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Abstract: Fast and accurate pose estimation is essential for the local motion control of robots such
as drones. At present, camera-based motion capture (Mocap) systems are mostly used by robots.
However, this kind of Mocap system is easily affected by light noise and camera occlusion, and
the cost of common commercial Mocap systems is high. To address these challenges, we propose
Easy Rocap, a low-cost, open-source robot motion capture system, which can quickly and robustly
capture the accurate position and orientation of the robot. Firstly, based on training a real-time
object detector, an object-filtering algorithm using class and confidence is designed to eliminate
false detections. Secondly, multiple-object tracking (MOT) is applied to maintain the continuity of
the trajectories, and the epipolar constraint is applied to multi-view correspondences. Finally, the
calibrated multi-view cameras are used to calculate the 3D coordinates of the markers and effectively
estimate the 3D pose of the target robot. Our system takes in real-time multi-camera data streams,
making it easy to integrate into the robot system. In the simulation scenario experiment, the average
position estimation error of the method is less than 0.008 m, and the average orientation error is
less than 0.65 degrees. In the real scenario experiment, we compared the localization results of
our method with the advanced LiDAR-Inertial Simultaneous Localization and Mapping (SLAM)
algorithm. According to the experimental results, SLAM generates drifts during turns, while our
method can overcome the drifts and accumulated errors of SLAM, making the trajectory more stable
and accurate. In addition, the pose estimation speed of our system can reach 30 Hz.

Keywords: motion capture; robot; UAV; UGV; LiDAR; SLAM; point cloud

1. Introduction

The rapid technological advances in robotic systems have inspired the development
of unmanned platforms, including unmanned ground vehicles (UGVs), unmanned aerial
vehicles (UAVs), and quadruped robots [1,2]. Pose estimation plays an important role
in robotic applications. Without accurate estimation of position and velocity, a robot is
unable to build the correct spatial representation of the environment, which leads to the
impossibility of trajectory planning and execution [3]. In open outdoor environments, GPS
and inertial measurement unit (IMU)-integrated navigation technology can provide pose
information effectively [4,5]. However, in indoor environments, GPS signals attenuate
severely, leading to inaccuracies in the provided location information [6,7]. Therefore,
real-time pose information remains particularly crucial for most mobile robots.
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There is a large amount of research exploring indoor positioning technology for robots,
including visible light positioning (VLP), computer vision [8], ultrasonic [9], Bluetooth [10],
and so on. Among them, both VLP and computer vision approaches reach high accuracy
at a low cost [7]. Previous research has achieved speed improvements in VLP. However,
this approach requires the unmanned device to carry heavy industrial cameras and high-
performance processors [11], which is a challenge for payload-limited drones and other
small robots [12,13]. Some computer-vision-based approaches utilize depth cameras to
estimate the position changes of drones [14], but they are unsuitable for small-scale ex-
periments with high precision requirements because of the limited positioning range and
the significant dependency on the target detection result of drones [15]. Recently, with
the rapid technological advances in computer hardware, the cost of visual positioning has
been significantly reduced, and the rapid progress in visual algorithms has made real-time
positioning possible. However, these positioning methods need to integrate other data like
IMU data to obtain the position and orientation, which makes the approaches complex.

Simultaneous localization and mapping (SLAM) provides a framework for positioning
and mapping, and a variety of technical methods have emerged in recent years [16,17].
Xu et al. [18] proposed a method of tightly coupling multiple LIDARs with IMU data for
odometry, significantly improving the accuracy of pose estimation. Sun et al. [19] achieved
self-pose estimation in weak GNSS environments by integrating GNSS, RGB camera, and
IMU data on the drone. However, there are several challenges for SLAM on lightweight
UAV platforms: due to the limited load, it is difficult to have sensors and computers of
the same quality as those on ground robots [20]; UAVs have six degrees of freedom (DOF)
poses, and cannot make some simplified assumptions like wheeled robots. At the same
time, autonomous UAVs require high-frequency and real-time pose information to ensure
stable control of the platform. Given these challenges, as well as the need for true pose data
for indoor SLAM accuracy evaluation, it is essential to study a low-cost and high-precision
method for indoor UAV pose estimation.

