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Abstract: Conservation efforts in cliff habitats pose unique challenges due to their inaccessibility,
limiting the study and protection of rare endemic species. This project introduces a novel approach
utilizing aerial manipulation through a suspended manipulator attached with a cable under a drone
to address these challenges. Unlike existing solutions, the Mamba provides a horizontal reach up to
8 m to approach cliffs while keeping the drone at a safe distance. The system includes a model-based
control system relying solely on an inertial measurement unit (IMU), reducing sensor requirements
and computing power to minimize overall system mass. This article presents novel contributions such
as a double pendulum dynamic modeling approach and the development and evaluation of a precise
control system for sampling operations. Indoor and outdoor tests demonstrate the effectiveness of
the suspended aerial manipulator in real-world environments allowing the collection of 55 samples
from 28 different species. This research signifies a significant step toward enhancing the efficiency
and safety of conservation efforts in challenging cliff habitats.

Keywords: suspended manipulator; aerial manipulation; robot for environment; cliff drone;
conservation drone; plant sampling drone; long reach aerial manipulator; field robotics

1. Introduction

Cliff habitats remain extremely difficult to access by conservation scientists. These
unique habitats are home to flora and fauna that have been little studied over the years
due to the difficulty of accessing them safely. Still, many conservation efforts are being
made in these habitats since it is an environment that is minimally disturbed by invasive
species and home to many rare endemic species. Many invasive species have a detrimental
effect on the flora of Kaua’i in the Hawaiian archipelago where 97% of endemic species
are now considered endangered, critically endangered, or extinct. On the island of Kaua’i
for example, many organizations such as the National Tropical Botanical Garden (NTBG),
the Plant Extinction Prevention Program (PEPP), and the State’s Division of Forestry and
Wildlife of Hawai’i have been studying this habitat for some time using drone imagery,
abseiling, climbing, etc. Despite their recent successes in the rediscovery of supposedly
extinct plant species [1] and the discovery of new plant populations [2,3], the difficulties
encountered by scientists to physically reach these plants is a barrier to conservation work.
Indeed, the ultimate objective would be to perform a complete conservation cycle including
the localization of the species of interest, the collection of propagating material (cuttings,
flowers, seeds), the cultivation in specialized nurseries, and the reintroduction in their
natural habitat. At the moment, the collection and propagation steps still represent major
challenges on most cliff environments with the methods and the tools at their disposal.

Drones are widely used for imaging applications in various fields such as infrastructure
inspection [4,5], forestry [6,7], and agriculture [8,9], and thanks to technological advances in
recent years, aerial manipulation represents a new field of research that is rapidly emerging.
As such, drones are now used to perform tasks in contact with their environment. This
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emerging field of research brings many new possibilities for work carried out at height
or in areas that are considered dangerous to humans. Some projects have succeeded in
demonstrating the usefulness of aerial manipulation for the installation of sensors [10–12],
as well as the inspection of bridges [13–15], metal pipes [16,17], or high-voltage power
lines [18]. For all these tasks, the aerial manipulator must be able to apply and maintain
forces on a surface. Some projects have proposed solutions where a serial robotic arm with
several degrees of freedom (DOF) is fixed rigidly on a drone [19,20]. This makes it possible
to have great dexterity which opens the way to many manipulation applications. However,
such solutions bring several constraints in the design of an aerial manipulator. Serial robotic
arms are usually not designed to be lightweight since they are optimized toward precision,
and usually comes with stiffness criteria and multiple oversized actuators to be able to
produce sufficient torque to move the entire arm. Other projects have sought to reduce
this added mass by using parallel manipulators installed under the drone [21] or by using
less complex serial robotic arms with 1-DOF [12,16]. However, some drawbacks are still
present with these configurations. As with any manipulator rigidly attached to a drone,
each movement or contact of the manipulator causes a resulting torque on the drone which
can destabilize it and diminish the precision during the manipulation task. Some projects
have developed control systems taking this interaction into account to ensure the stability
of the drone [12]. However, aerial manipulators using robotic arms rigidly attached to
drones also generally have a limited range to keep the system center of mass within the
footprint of the actuators. Aerial manipulator design must also limit the manipulator’s
range to limit the total inertia of the system which greatly helps to preserve a certain level
of dexterity for the whole aerial system. This limited range might increase the risk of a
collision in natural environments such as cliffs which have various shapes in addition to
being covered with plants and trees.

