the AVR system performance under the same conditions
as scenario 1 with the no-load case of (kG = 0.7). Figure 10 shows the output voltage of
the AVR system for different control techniques. It is clear that method (A) suffers from a
steady-state error as the output voltage cannot reach the reference value, while method (B)
exhibits the highest peak voltage value as it exceeds 1.1 p.u and its settling time to reach
the reference value is greater than 3 s. Also, method (C) has a peak voltage at 1.054 p.u
with a settling time of around 1.1 s. In addition, method (D) and method (E) do not exceed
0.992 p.u of the voltage; they take a settling time of around 1.15 s to reach the reference
value. However, the proposed method with the double derivative and filter exhibits a
reduced overshoot peak value to 0.998 p.u and a fast tracking of 0.51 s in this severe no-load
step change scenario. Therefore, the proposed method has much better levels in terms of ts,
tr, tp, and Mp than the compared controllers, as tabulated in Table 4.
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Figure 10. The AVR output in the no-load scenario with a step change in the reference voltage.

5.3. Scenario 3: Multi-Step Load Condition

The capability of the proposed method is investigated during this scenario against
the load disturbance rejection, which represents an additional robustness criterion for the
AVR output control. Therefore, the AVR system has been subjected to a load disturbance
of ±10% of the rated terminal voltage through the interval of 10 s, as shown in Figure 11.
Furthermore, this figure shows the impact of the load action on the output voltage consid-
ering different types of control techniques. It can be observed that the proposed method
can maintain the peak value within ±5% of the allowable limits through the five steps of
the load injection/rejection process. Method (A) has a lower peak value than the other
methods, but with a fixed high value of the steady-state error until the end of the simulation
time, while method (B) has a peak voltage overshoot of more than 10% of the reference
value, particularly at the first step change accompanied by the steady-state error value.
Method (C) exhibits a proper performance with reduced settling time (around 0.7 s) and
decreased overshoot around (±10%). Methods (D) and (E) give a satisfactory performance
with the settling time around 0.2 s and ±10% overshoot. From these results, it is obvious
that the proposed method using MHFO-GO demonstrates reliable performance against
load disturbance injections and rejections. The proposed method generates rapid and
precise control inputs to maintain the AVR system stability at the rated value and within
acceptable values of ts, tr, tp, and Mp, as listed in Table 4.

Figure 11. The AVR output in the multi-step load condition scenario.



Fractal Fract. 2024, 8, 300 19 of 26

5.4. Scenario 4: Sensitivity Analysis

Generally, load fluctuations and external factors may cause changes in the AVR sys-
tem’s design specifications. Therefore, it is important to investigate AVR system perfor-
mance with parameter changes. To illustrate the behavior of the terminal voltage (vt), the
AVR parameters (ta, te, tg, and ts) are allowed to be changed by both ±25% and ±50%.
An evaluation of the proposed controller’s efficacy under both the normal operating and
modified system parameter scenarios is developed in this study as well. The performance
parameters of the AVR system (i.e., peak value, ts, tr, and tp) that are controlled by the pro-
posed controller in accordance with the adjusted time-constant requirements are listed in
Table 5. It is seen in the table that changes in TA, TE, and TG increase the system overshoot
by 20%, 25%, and 37% with respect to the nominal scenario, while decreasing TS by 50%
eliminates system overshoots without affecting the settling time, while increasing TA by
50% decreases the system overshoot to 8% and extends the settling time to be 250% com-
pared to the nominal scenario. On the other hand, increasing TG and TE by 50% accelerates
the system response while eliminating system overshoots and extending the system settling
time to be 0.45 s and 0.2 s, respectively. On the contrary, increasing TS by 25% and 50% in-
creases the system overshoots to 10% and 17%, respectively. The output of the AVR system
step response when the TA, TG, TE, and TS parameters change is shown in Figure 12a–d.
It is seen that the proposed controller has the capability and efficacy to maintain system
stability even with parameter changes. On the other hand, the proposed controller has
been compared with other control techniques under the parameter uncertainties to validate
its effect on the AVR’s performance. This can be observed from Figures 13–16, which show
the system performance with the AVR parameter uncertainty with the different controllers
in the literature. All the results show that the proposed controller has the best voltage
stability result for the AVR system compared to all suggested methods under ±25% of all
time constant values of the AVR system.

Table 5. AVR time domain specifications for scenario 4.

Parameters Percentage Change Peak Value (p.u.) TP(s) Tr(s) Ts(s)

Nominal 100% 1.0545 0.0630 0.0293 0.0879

TA

+50% 1.0670 0.1110 0.0458 0.2214
+25% 1.0521 0.0860 0.0377 0.1440
−25% 1.0945 0.0460 0.0213 0.1844
−50% 1.2035 0.0340 0.0142 0.2459

TG

+50% 1.0084 0.6320 0.0542 0.0899
+25% 1.0117 0.0880 0.0408 0.0628
−25% 1.1498 0.0470 0.0202 0.1242
−50% 1.3495 0.0350 0.0131 0.1706

TE

+50% 1.0172 0.1390 0.0521 0.0814
+25% 1.0206 0.0890 0.0401 0.0940
−25% 1.1388 0.0470 0.0204 0.1361
−50% 1.3203 0.0350 0.0133 0.2989

TS

+50% 1.1532 0.0630 0.0268 0.1609
+25% 1.1039 0.0620 0.0278 0.0980
−25% 1.0099 0.0680 0.0321 0.0498
−50% 1.0005 0.0580 0.0372 0.0722
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Figure 12. AVR parameter uncertainty with the proposed controller. (a) Uncertainty in TA.
(b) Uncertainty in TG. (c) Uncertainty in TE. (d) Uncertainty in TS.
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Figure 13. Impact of changing TA: (a) +25% TA; (b) −25% TA.
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Figure 14. Impact of changing TG: (a) +25% TG; (b) −25% TG.
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Figure 16. Impact of changing TS: (a) +25% TS; (b) −25% TS.