Motion capture (Mocap) systems based on cameras have better performance in robotic
applications [21,22]. Most of these systems are commercial Mocap systems, such as Vicon,
OptiTrack, and so on. However, commercial Mocap systems in the market often have a
high cost and lack open-source software and hardware, making it difficult to deploy them
on robots. The open-source Mocap toolbox Easy Mocap (https://github.com/zju3dv/
EasyMocap (accessed on 29 March 2021)) provides the technology for capturing human
body motions using multiple RGB cameras. However, mobile unmanned platforms such
as UGV and UAV do not have structural key points with fixed connections like human
joints. Therefore, markerless Mocap methods based on deep learning are inefficient, and
it is difficult to directly apply Easy Mocap to robots. Utilizing infrared (IR) camera-based
Mocap systems enables the position triangulation of markers on the target robot, which
can be used for pose estimation of rigid bodies [23]. However, unlike the typical Mocap
experimental environment with a single background and controlled lighting, the actual
working environment of unmanned platforms is complex. IR Mocap systems are susceptible
to environmental light noise, and camera occlusion is the most challenging problem.

In response to the above challenges of ambient light noise and the lack of access to
the source code of high-precision Mocap systems, we propose a simple, yet open-source
motion capture system named Easy Rocap, which uses markers of special material as
the tracking objects of the mobile robot and uses multiple fixed cameras to perform 3D
intersection to accurately estimate the position and orientation of drones and other robots
in real time. Diverging from Mocap systems that rely on infrared cameras, our system
takes indoor potential noise and obstacles into consideration, employing object filtering
and multi-object tracking (MOT) algorithms that fuse object detection technology to ensure
trajectories remain continuous and precise. Our main contributions are as follows.

(1) A Multi-view Correspondence method that combines Object Detection and MOT
is proposed. The dual-layer detector achieves robust object detection in complex
environments, and the MOT method can stably track markers under short-term
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occlusion. Multi-view correspondences use geometric constraints to correctly match
corresponding image points.

(2) A high-precision 3D robotic pose estimation system for complex dynamic scenes is
open-sourced. When there is no obstruction in the simulation environment, the aver-
age positioning accuracy reaches 0.008 m, the average orientation accuracy reaches
0.65 degrees, and the solving speed reaches 30 frames per second (FPS).

The motion capture system proposed in this paper offers real-time pose information
for robots in the experimental area. To assess its performance, extensive experiments were
conducted using multiple cameras, including simulated environments and real scenes.
The structure of the paper is outlined as follows. Section 2 presents the related works.
Section 3 describes the system comprehensively, detailing keypoint detection, multi-view
correspondence, and multi-view camera triangulation, respectively. Section 4 presents
the experimental settings, results, and discussion. Section 5 provides a summary of the
approach and offers a prospect for future work.

2. Related Works

This section provides an in-depth analysis of different motion capture techniques,
comparing their distinct features. Additionally, algorithms for visual MOT and relative
positioning are categorized and reviewed.

2.1. Motion Capture Methods

Motion capture (Mocap) serves as a digital method to track and record the spatial
movements of targets [23], often employed in capturing and reconstructing the human body
posture. The essential of Mocap is acquiring the 3D coordinates of each key point [24,25].
Mocap technology is widely applied in human activities [26,27] such as sports and enter-
tainment, as well as robotic exploration fields for trajectory tracking and controlling [28].

In recent years, several types of Mocap systems have emerged. Depth cameras, for
instance, can calculate depth by measuring the time delay between emitted light and
the detection of its backscatter [29]. There are other systems such as inertial Mocap [30],
mechanical Mocap, acoustic Mocap, and electromagnetic Mocap systems [24,25], but they
are not as widespread as traditional Mocap systems, mainly due to deficiencies in accuracy
or convenience.

Predominantly, traditional mocap technologies rely on optical approaches. Optical
Mocap systems use high-speed cameras to capture reflective markers on the target object
and triangulate the positions of these markers to reconstruct the object’s spatial posture with
high precision. In the field of motion capture, optical Mocap systems are often referred to as
the benchmark for accuracy [24,25] and perform better in robotics applications. In scenarios
such as human-robot interaction and local multi-robot collaboration [31,32], visual Mocap
systems can address the common issue of drifts in inertial sensors. However, camera-
based Mocap systems face challenges such as occlusions in certain camera views [23]. To
overcome these problems, some researchers have designed hybrid systems that combine
different Mocap technologies [33,34] to improve accuracy and reduce camera occlusions.
As previously mentioned, autonomous control of drones requires high-frequency position
and orientation information, so the structure should be as simple and efficient as possible.

Currently, marker-based optical motion capture systems are pretty mature in the
market, with Vicon being a representative Mocap system [35]. However, it is difficult to
apply and popularize it in daily use since its hardware cost is high and the technology
is not open source. Recently, the open-source release of the EasyMocap toolkit has made
low-cost human motion capture possible. At the same time, advancements in the precision
and efficiency of deep learning algorithms have demonstrated their ability to improve the
capabilities of Mocap systems, particularly in areas like object detection [36].
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2.2. Multi-Object Tracking

Multiple Object Tracking (MOT) aims to identify and track multiple targets simultane-
ously over a period of time in processing sequential data [37]. Recently, a large number of
MOT approaches have emerged, among which deep learning approaches are increasingly
prevalent [38].