On the other hand, aerial systems developed to sample treetop branches generally rely
on passive manipulators suspended under the drone [22,23]. These manipulators located
between 3 to 5 m below the drone at the end of a rod offer the advantage of keeping the
drone away from the top of the tree during the sampling operation. This concept reduces
the risk of collisions which could lead to a crash. Although these manipulators can collect
branches from the tops of trees, they are not designed to perform tasks requiring high
precision as any drone movement induces an uncontrolled pendulum oscillation on the
suspended manipulator. Recently, another axis of research in aerial manipulation concerns
manipulators suspended by cable and equipped with actuators [24,25]. This configuration
brings many advantages. As the system hangs under a drone, it keeps the drone away from
any obstacle. It also offers a great number of possibilities for the placement and orientation
of the actuators since the suspended manipulator does not have to generate thrusts to fight
gravity. Decoupling the system in this way offers more possibilities in the design of the
manipulator. However, most of the suspended manipulator behaves as a double pendulum
which brings many challenges to the design of a control system. Double pendulums exhibit
chaotic behavior, have multiple oscillation modes, and their dynamics are more complex
than a simple pendulum.

Ref. [25] relies on such a suspended manipulator equipped with four propellers, a
winch to control vertical movements, and a 1-DOF manipulator to perform pick and place
operations. This concept is composed of two cables to suspend the manipulator and allows
a passive stabilization of the yaw rotational movement. This also prevents the double
pendulum dynamics on the pitch axis that brings a second mode of oscillation. Using
classical control theory with proportional-derivative controllers (PD), the control system
relied on the data coming from the accelerometer that were filtered and integrated to obtain
the linear velocities of the platform. Ref. [26] improved the system by using a Linear
Quadratic Controller (LQR) based on a single pendulum model which was relying on a
multi-sensor approach (i.e., accelerometer, computer vision). With both control systems,
one axis still showed the behavior of a double pendulum as the two wires design only
prevented a second oscillation mode in the pitch axis, but not in the roll orientation which
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greatly affects the capacity of the platform to stabilize itself efficiently. Ref. [24] is another
example of this suspended manipulator concept. This aerial manipulator is equipped
with a winch for each of the three suspension cables, 6 inclined brushless direct current
(BLDC) motors with propellers and a 7-joints robotics arm. The system presented is over-
actuated and has an overall mass of 45 kg. This system offers precision to perform a wide
range of tasks when suspended under a crane or a fixed anchor. Ref. [27] has developed
a model for this platform to dampen the oscillation of the platform while dealing with a
perturbation. To approach this problem, the system is modeled as a double pendulum and
a low pass filter is used to differentiate the two modes of the system. An optimal linear
LQR controller is then used to control both oscillation modes. The system can stabilize in
6 s at its equilibrium point. Using a low pass filter may be problematic in a case where the
system has two frequencies close to each other. Also, the delay induced by the filter might
affect the control system if great precision or a high bandwidth is required.

Although these two concepts of suspended manipulators are fulfilling aerial manipula-
tion needs they were designed for, they have some drawbacks for cliff sampling application
as they were designed to operate at their equilibrium point, and their transient response
is not as fast and precise as needed to perform plant sampling. This article proposes
new contributions to the design of suspended manipulators such as a reliable model of
the system for dynamic simulation and tuning, and a model-based control system solely
relying on an inertial measurement unit (IMU) which enables manipulation tasks requiring
high precision and high bandwidth. The approach taken in this project is to keep the
drone away from any obstacle by designing a suspended manipulator that has an extended
horizontal reach to approach the cliff while keeping the drone away from it as presented in
our previous article [28] that covers the mechanical design of the suspended manipulator.
It is essential to position the system with high precision to collect plant samples on cliffs.
To obtain such a precision, it appeared essential to be able to stabilize the system’s second
mode of oscillation. Furthermore, given the environment and the topography in which the
sampling operations must take place, the system cannot rely on external signals to ensure
its positioning (i.e., GNSS) [29]. Finally, the system must use a limited number of sensors
and computing power to minimize the total mass of the system which must be suspended
under a drone. Following these requirements, a suspended manipulator comprising a
model-based control system was developed and tested in a real-world environment.

This article is divided as follows: Section 2 presents the system design based on
the sampling operation requirements, the modeling of the system, and the design and
evaluation of the control system for the suspended manipulator to perform operations
requiring precision. Indoor and outdoor tests of the suspended aerial manipulator are
presented and analyzed in depth in Section 3. Finally, the results are discussed in Section 4.