5.5. Scenario 5: Frequency Domain Analysis

This scenario presents the Bode analysis of the AVR system to demonstrate the realiza-
tion of the proposed FOTI-PDND2N2 control structure in the frequency domain. The Bode
plot, shown in Figure 17a for the open-loop AVR system, reveals that the open-loop system
is marginally stable, as noticed by a negative gain margin of −2 dB and a negative phase
margin of −5.34 degrees. The observed margins indicate that the system’s amplification is
already excessively high prior to reaching the phase crossover point, and the phase delay
is severe, beyond the −180-degree threshold before the amplification decreases to 0 dB.
Therefore, the system is susceptible to oscillations and instability. Moreover, the delay
margin of 0.094 s indicates a vulnerability to further instability when more time delays are
introduced. In another context, this figure clearly indicates that the open-loop system is
unstable due to the negative margins shown. Therefore, the current state of this system
requires the implementation of stabilizing techniques, such as feedback compensation, in
order to rectify its reaction and guarantee optimal performance.

The proposed controller gain magnitude and phase compensation are shown in Figure 17b.
The Bode plot of the closed-loop system equipped with the proposed controller is shown
in Figure 17c. It shows that the closed-loop gain margin is a substantial 26.3 dB, which
indicates that the system can tolerate a significant increase in gain before reaching instability.
The phase margin is also very large at 139 degrees, which suggests that the system can
withstand a considerable amount of additional phase lag without becoming unstable.
Therefore, the proposed controller guarantees the AVR system’s stability with a wide
bandwidth, which enables the AVR system to accurately address the system parameter
uncertainty and random disturbances as well.
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Figure 17. Bode plots of AVR system and controller. (a) Open-loop-only response. (b) Controller-only
response. (c) Closed-loop complete system response.
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5.6. Scenario 6: Frequency Domain Performance Comparisons

A comprehensive analysis was conducted to compare the stability indices of the
MHFO-GO (FOTI-PDND2N2) AVR controller proposed in this study with various methods
found in the existing literature. The study examined the gain margin (GM), phase margin
(PM), and controller bandwidth (BW) of the loop transfer function for both the AVR
and the proposed controller. Table 6 presents a summary of the results obtained and
the evaluation of the proposed FOTI-PDND2N2 controller. It is evident from the table
that the proposed method exhibits a PM of 64.3◦, surpassing the performance of PID
controllers based on the DE, the FOPID controllers based on the SSA, the PID controllers
based on the SCA, the FOPID controllers based on the MRFO, and the FOPID controllers
based on the SMA methods. Furthermore, while the proposed FOTI-PDND2N2 controller
demonstrates a slightly lower PM compared to the PIDD2 controllers based on PSO, the
PIDA controllers based on the WOA, and the PIDND2N2 controllers based on the AOA,
it offers a significantly better bandwidth than these methods and all others examined in
the literature. Additionally, the GM of the proposed method proves to be notably superior
to that of the majority of the studied methods. These results collectively demonstrate the
superior stability performance of the newly proposed method.

Table 6. Frequency domain response performance comparisons

Reference Controller Phase Margin PM (◦) Gain Margin GM (dB) Bandwidth BW (rad/s)

[13] PID based on DE 36.1 371.5 12.8
[21] FOPID based on SSA 51.5 Inf. 21.3
[19] PID based on SCA 52.6 20.3 14.8
[4] FOPID based on MRFO 62.9 Inf. 16.7

[35] PIDD2 based on PSO 79.6 Inf. 23.5
[36] FOPID based on SMA 49.1 20.2 22.9
[16] PIDA based on WOA 67.7 26.1 6.7
[48] PIDND2N2 based on AOA 69.8 23.4 57.8

Proposed MHFO-GO (FOTI-PDND2N2) 64.3 26.8 62.4

6. Conclusions

In this paper, a novel MHFO-GO controller including the fractional tilt integral com-
bined with the proportional and first-/second-order derivative filter controller is con-
structed to improve the system control ability of the AVR. Moreover, the recent GO algo-
rithm utilizing the integral of time multiplied by the absolute error (ITAE) performance
criterion has been interfaced with the AVR SIMULINK system to optimize the nine control
parameters of the proposed MHFO-GO (FOTI-PDND2N2) controller. The validation of the
proposed GO algorithm was tested under 50 iterations and 30 populations with a compari-
son with the MPA, MRFO, SSA, PSO, and DE. In addition, the AVR performance based on
the proposed controller was quantitatively compared with several conventional and frac-
tional PID controllers in the literature. It can be revealed from the obtained analytical results
that the proposed MHFO-GO controller achieves a superior response performance against
the steady-state error, multi-step load disturbances, and system uncertainties and, hence,
preserves the AVR system stability. This is due to the merits of the proposed combination
of the FOTI and PDND2N2. Therefore, the proposed controller provides the best ITAE
minimization with less settling time, rise time, and percentage maximum peak compared
to other traditional and fractional PID control methods. Future work suggestions include
making some online control parameter adjustment, presenting simplified design methods
for the optimum parameter selection process, and performing further detailed stability
analysis and comparisons.
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