Predominantly, the methods employed in MOT comply with a principle known as
the “tracking by detection” paradigm [36,39,40]. These approaches typically execute object
detection on every single frame of a video sequence and then convert the task into object
association between adjacent frames. Simple Online and Real-time Tracking (SORT) [39]
utilized the Kalman filter [41] and Hungarian Algorithm [42] for object association. Because
SORT disregards the appearance characteristics of detected objects, it performs well only
when the certainty of object state estimation is high. Wojke et al. [36] introduced cosine
similarity as appearance similarity for tracking association. As a result, this method can
track through longer periods of occlusion but struggles with challenges like motion blur.
MOT approaches based on joint detection and embedding [43-45] allow sharing detection
and embedding information in the model, and cross-scale association is feasible. Previous
studies [46,47] represent pioneering efforts in applying Transformer to MOT, achieving
notable improvements in tracking accuracy. However, they encounter significant challenges
in addressing computational bottlenecks during deployment. Meanwhile, Chu et al. [48]
introduced a cascade association framework to handle challenging tracking scenarios,
thereby improving calculation efficiency. Zeng et al. [49] developed Transformer-based
frameworks for MOT, enabling end-to-end tracking, but its performance in detecting
newborn objects is limited.

It is appropriate to select the corresponding approach according to the specific task
requirements since these MOT approaches have different advantages. In our work, we have
access solely to the preceding frame and the frame currently in view since pose estimation
requires a real-time online tracker. Therefore, we use the mature and representative
detection-based MOT approach OC-SORT [50], a tracking methodology that demonstrated
top-tier effectiveness when tested on the KITTI dataset [51].

2.3. Direct Pose Estimation

We classify pose estimation into direct and indirect methods. Direct pose estimation
directly observes the target to determine its pose, relying solely on raw sensor data without
external infrastructure (e.g., GPS, UWB with anchors) or environmental feature matching.
Although direct pose estimation techniques typically require customized hardware, their
autonomous operation, reliability, and precision continue to draw substantial interest.
Cutler et al. [52] proposed a straightforward yet efficient method by designing positioning
markers composed of infrared LEDs, aiming to estimate the position and velocity of known
markers. Faessler et al. [53] proposed an infrared-LED-based pose estimation system
that utilizes the Perspective-n-Point (PnP) algorithm to compute the relative position and
orientation between the UAV and UGV, enhancing the collaborative working efficiency
between aerial and ground robots. However, to maintain the distinctness of the LED spots,
these methods often only work at a short distance.

Ultra-Wideband (UWB) technology presents a promising solution. Fishberg and
How [54] developed a 3-DOF relative 2D pose estimation system among robots, achieving
improvements in mean position error solely based on UWB measurements. Cossette
et al. [55] introduced a method for estimating relative orientations using UWB distance
measurements, demonstrating that estimation accuracy can be increased by optimizing the
formation geometry of robot formation. To reduce the impact of robot formation geometry
and UWB measurement errors on pose estimation, Jones et al. [56] modified the state
vector using a kinematic bicycle model, thereby facilitating the direct estimation of the
lead vehicle’s longitudinal speed and effective steering angle. Jin and Jiang [57] proposed
a multi-vehicle mapping system that combines LiDAR, IMU, and UWB technologies to
improve the robustness of positioning and mapping in degraded environments through



Drones 2024, 8, 137

50f 20

multi-metric weights LiDAR-inertial odometry and pose estimation correction from the
degeneration direction. Hao et al. [58] proposed the KD-EKF algorithm, which enhanced the
accuracy and consistency of cooperative localization in multi-robot systems by addressing
the observability issues in the standard EKF approach.

In addition to integrating UWB technology, Pritzl et al. [59] introduced a cooperative
guidance method for UAVs in GNSS-denied environments, leveraging the fusion of LIDAR
and Visual-Inertial Odometry (VIO) data for precise relative localization and trajectory
tracking. In a diverse team with a major UAV carrying LiDAR and a minor UAV equipped
with a camera, the method combines LiDAR relative positioning data with the VIO output
on the major UAV to accurately determine the minor UAV’s pose.