2. Material and Methods
2.1. System Design

Past research projects have already demonstrated the advantages of using a suspended
manipulator to keep a vertical clearance between a drone and any obstacles while mini-
mizing the transmission of destabilizing moment to the drone during the manipulation
operation [22–25]. However, the suspended manipulator workspace of these systems is
limited and located directly under the lifting system. Usually, the lifting system moves the
suspended manipulator as the latter uses its actuators to stabilize itself at its equilibrium
point directly under the lifting system. The objective of the concept described here is to
bring the whole system in close vicinity of the cliff, and then, to move only the suspended
manipulator to perform a sampling operation on the targeted plant as shown in Figure 1.
The main advantage of this strategy is that the drone maintains a horizontal and verti-
cal safety distance with surrounding obstacles, while the platform can move with great
precision to accomplish the sampling task. This design choice also aims to minimize the
impact on the flight performance of the lifting drone, similarly to the suspended manip-
ulator concepts presented earlier [28]. The length of the rope determines the reach of the
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suspended manipulator during the sampling operation. However, the added range with
longer rope comes at the expense of a loss in positioning accuracy. The design of such a
suspended manipulator must meet two main requirements to ensure the success of the
sampling operation. The system must be able to move independently from the drone and
to position its end effector with enough precision to collect plant material. This section
gives an overview of the Mamba design. The suspended manipulator design was based on
the initial version of the system which is presented in [28], this section presents changes
that have been made to the system since the previous version.
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Figure 1. A schematic view of the Mamba suspended under a drone.

To ensure positioning precision the suspended manipulator must have the ability to
control a minimum of 3-DOF using 3 forces or torques independently from the drone: (1) a
bidirectional longitudinal force (2) a bidirectional lateral force, and (3) a bidirectional yaw
torque. Since the platform does not have to counter gravity, this leaves greater flexibility
in the positioning of the actuators. The concept shown in Figure 1 enhances the platform
performances by allowing thrusters in the horizontal plane of the suspended manipulator
and perpendicularly oriented. These actuators should produce bidirectional thrust, while
also having sufficient bandwidth to react quickly to external perturbations while controlling
the different modes of the system. By having the thrusters in pairs located on each side of
the center of mass (CoM), forces and torques can be produced more efficiently on the CoM.
This configuration also keeps a distance between the front thruster and the end-effector to
avoid any damage to the targeted plants. In this design the actuators located at the rear
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end of the platform produce the longitudinal forces, while the others are responsible for
creating both the lateral force, and the yaw moment.

Different propulsion configurations were considered for the suspended manipulator
to produce bi-directional thrust in [30]. The antagonist actuator configuration consists of
two motors positioned to produce thrust in opposite directions. At all times, the motors are
at least idling with one of the motors speeding to produce thrust. This strategy makes it
possible to avoid the dead zone associated with the reversal of BLDC motors and the time
required to produce large swings in angular momentum with limited torque. The antagonist
configuration provides a major advantage in terms of bandwidth when compared to a
single sensorless BLDC motor reversing its thrust as it does not deal with the actuator
dead-zone at zero velocity. The chosen antagonist configuration has a force bandwidth
of 5.4 Hz. Figure 2 shows the position of all the components installed on the suspended
manipulator.
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Figure 2. (a) Side view of the Mamba showing the components and the suspending cables. (b) Top
view of the Mamba showing the thrusts generated by the actuators. (c) Close-up of the sampling tool
and 2-DOF wrist specifically designed to sample plants.

The Mamba is powered by a 6S LiPo battery (22.2 V) with a capacity of (2250 mAh)
giving it 30 min of autonomy. BLDC motors (2310 Badass, Kv = 900) with 17.8 cm propellers
(10.2 cm fixed-pitch) were selected for the actuators acting along the x-axis. BLDC motors
(2305 Badass, Kv = 1050) with 12.7 cm propellers (11.4 cm fixed-pitch) were selected for the
actuators acting in the y-direction. The electronic system of the suspended platform is built
around a CUAV X7 Pro flight controller that uses a customized version of the Ardupilot
firmware [31], and allows a seamless integration of the control system and the motor
mixer to account for the antagonist actuator configuration. As the system is teleoperated, a
Herelink digital transmission system is used to transmit the full HD feed coming from the
on-board camera. A custom sampling mechanism and its cutting controller were designed
as presented in [28], and installed at one end of the longitudinal tube. Figure 3 provides an
overview of all the components installed on the Mamba.

2.2. Model

Previous work used different approaches to model suspended manipulators by simpli-
fying the system to a simple pendulum model [25] or by accounting for the two oscillation
modes of the system using a low pass filter to estimate the states of the system [27]. Here
we present a different approach based on a dynamic model designed to simulate the be-
havior of the sampling platform as a double pendulum with the objective to use it for
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a model-based control system. This section introduces the needed model to accurately
predict the behavior of this suspended manipulator as it moves outside of its equilibrium
point to perform a sampling operation.
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Some assumptions were considered while elaborating the model. The anchor position,
which is located at the junction of the drone and the cable, is considered fixed in space
as the drone will be hovering during the sampling operation. The cables are considered
rigid frames with no mass as their mass is negligible when compared to the suspended
manipulator. We also considered the actuators and gravity as the only external forces
on the system. Since the sampling phase of the operation is performed quasi-statically,
aerodynamic drag force is neglected. The products of inertia are considered as zero because
the suspended manipulator’s principal axes mostly coincide with the coordinate axes. Also,
the suspended manipulator is considered as a rigid body.