3. Methods

To demonstrate our Easy RoCap system, the overall motion capture workflow is shown
in Figure 1. The system is built using consumer-grade commercial IR RealSense (https:
/ /www.intelrealsense.com/depth-camera-d455/ (accessed on 17 June 2020)) cameras and
consists of three major components: two-stage key points detection model (TKDM), Multi-
view correspondences, and Multi-view Camera Triangulation.
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Figure 1. The workflow of Easy Rocap.

Firstly, a trained object detector is employed to generate bounding boxes of robots and
markers in each view. Considering that there is noise in 2D detection, a filtering algorithm
based on confidence and class is proposed to eliminate inaccurate detections. The multi-
view correspondences module employs an MOT algorithm to address occlusion issues and
assigns matched marker IDs. Utilizing the calibrated multi-view camera parameters, the
3D coordinates of markers are calculated, and the position and orientation of the robot are
ultimately estimated by the coordinates of multiple markers.

3.1. Two-Stage Keypoints Detection Model (TKDM)

Accurate single-camera-based marker detection is essential for achieving precise
multi-view localization. To minimize the ambient light interference while meeting real-
time pose requirements for robots, we employ the YOLOX detector [60] known for its
rapid detection speed to implement efficient positioning of markers. The decoupled head
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strategy [61] effectively resolves the common conflict between classification and regression
tasks by dedicating separate branches within the detector architecture to each specific task.
By utilizing the decoupled head strategy, the detection speed of YOLOX is significantly
enhanced without compromising accuracy. Furthermore, the multi-scale feature fusion
technique in YOLOX is able to effectively improve detection performance in the presence
of small objects and minor occlusions. Trained on a specific dataset, the detector produces
detection boxes of different categories on image data.

Addressing the demand for simultaneously rapid inference across data from multiple
views, the batch size is adjusted to satisfy that the quantity of images for inference aligns
with the number of cameras, thereby accelerating image inference speed while aligning
timestamps across multiple views.

Algorithm 1 Filtering of Object Detection Results

Input: frame f; object detector Det; detection score threshold T
Output: Filtered marker detection boxes

1. Dremain < 9

2. Dk < Det(fk)

3. marker class boxes D,;,, robot class boxes D,

4. for d in D,, do

5 Check if d.score > T and d is contained by a certain a robot box

6 if Failed then

7. delete d

8 end

9 Dremain <= Dremain U {d}

10. return: D,epain

Although it is already the most advanced detector in performance, there are still
redundant or false detections in the real-world scene. To reduce the interference, detection
results are filtered based on a strategy of taking the detection boxes of the robot as a
constraint and filtering false detections. Considering that the markers are fixed on the
robot target, the specific implementation is to use confidence to filter the object detection
results and then take the robot detection boxes as a class label constraint to filter out false
detections caused by environmental noise, enhancing the robustness of the detector. The
specific algorithm is described in Algorithm 1, which is used to filter out invalid marker
detection boxes.

det.score, if det.score > thre & isincluded (det)
0, else

det fijtereq-Score = { (1)
where det represents the marker detection box; det.score is the score of the corresponding
detection box; det fjjzreq-5core represents the score of the filtered detection box. For each
marker detection box det, the confidence is first checked to see if it exceeds the threshold
value thre. The function isincluded(det) indicates whether the detection box is contained
within the robot detection box, which is used to filter out false detections.

3.2. Multi-View Correspondences

Before computing the 3D pose of a robot, 2D object bounding boxes across multiple
views should be appropriately matched, i.e., the bounding boxes of the same marker across
all views are needed. Due to occlusion and motion blur, there might be missing detection,
which is challenging. To address this, a tracking algorithm assigns IDs to objects and saves
status information, preserving the trajectory continuously. Matching of IDs across multiple
views is then facilitated based on this.

The task of MOT is to estimate the trajectories of multiple objects across successive
video frames. In real-time online MOT, only the detection results from the latest few frames
are available, making tracking by detection the leading paradigm in MOT. An increasing
number of MOT methods are utilizing more powerful detectors to achieve better tracking
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performance, with the YOLO series being widely applied due to its balance of speed
and accuracy [40]. This paper builds upon the YOLO series detectors, with the tracking
algorithm improved based on OC-SORT. Its characteristics include a fast tracking speed
and robust handling of occlusions and non-linear motion [50]. Due to overlapping targets
and non-linear motion, the Kalman filter fails to re-match with the current detection results,
resulting in frequent track interruptions. OC-SORT proposes Observation-Centric Recovery
(OCR) to recover the track based on the detection results rather than incorrect estimations.
As shown in Figure 2, when a target with a lost track is redetected, the track is restored by
associating the observations at the time of loss with the current observations. Experimental
testing in this paper demonstrates that it is simple and online. In addition, to prevent
errors in subsequent 3D calculations caused by incorrect detections, we establish additional
conditions for tracker trajectory establishment.

Frame t:1 Frame t2 Frame t3

0.8

=
0.4
OfX:)

(a) bounding boxes and scores

(b) associating tracks and high score boxes

(c) recovering tracks based on observation

Figure 2. Instance of our MOT method based on observation. (a) The original detection results
including confidence scores. (b) The trajectories of the algorithm before the improvement, which is
only associated with the high-confidence detection boxes. The identical box color signifies the specific
individual. (c) The utilization of low-confidence bounding boxes during object occlusion, and the red
dashed box indicates the predicted position of the occluded target. Low-confidence detection boxes
are successfully matched to previous unmatched trajectories.

As shown in Algorithm 2, for the matching of object detections and trajectories, the
number of trajectories is constrained to be consistent with the number of IDs and markers.
For example, if n target markers are used, the IDs can only be 1, 2, n...,. Additionally,
when there are gaps in trajectory IDs, a new trajectory is established for targets that are
successfully detected in three successive frames. Markers that are not updated temporarily
do not participate in subsequent trajectory calculations until the next update.
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Algorithm 2 Trajectory Establishment

Input: Track T; Filtered detection boxes D ¢pain
1. Associate T and Dy, using Similarity
2. Dye—remain < remaining object boxes from D,y
3. Tyemain < remaining tracks from T
4. for det in D,p_yepain do
5. Check if there is an available IDy,j < nuyapger
6 if True then
7 Tremain A Tremain U {dEt}
8
9

end

else
10. delete det
11. end

12. return: Tyepnin

An important cue to associate multiple objects across multiple views is that their
associated joints should satisfy geometric constraints. Suppose p € RN*2 denotes the 2D
distribution of N object points, the geometric constraints between view p; and another view
p; can be quantified using the following function.

B () = gy 2 s (1124 7)) + o L) @

where p} denotes the position of the n-th marker in view i and L;; (p]”) denotes the epipolar
line (a fundamental concept within epipolar geometry, see [61] for definition) associated
with p from the other view. d¢(a,I) signifies the distance from the point a to the straight
line I. The scale of the error function E, is used to measure the geometric similarity scores
corresponding to multiple views.

Amatch = argmf{n Z Eg (pi/ Pj) 3)

0<i<j<m

Suppose there are m cameras in the scene; A records the matching relationship of
multi-view marker IDs. A, is obtained by minimizing the sum of functions Eg, so as to
calculate the 3D coordinates of different markers directly.

3.3. Multi-View Camera Triangulation

After the cameras are correctly placed in the 3D space, the Easy Rocap system is then
calibrated. Based on the detection and tracking results mentioned previously, this section
mainly describes how to calibrate multi-view cameras and perform triangulation on the
objects.

To reconstruct 3D positions using multi-view cameras, it is essential to rectify distor-
tions produced by the camera lens and establish a geometric model for multiple cameras
to denote their relative positions. The primary goal of calibration is to obtain both the
intrinsic and extrinsic parameters of the cameras. The methodology adopted in this experi-
ment is based on Zhang’s camera calibration method [62]. The camera calibration yields
intrinsic and extrinsic parameters, allowing us to establish a camera model. This means
we can find the relationship between the spatial points” 3D coordinates and the camera
image coordinates.

AX=0 4)

Here, X is the augmented 3D coordinates of a spatial point and A represents the matrix
combination of image coordinates and camera parameters [63].

While conventional triangulation methods utilize linear algebra [63] to estimate 3D
coordinates from 2D coordinates across multiple views, challenges arise when certain views
do not provide reliable 2D estimations due to occlusions or out of frame. To address this
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issue, this study draws inspiration from methods employed in multi-camera multi-person
motion capture systems [64]. The 2D positions together with the confidences of markers
obtained by multiple cameras are passed to the algebraic triangulation module, which
solves the triangulation problem in the form of a weighted linear equation:

(wjo Aj)X; =0 ®)

where w; denotes the confidence vector of the j-th target marker across multiple views; A;
is a matrix combination of the image coordinates and camera parameters for the j-th object
point across different views; and X; is the 3D position of the j-th target marker.

By employing the Singular Value Decomposition (SVD) method to solve the system of
triangulation linear equations, optimal 3D coordinates for the markers are obtained. The
rigid body formed by the markers fixed on the robot aligns with the robot’s position and
orientation. Through the calculation of the centroid translation and rotation matrix of the
3D point coordinates, the robot’s pose variations can be accurately represented.