The model of the system, shown in Figure 4, can be placed in a Newtonian frame N,
and it is composed of a rigid frame C representing the cable with its origin C0 located at the
anchor point on the lifting system, and a rigid body M representing the manipulator with
its origin located on the suspended manipulator CoM. To achieve a good representation
of the physical system and the carabiner used to attach the suspended manipulator to the
cable, a mass at the pivot point is considered, and is represented by a particle located at
P0. The point P0 is located at a distance L1 from C0, while the CoM of body M is located
at a L2 distance from P0. Using these frames and bodies, the suspended manipulator can
be modeled as a spherical double pendulum with a first pendulum composed of the cable
between the drone and the particle P, and a second pendulum that includes the particle
P and the rigid body M. Both pendulum’s motion can be described using ZYX Euler’s
angles with the yaw orientation of the two pendulums being considered with a single
variable. Therefore, the states of the system include 5 orientations (θ1C, θ1M, θ2C, θ2M, θ3m)
and their derivatives, where θXC represents the orientation of frame C, θXM represents the



Drones 2024, 8, 139 7 of 20

orientation of the M frame, with θ1X, θ2X and θ3X representing respectively the roll, pitch,
and yaw axes.
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To take the fact that the actuators are not necessarily located on the Mx-My plane into
account, the total forces Fx and Fy from the actuators are applied parallel to the Mx and My
axis with an offset of respectively l3 and l4 from the CoM along the Mz axis. The model
also includes a moment Tz that is applied around the axis Mz. To model the bidirectional
antagonist actuators, a first-order transfer function was used [30]. To identify this transfer
function, the antagonist thrusters were installed on a 6-axis load cell (ATI Mini245 SI-290-10)
while a chirp was commanded.

A classic Newton-Euler approach was used to derive the analytical model of the
system. Thus,

Fi = mi ∗ N aiCoM , (1)

Mi/iCoM = Ii/iCoM ∗ Nαi, (2)

where i represents body M, and particle P0. The equations were generated using Motion-
Genesis [32] and solved in Matlab for each of the roll, pitch, and yaw axes. The model was
completed by specifying the values of the physical parameters into the equations obtained
(i.e., L1, L2, L3, L4, mP, mM, and I). L1, L2, L3, L4, the punctual mass (mP), and the mass of
the suspended platform (mM) were measured directly. To complete the physical model, the
moment of inertia along the roll and pitch axes were measured by matching the frequency
of the second oscillation mode in between the model and the one measured experimentally
by the onboard IMU. This method is easy to implement and allows quick adjustment to
the model when the actual system is modified. The moment of inertia on the yaw axis was
determined using bifilar pendulum. Table 1 summarizes the measured parameters of the
system used during the validation of the model in an indoor flight room. Note that a short
L1 was selected for indoor tests but should be adjusted as a longer length (i.e., 13 m) is used
in the field to provide more reach.
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Table 1. Model parameters for the indoor flight room validations.

Parameters Value

L1 4.1 m

L2 1.65 m

L3 0.04 m

L4 0.02 m

Ixx 0.12 kg m2

Iyy 0.65 kg m2

Izz 0.61 kg m2

mP 3.02 kg

mM 0.03 kg

The model has been validated in an indoor environment with a VICON motion capture
system. For this validation, the motion capture system recorded the orientation of the
Mamba at a frequency of 100 Hz which was compared to the simulated outputs. As the
yaw model for the suspended platform is much simpler than the other axes, only the roll,
and pitch axis are illustrated and discussed below. Also, the yaw is kept constant during
sampling operations. The objective of this validation is mainly to confirm the presence and
strength of the second oscillation mode on the roll and pitch axes. To do so, doublet inputs
were sent to the actuators controlling the roll and pitch orientation. The response of the
system in simulation and in the indoor flight room is shown in Figure 5.
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For each of the axes (i.e., roll and pitch), we observe the second oscillation mode of
the system caused by the double pendulum configuration. It is important to note that the
second oscillation mode has a greater impact on the roll axis mainly because of the lower
inertia of the system around this axis. The simulation model has approximately the same
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response as the real system during the first 10 s following the signal sent to the actuators.
However, after this period, we notice that the absence of damping in the model leads the
model response to diverge from the real system response. Although a more complete model
might need to consider the damping, the focus is put on achieving a desired closed-loop
performance, and the system will not move as freely during its operation. As a result, the
inclusion of damping terms in the physical model was not deemed necessary.