4. Experiments

In this section, we showcase several experiments to illustrate the precision and rapidity
of our Easy Rocap system. We designed a series of experiments using UAVs and UGVs
and employed the evo toolbox to assess the pose accuracy. The experimental procedure is
separated into two segments: (1) UAV trajectory accuracy verification in the simulation
environment and (2) UGV and UAV trajectory accuracy verification in real scenarios.

4.1. Experimental Settings
4.1.1. Dataset Description

Due to the limited availability of datasets for evaluating robot poses, the experimental
data were collected from carefully crafted simulation scenarios as well as real-world situa-
tions. Figure 3 shows the experimental sites with optical markers arranged on the surface
of the unmanned drone/vehicle. The simulation scene dataset includes fixed multi-camera
data with timestamps and ground truth trajectory data. The real-scene dataset includes
fixed camera data with timestamps, as well as LiDAR data, which are used for SLAM
methods to obtain trajectories for comparison.

(b) (d)

Figure 3. Test robot platforms and scenarios. (a) Simulated drone with markers. (b) Drone in

simulation scenario (occlusion). (¢) UGV with markers. (d) UGV in real scenarios. (e) Drone with
markers. (f) Drone in real scenarios.

We collected a total of 1200 sample images in the simulation and real scenarios as
the training dataset, including drones, UGVs, and markers. On the basis of recording the
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calibration board data to obtain camera intrinsic and extrinsic parameters, we recorded data
from different scenes and motion states, called Seq 01-06. Seq 01-03 data are recorded in the
simulation scenario, where drones flew with and without obstacles, performing motions
such as spirals. The average velocity is 0.4 m/s and the total length of the trajectory is
55.18 m. Seq04-05 data are recorded in the real scenario, where UGV performs curved and
square movements. The average velocity is 0.26 m/s and the total length of the trajectory is
12.5 m. Seq06 data are recorded in the real scenario where the drone is performing curved
movements. Table 1 shows the scene type, motion pattern, data length, data frequency, and
average speed of the data.

Table 1. Data descriptions.

Platform  Scene Motion Data Camera Truth Traj Frequency Fr‘;g?::fcy

Pattern Length/Seconds Frequency/FPS /Hz /Hz

Seq01 UAV simulation horizontal 60.71 15 1000

Seq02 UAV simulation helical 44.81 15 1000

Seq03 UAV simulation horizontal 46.33 15 1000

Seq04 UGV real-world curvilinear 6.01 90 10

Seq05 UuGv real-world square 42.80 90 10

Seq06 UAV real-world curvilinear 27.09 90 10

4.1.2. Experimental Scenes

To validate the feasibility of our robotic motion capture system, a simulation experi-
ment was first designed. As shown in Figure 4, the simulation experiment was conducted
using the robot simulation software Gazebo, which provides high-fidelity physical simula-
tion of the drone and the markers. A simulation experimental site of 10 m x 10 m was set
up. Utilizing the Pinhole Camera Model, we customized camera parameters including the
field of view and resolution. The cameras were positioned at a height of 3 m, as illustrated
in Figure 4, with each camera tilted at an angle of 20°, facing towards the center of the
venue. The drone was manually controlled for flight, and the software was able to record
its ground truth trajectory.

Figure 4. Simulation scenario.

In an effort to verify the stability of our Easy Rocap system, a respective experiment
was organized in real scenarios (Figure 5) in comparison with the LIDAR-Inertial SLAM
algorithm. The camera system consists of ix infrared lenses from Intel RealSense D455. The
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experimental site consisted of UGV and UAV platforms with markers, both equipped with
a small-sized Livox Mid-360 LiDAR sensor.

Figure 5. Real scenario.

For multiple object tracking of markers, the detector is YOLOX [60], and YOLOX-s
was used as the backbone. The pretrained model was downloaded, and the categories were
modified to “UGV”, “UAV”, and “marker”. The training schedule is 1000, the number of
training data is approximately 1000, and the input image size is 640 x 480. The process
of data augmentation encompasses techniques such as Mosaic [65] and Mixup [66]. These
strategies serve the purpose of improving the model’s generalization ability. Regarding the
technical setup of the model’s training phase, this process was conducted on an NVIDIA
GeForce RTX 2070 graphics processing unit (GPU), with a batch size of 4 and a total training
time of approximately 4 h.

4.1.3. Evaluation Metrics

In assessing the precision of our Easy Rocap system, we use an error evaluation
method (https://github.com/MichaelGrupp/evo (accessed on 14 September 2017)). The
reference in the simulation scenario is the ground truth trajectory recorded in Gazebo,
and the reference in the real scenario is the pose estimation result of Easy Rocap. For the
evaluation of trajectory accuracy, the global consistency of the trajectories was assessed
utilizing absolute pose error (APE) as a metric. As illustrated in Equation (6), the calculation
of APE was made based on the estimated trajectory posture P,;; € SE(3) at timestamp i,
and the ground truth trajectory P,s; € SE(3) at timestamp i.

Ei= Pest,i®Pre i Prg}lipest,i € SE(3) (6)
where the operator ©, deriving the relative pose when given two separate poses, signifies
the inverse compositional process.

In order to show the accuracy of our system in translation and rotation, we used
the corresponding two indicators, APEy,s and APE,., respectively. The translation
accuracy indicator and rotation accuracy indicator are calculated by Equations (7) and (8),
respectively. On this basis, we used the APE of each timestamp, i.e., APE; to calculate the
average APE, APEeqn, and the root mean square error (RMSE) APERssg of all timestamps
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to measure the accuracy of the overall trajectory, as shown in Equations (9) and (10), where
the total count of timestamps is represented by N.

APEtmns,i = HtrunS(Ei)H (7)
APE,1; = ‘angle (1og50(3) (rot(Ei))) ‘ 8)
1 N
APEean = NZ APEi (9)
i=1

1 N
APERMSE = NZAPEi2 (10)
i=1

4.2. Experimental Results

In order to showcase the effectiveness of our approach, we undertook experimental
tests on the dataset. First, we considered the calculation time: the detector’s detection time
for each frame is 0.02 ms, and the multi-view triangulation time for each frame is 0.01 ms.

Next, we executed simulation experiments to assess the precision of our technique. As
shown in Figure 6 and Table 2, the outcomes of the experiment indicate our technique’s
ability to supply consistent and real-time position data with great precision. Data Seq01
and Data Seq02 are collected in the unobstructed environment. The average translational
accuracy ranges from 0.69 to 0.79 cm, achieving millimeter-level precision. The trajectory
orientation error is less than 0.65°, validating the correctness of our algorithm. Data Seq03 is
collected during fast drone flight around the obstacle, with an average position estimation
error of 1.32 cm.

Table 2. Results of simulation experiments.

Scene Motion Trajectory Duration RMSE(APE) Mean (APE)
Pattern Length/m /s /m /m
Seq01 simulation horizontal 23.73 60.71 0.0080 0.0069
Seq02 simulation helical 12.79 4391 0.0090 0.0079
Seq03 simulation horizontal 18.67 46.33 0.0150 0.0132
(occlusion)
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Figure 6. Results of Seq01—03 trajectory evaluation. (a) Trajectory Plot of Seq01. (b) APE Plot of
Seq01. (c) Trajectory Plot of Seq02. (d) APE Plot of Seq02. (e) Trajectory Plot of Seq03. (f) APE Plot
of Seq03.

The experimental results of Seq01-03 are compared in Figure 7. In an unobstructed
environment, the system achieves millimeter-level accuracy in 3D pose estimation. How-
ever, the precision of the trajectory is impacted by any occlusions on specific markers. It is
evident that the displacement of detection bounding boxes for the object can influence the
accuracy of the 3D pose estimation. This is also the reason why the overall trajectory APE
of Seq03 is larger than that of Seq01-02.
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Figure 7. Statistics results for APE on Seq01—03. (a) Comparison histogram of APE for Seq01—03.
(b) Box plot of APE for Seq01—03.

In order to show the effectiveness of our system in real-world scenarios, we carried
out an experiment comparing it with LiDAR-Inertial SLAM. As shown in Figure 8a,b, using
Data Seq04-06, the pose estimation results obtained from Easy Rocap were compared with
those from FAST LIO2 [67]. In the test on Seq04, when the trajectory length of curved
motion is short, the average trajectory error estimated by the two methods is 4.6 cm. When
compared to the accurate distance measured by a physical ruler, from the starting to the
endpoint, the difference in distance noted by our system is 4.7 cm, as opposed to LiDAR-
Inertial SLAM’s significantly larger difference of 14.1 cm. This also verifies the fact that
LiDAR-Inertial SLAM systems may experience drifts during indoor turning. As shown in
Figure 8c,d, Data Seq05 is a square trajectory for a UGV. By setting the result of Easy Rocap
as the reference trajectory, it is clear that our method generates a trajectory that is smoother
and more continuous in turns, while the SLAM method is more likely to experience drift
when making sharp turns and accumulate significant errors. Figure 8e presents the actual
height (Z-axis) of the trajectories of the ground vehicle, derived from LiDAR-based SLAM
and our Easy Rocap, respectively. To explain, the discrepancy in starting positions is due
to the UGV moving a certain distance before the initiation of SLAM. The SLAM method
exhibits significant jumping in the z-axis direction, which is not in alignment with the
real scenario. In contrast, our system’s calculated trajectory remains stable in the z-axis
direction. Figure 8f,g show the flight trajectories of the drone from side and top views
in the real-world scenario. The trajectory obtained by our system remains smooth and
continuous, while the trajectory obtained by LiDAR-Inertial SLAM is more prone to drift
when making sharp turns.
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Figure 8. Results of Seq04-06 trajectory evaluation. (a) Trajectory Plot of Seq04. (b) APE Plot of Seq04.
(c) Trajectory Plot of Seq05. (d) APE Plot of Seq05. (e) Comparison Plot of Z-Axis Trajectories for
Seq05. (f) Trajectory Plot of Seq06. (g) APE Plot of Seq06.