2.3. Control System

The Mamba has been designed to collect samples from plants with centimeter level
precision. In the literature, no control systems have been developed to ensure such a
precise positioning of a suspended aerial manipulator out of its equilibrium point. This
section presents a model-based control system specifically adapted for high-precision and
high-bandwidth positioning. The model developed in the previous section will enable the
optimal controller in conjunction with a Kalman filter to dampen second mode oscillations
while being able to quickly position the platform within its workspace. Figure 6 presents
the control system and state estimator that will be described throughout this section.
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As stated earlier, our control system should not rely on GNSS signals due to the desire
to operate the suspended manipulator in proximity to cliffs or even narrow valleys that
block a good part of the sky. It was decided to rely only on an onboard IMU to ensure
the robustness and the lightness of the solution that will be suspended under a drone. To
that end, the flight controller of the suspended platform uses a tactical grade IMU (i.e.,
ADIS16470). As an IMU alone cannot provide all the states of the suspended manipulator
model, a state estimator was deemed necessary.

A linear model is needed, as both the chosen state estimator architecture (i.e., Kalman
filter), and the optimal controller (i.e., LQR) will rely on a linear model of the system.
Linearizing the system to its natural equilibrium point (i.e, minimum potential energy)
yields a state space model, where the system inputs (u) are the actuators on the Mamba as
described in the model and θ1X, θ2X and θ3X represent respectively the roll, pitch, and yaw
axes state variables. The correction phase of the Kalman filter relies on a gyroscope (p, q, r)
for the Euler’s angle derivative and a DCM-based AHRS output [33] for the roll and pitch
orientation. We get the following state space model representation:

.
x = Ax + Bu (3)

y = Cx (4)

xT =
[ .
θ1c θ1c

.
θ1p θ1p

.
θ2c θ2c

.
θ2p θ2p

.
θ3p θ3p

]
(5)
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uT =
[
Fx Fy Mz

]
(6)

A =

Aroll 04×4 04×2
04×4 Apitch 04×2
02×4 02×4 Ayaw

 (7)

B =

 04×1 −Broll 04×1
Bpitch 04×1 04×1
02×1 02×1 Byaw

 (8)

C =

Croll 02×4 02×2
02×4 Cpitch 02×2
01×4 01×4 Cyaw

 (9)

Thus, linearizing the system yields a decoupled model where:

Aroll =


0 − g(mp L2

2+Ixx)
Ixx L1

0 L2
2gmp

Ixx L1
1 0 0 0
0 L2gmp

Ixx 0 − L2gmp
Ixx

0 0 1 0

 (10)

Broll =


Ixx−L2L4mp

Ixx L1mp

0
L4
Ixx
0

 (11)

Apitch =


0 − g(mp L2

2+Iyy)
Iyy L1

0 L2
2gmp

Iyy L1
1 0 0 0
0 L2gmp

Iyy 0 − L2gmp
Iyy

0 0 1 0

 (12)

Bpitch =


Iyy−L2L3mp

Iyy L1mp

0
L3
Iyy

0

 (13)

Croll = Cpitch =

[
0 0 1 0
0 0 0 1

]
(14)

Cyaw =
[
1 0

]
(15)

From Equations (3)–(15), Kalman filter design techniques were used to design the state
estimator. The derivatives of the state variable representing the orientation of the platform
M (i.e.,

.
θ1p,

.
θ2p,

.
θ3p) are not directly its angular velocities as the 3D model is based on Euler

angles [34]. The IMU data needs to be treated before they are used within the Kalman Filter
using this transformation:

.
θ1p.
θ2p.
θ3p

 =

1 sinθ1ptanθ2p cosθ1ptanθ2p
0 cosθ1p −sinθ2p
0 sinθ1p/cosθ2p cosθ1p/cosθ2p

p
q
r

 (16)

The state estimator also uses as input the forces and moment produced by the actuators
for its prediction phase. The actuator’s transfer function is applied to the commands output
from the control system and used as input to the Kalman filter to consider the dynamics of
the actuators.
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The control system will seek to limit system oscillations while ensuring a high position-
ing accuracy during the sampling phase. The Kalman filter makes it possible to estimate
the 10 states of the system according to the model. By using these estimates, a LQR relying
on states feedback was used. This optimal control system uses the same state space models
as the Kalman filter. The LQR tuning matrices can be chosen using the system performance
requirements. As we seek to obtain the most precise positioning possible, a much greater
weighting is applied to the orientations of the suspended manipulator with respect to
its angular velocities to limit the damping of the control system. Considering that the
control systems for the roll and pitch axes will try to keep the system out of its equilibrium
point, and that a LQR will necessarily have a steady state error, a gravity compensation
feedforward has been integrated.

Figure 7 shows the performance of the system in simulation to consecutive step inputs
to test the system over its entire workspace using the parameters from Table 1. For this
simulation, yaw orientation is ignored as the system has more authority on this axis, it is
mostly decoupled from the other axes, and most of all the yaw orientation is kept constant
during the sampling phase as the user controls the Mamba mostly through roll and pitch
commands. Based on these results, the architecture comprising the Kalman Filter and
the LQR derived from the 3D model yields great results both in the transient and steady-
state portion of the simulation. Indeed, the control architecture allows control of all the
oscillation modes of the system by relying on a double pendulum model while ensuring
rapid and precise positioning. The control system exhibits a rise time (i.e., 10–90%) of less
than a second on both axes, with a minimal overshoot (i.e., less than 10%) while strongly
minimizing the second mode of oscillation of the system. The simulation also shows that
the second oscillation mode is again more present on the roll axis due to the suspended
platform’s lower inertia around this axis. Figure 7 also suggests that the system has a
steady-state error that varies within the workspace. As the Mamba will be teleoperated
with a human in the loop, this small steady-state error is less of a concern. These tests also
made it possible to demonstrate that the controller maintains its performances and stability
within its entire workspace.
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3. Results
3.1. Indoor Experiments

This section presents the functional tests performed in an indoor flight room with
the manipulator suspended to a fixed anchor on a ceiling. The objective of the indoor
experiments is to validate the mechanical design of the suspended manipulator and its
proper functioning in a flight situation. The tests will also aim to validate the performance
of the state estimator and the control system and compare the results to the simulation
model used to tune the control architecture. For these experiments, the manipulator uses
the same parameters as in Table 1. The total length of rope used is limited by the height of
the flight room ceiling in this case. During the tests, the states estimated by the Kalman filter
are recorded at a frequency of 50 Hz on the flight controller, and a VICON motion capture
system is used to provide a ground truth measurement of the suspended manipulator
orientation at a frequency of 100 Hz.

The first indoor tests seek to validate the control along the different axes used during
the sampling operation independently (i.e., roll, and pitch) and compare their behavior to
the simulated model as presented in the previous section. To do this, several step inputs
were sent to each axis to evaluate its transient and steady state response over the workspace
of the system. Figure 8 shows the results for each of the axes and its comparison with the
simulation model. These results at different operating angles further validate the model
and its control system presented in Section 4 as the comparison between the non-linear
model, the state estimator, and the VICON data shows a near perfect fit.
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Figure 9 shows the positioning accuracy of the Mamba during a sequence that aims
to reproduce the movement of the system during the sampling phase. The purpose of
this test is to demonstrate that the simultaneous movements on the roll and pitch axes
have little effect on the performance of the system despite the decoupling of these axes
introduced by the linearization of the model. Even when both orientations are controlled
simultaneously, the system maintains a similar accuracy to the tests carried out separately
on each of the axes.
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The obtained results provide validation for the initial assumptions and simplifications
used for the design of our physical model. The fit between the model simulation output
and the experimental data from the indoor flight room not only supports the validity of the
chosen simplifications but also suggests that the key dynamics of the system are accurately
captured within the linearized model.

3.2. Outdoor Experiments

This project introduces a suspended manipulator designed for sampling from plants on
cliffs, addressing multiple challenges in complex outdoor environments. Unlike controlled
indoor settings, this operational landscape involves environmental variability such as
wind, temperature fluctuations, unique terrain (cliffs), and diverse vegetation. Navigating
these challenges requires the manipulator to adapt to unpredictable conditions, validating
its resilience in real-world scenarios. Another important assumption to validate during
the outdoor experiments is that the platform will keep its precise positioning under a
carrier drone as opposed to a fixed anchor. Additionally, the manipulator’s interaction
with uncontrolled elements like plants was evaluated, ensuring its precise positioning
during the sampling operations. This section presents on-the-field sampling campaigns
to assess the manipulator’s performance and robustness. Two sampling campaigns were
carried out on the cliffs of Kaua’i, Hawai’i, focusing on small plants and bushes. Another
campaign in Reunion Island targeted a more diverse range of plants, bushes, and trees.
For these sampling campaigns the Mamba was hung under a DJI M300 drone [35] using
a 13 m rope (i.e., l1) for an added range on overhanging cliffs. This commercial drone
has a max takeoff weight of 9 kg and has an autonomy of 25 min when the Mamba is
hung to it. A video summarizing the outdoor experiments held in Reunion Island and
showing the Mamba during the sampling operation is available at the following link:
https://youtu.be/bSNJpNa_JzM (accessed on 3 March 2024).