4.3. Discussion

This paper presents a cost-effective and easy-to-use robotic pose capture system. Our
hardware system consists solely of a computer equipped with a graphics processing unit
(GPU), three or more Intel RealSense D455 cameras, and several infrared marker balls.
Compared to commercial high-precision optical motion capture systems on the market,
which can cost upwards of tens or even hundreds of thousands of dollars, this setup
significantly reduces cost. The system’s ease of use is mainly reflected in its robustness,
eliminating the need for users to have a strong professional background.

A broad and varied dataset used in the experiments showcases the precision and
flexibility of the proposed method. Firstly, the system’s accuracy and speed were effectively
demonstrated in the experiments conducted using simulated scenarios. The average
translational error between the trajectories of this method and the ground truth is less than
0.8 cm, and the calculation speed can reach 30FPS. Experiments in the simulated scenario
have also verified that our method can accurately calculate poses even in the presence of
non-linear motion or short-term occlusions. The strong performance of the methodology is
closely linked to the combination of techniques like object detection and MOT. Secondly,
compared to the real distance between the start and end points, our method achieves higher
localization accuracy than SLAM. In the end, our system’s robustness was demonstrated
in comparative experiments conducted in real-world scenarios. Compared to advanced
SLAM methods, the trajectory obtained by the method is smoother, more continuous, and
less prone to drifting. Additionally, there is no accumulation of errors in our method.

However, in order to improve the speed, the chosen MOT algorithm relies on a
kinematic model for frame-to-frame correlation, and it does not record the appearance
information of the objects. Therefore, our method may not be able to handle long-term
occlusions. Nevertheless, we have implemented a response mechanism for long-term
occlusions, where multi-view correspondences are repeated when the lost target reappears.
This response mechanism may take less than 0.5 s. This mechanism improves the robustness
of the robot’s pose estimation. In addition, there is a trade-off between camera resolution
and transmission speed, and camera resolution also affects the effective area of the Rocap
system. One of the limitations associated with cameras is the potential distortion at the
lens edge, which can slightly affect the accuracy of the 3D coordinates when the robot
moves to the edge of most cameras’ field of view. In the future, the research will combine
high-performance computers with high-resolution cameras to further expand the effective
area of the Rocap system.
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5. Conclusions

This study proposes an affordable and easy-to-use robotic motion capture system,
which can precisely capture the location and orientation of an unmanned platform in com-
plex scenes. The project’s code will be open-sourced on Github (https://github.com/DCSI2
022/EasyRocap (access after 1 June 2024)). To address the interference of environmental
light noise on visual detection, a TKDM detection model with fine filtering is proposed.
Unlike traditional tracking by detection paradigm MOT algorithms that may use wrong
estimates when associating tracks, the MOT method used in this paper relies more on
observations. To reduce the effects of occlusion from a certain view on the 3D pose esti-
mation results, weights are added to the matrix coefficients of different views based on
confidence, ensuring that the contributions of each view are reasonable. The system, com-
posed of commercial-grade cameras, was tested under various situations and motion types,
demonstrating high precision and fast speed. The average translation accuracy for pose
estimation in the simulation environment is less than 0.8 cm, and the orientation accuracy
is less than 0.65 degrees, with a solving speed of 30 FPS. In real scenarios, compared with
advanced SLAM algorithms, the practical applicability is verified. The results show that our
system can overcome the drift and accumulated errors of the SLAM method. The integrated
system only requires data streams from calibrated cameras to estimate robot poses, making
it convenient to deploy in robot systems. In addition, there are potential enhancements in
future work. In one respect, we will focus on improving the accuracy of our system while
maintaining speed by utilizing high-performance computers and high-resolution cameras.
In another respect, we will explore marker-less methods for estimating robot 3D poses
using 2D feature maps.
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