https://youtu.be/bSNJpNa_JzM
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Over the sampling campaigns, a procedure was developed to ensure the effectiveness
of the deployed solution with the local expert. Prior to each sampling operation, a takeoff
location was designated by the specialist from the local conservation program. This
location was chosen to have a visual line of sight with the target, but also according to its
accessibility. The takeoff position was located up to 1.4 km away from the targeted plant
at certain locations due to the lack of close access point. Once on site, a reconnaissance
flight was performed to validate the location of the targeted species while allowing the
aerial manipulator operator to better understand the particularities of each sampling site.
Due to the low GNSS coverage in most sampling sites (e.g., cliffs, canyons), the DJI M300
was manually flown to the sampling location, and its visual obstacle avoidance system
was used to ensure a safe distance from any obstacle while in flight. While approaching
the targeted species, the objective was to position the targeted plant within the suspended
manipulator workspace. Once the targeted plant was within its workspace, the operator
would control the Mamba for the sampling operation. Based on the directions given by
the botanist, his objective was to collect a specific part of the plant that could help its
propagation in a plant nursery. Once the sample was collected, it was taken back to the
takeoff location and handed to a local conservation scientist.

4. Discussion

A total of 55 samples were collected in the wild from different plant species on
57 attempted flights. Most of the species sampled were critically endangered while some of
them were not known or considered extinct in the wild. The tool made it possible to collect
all the species that had been identified at the start of the project. Rain was a limitation
during the outdoor experiments for the actual system, as neither the drone nor the Mamba
were designed to operate in raining conditions. As rain is a limitation for most drone
operations with the degraded visibility. The impact of rain was mitigated by carefully
selecting flight days. Two main conclusions arose during the sampling campaigns: the
great variety of plant morphology was the main challenge faced and dealing with the
wind proved to be a challenge with the plants motion, but the control system was able to
maintain a great positioning for the Mamba.

The great diversity of plant morphology proved to be the main challenge when
sampling in the wild. The collection time varied from 1 min to more than 7 min and
was mainly determined by the morphology of the plant. The diverse characteristics of
the stems, leaves, and reproductive organs across plant species present a major challenge
for achieving uniform precision in sampling using a single sampling tool. Although our
sampling tool proved to be versatile, and capable of adapting to the diverse features of
various plant species, it was less efficient on smaller plants where the collection needed
a specific approach to avoid any damage to the targeted plant. Of all the field tests, only
two flights did not lead to the collection of the targeted plants. For these two flights, the
targeted plants were smaller, and its stems were too close to the cliff face for the sampling
mechanism. Figure 10 shows a glimpse of the variety in the morphology of plants sampled
in the different field trips. In all cases, the collection mainly targeted fruits and seeds to
facilitate the reproduction of endangered plant species in local nurseries. In some cases, the
single stem carrying the seed pods of a plant measured less than 15 cm (i.e., Kadua st-johnii),
which made the sampling operation difficult as the sampling mechanism was too bulky to
approach the sample. On the other side, the main advantage of sampling shrubs or trees
lies more in the multiple sampling options than in the larger sample size. Hibiscadelphus
distans is a shrub endemic to Hawai’i that has seed pods of the order of a few centimeters,
but the shrub itself can contain a large quantity of these seed pods. This allows the operator
to choose its sampling targets according to their position, orientation, and accessibility,
greatly facilitating the sampling operation.
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Figure 10. (a) Mamba collecting a sample from a Kadua st-johnii plant in Hawai’i with stems that are
less than 15 cm. (b) Collection of a Wilkesia hobdyi flower in Hawai’i. This shrub has branches up
to 60 cm long. (c) Mamba collecting a sample from a Foetidia mauritiana tree in Reunion Island. A
tree that can reach a height of 20 m. (d) Collection of Terminalia bentzoe fruits in Reunion Island. A
tree that can reach a height of 30 m. All the images on the right side depict samples collected using
the Mamba.
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Sampled plants were in various environments like canyons, ravines, and sea cliffs all
presenting vertical surfaces to sample from. In all environments, the wind represented
one of the main challenges with average winds ranging from 3.4 to 31.6 km/h with gusts
reaching more than 40 km/h on six distinct flights. Some of the tests were conducted in
winds near the limit prescribed by DJI for the M300, which is 12 m/s (43.2 km/h), which
appears to be the limitation of the current system. Despite the ability of the suspended
manipulator and its carrier drone to maintain precise positioning under high wind condi-
tions, the motion of the plants proved to be the challenge. However, it’s noteworthy that
while this dynamic interaction added a level of complication, it remained manageable for
the operator. The influence of wind on collection time was found to be relatively minor
when compared to the diversity in plant morphology, showcasing the robustness of the
suspended manipulator system in overcoming environmental challenges during plant sam-
pling in windy conditions. Figure 11 shows the performance of the suspended manipulator
control system in a real-world scenario during two sampling operations in Reunion Island.
The flight out and back from the sampling area which may take up to 10 min is not shown
in these graphs to put an emphasis on the sampling operation itself. Both flights show two
sampling attempts during the collection of the targeted plant. The states estimated by the
Kalman filter are noisier than during indoor tests, and this is explained by the external
disturbances applied to the system, such as wind, the movement of the carrier drone and
contact forces during the sampling phase of the flight. These two examples help to better
understand the limited influence of wind on the flight performance of the Mamba. Despite
much higher wind speeds during flight (b), the platform shows similar performance in
maintaining its orientation as shown by the root mean square error of each flight in (c).
Overall, the suspended platform demonstrates its ability to sustain high wind speed on
sampling operations showcasing the ability of the tool to operate in real-world conditions.
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Figure 11. (a) Orientation of the Mamba during a sampling operation with a mean wind speed of
12.0 km/h and wind gusts reaching 24.1 km/h. (b) Orientation of the Mamba during a sampling
operation with a mean wind speed of 27.9 km/h and wind gusts reaching 37.7 km/h. (c) Comparison
of the root mean square error for each axis during the sampling operation for (a), and (b) flight.
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Although the results in Figure 11 show the stability of the Mamba in presence of strong
winds, it is also interesting to observe the robustness of the control system during field tests
and tests carried out in the indoor flight room. Figure 12 compares the commands sent to
the actuators during a static portion of the Mamba’s flight both for laboratory testing and
an outdoor flight with winds of 11.1 km/h with gusts up to 21.1 km/h. For Figure 12c,
the static component of the command to the actuators has been filtered out. Only the
variations in the commands sent to the actuators for the roll and pitch axes are shown. We
note that the variations in the commands sent to the actuators during a static portion of the
laboratory tests are much smaller in amplitude compared to the external tests. The standard
deviation is much greater during the outdoor sampling operation: 3.4 times greater for the
roll axis, and 1.9 times greater on the pitch axis. This tends to demonstrate the effectiveness
of the control system in the presence of external disturbances during sampling operations
as the Mamba keeps its precise positioning.
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of the sampling operation (a), and the step test (b) for 8 s with the static component of the command
filtered out.
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5. Conclusions

Scientists working on biodiversity conservation in cliffs habitat use techniques at
their disposal to collect parts of endangered plant species. The current techniques (e.g.,
abseiling, climbing) pose significant risks to their safety, not to mention that many habitats
remain completely inaccessible. To overcome this problem, this study presents a suspended
manipulator under a drone to collect plant samples on cliffs. This study makes new
contributions to the field of aerial manipulators suspended under a lifting system by
presenting an accurate dynamic model of the system as well as a model-based control
system relying solely on an IMU for operation in GNSS-denied environments providing
high positioning accuracy and bandwidth for a suspended manipulator. Indoor tests have
demonstrated the high accuracy of the developed system while maintaining high stability
and low orientation error over all the controlled degrees of freedom. Real-world testing of
the system took place on the island of Kaua’i in the Hawaiian archipelago and in Reunion
Island where the prototype was able to collect from many endemic and rare plants on three
distinct field trips in winds higher than 40 km/h, while maintaining a precision error of
less than 1 degree on all orientations during sampling operations.

The technology developed in this project has also demonstrated that it can have
an immediate impact on the field of conservation. Over the course of those sampling
campaigns, the Mamba allowed the collection of 55 samples from 28 species from which
19 are considered critically endangered and 3 were considered extinct in the wild. For
example, the samples collected from a specimen of Plantago princeps enabled the NTBG
to propagate this species in their nursery. Knowing that there are only 50 individuals of
this species left, these encouraging results clearly show the usefulness of this suspended
manipulator technology for conservation.

Future work includes training conservation scientists on the use of the Mamba to
facilitate its use on a larger scale, and the development of new sampling mechanisms more
suitable for collecting specific plant’s part in hard-to-reach environments. By retaining the
same mechanical design for the main platform, the integration of new sampling mecha-
nisms will be facilitated and will greatly help with the sampling of a more diverse plant
morphology.
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