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Abstract: Multi-unmanned systems have demonstrated significant applications across various fields
under complex or extreme operating environments. In order to make such systems highly efficient
and reliable, cooperative decision-making methods have been utilized as a critical technology for
successful future applications. However, current multi-agent decision-making algorithms pose many
challenges, including difficulties understanding human decision processes, poor time efficiency, and
reduced interpretability. Thus, a real-time online collaborative decision-making model simulating
human cognition is presented in this paper to solve those problems under unknown, complex, and
dynamic environments. The provided model based on the Soar cognitive architecture aims to estab-
lish domain knowledge and simulate the process of human cooperation and adversarial cognition,
fostering an understanding of the environment and tasks to generate real-time adversarial decisions
for multi-unmanned systems. This paper devised intricate forest environments to evaluate the collab-
orative capabilities of agents and their proficiency in implementing various tactical strategies while
assessing the effectiveness, reliability, and real-time action of the proposed model. The results reveal
significant advantages for the agents in adversarial experiments, demonstrating strong capabilities in
understanding the environment and collaborating effectively. Additionally, decision-making occurs
in milliseconds, with time consumption decreasing as experience accumulates, mirroring the growth
pattern of human decision-making.

Keywords: multi-unmanned vehicle; cooperative decision-making; cognitive architecture

1. Introduction

Multi-unmanned systems have demonstrated significant applications across various
fields under complex or extreme operating environments. Research on decision-making
and adversarial scenarios for multi-unmanned systems is predominantly centered around
machine learning and artificial intelligence algorithms, using deep learning networks [1–6]
and bio-inspired heuristic algorithms [7–12]. However, these methods encounter many
challenges, such as difficulties understanding human decision processes, poor time effi-
ciency, and reduced interpretability, thus limiting their applicability in security contexts.
In contrast, methods based on planning strategies demonstrate higher stability and in-
terpretability, with enhanced safety. Nonetheless, their low scalability poses challenges
in adapting to complex and dynamic environments [13,14]. Therefore, scholars adopted
a strategy of integrating two methods to overcome respective limitations. For example,
they proposed collaborative human-ml decision-making and expert–machine collaborative
decision-making methods. These methods involve task division, with humans providing
domain knowledge and experience, while machine learning systems handle data analysis
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and pattern recognition, thus jointly supporting decision-making [15]. Another strategy
involves making decisions using expert systems and machine learning together and in-
tegrating the final decision through credibility settings [16,17]. Additionally, leveraging
explainable AI for enhanced decision-making involves training enhanced interpretable al-
gorithms using samples evaluated by humans [18,19]. Nonetheless, these methods still fail
to fully consider the process of human cognitive modeling. Therefore, this paper proposes
an approach that simulates human cognition, constructing a real-time online collaborative
decision-making model that is both interpretable and scalable. The aim is to address the
aforementioned issues encountered in unknown, complex, and dynamic environments.

Soar, standing for State-Operator-Action-Result, embodies a versatile cognitive ar-
chitecture designed to emulate human cognitive processes. It employs knowledge-based
reasoning to analyze input data, enabling it to tackle a wide array of problems effectively.
Following its abbreviation, Soar’s problem-solving approach revolves around state tran-
sitions where the initial state corresponds to the problem posed and the resolution of
the problem corresponds to reaching the goal state. In Soar, the result of state transition
is achieved through proposing operators and applying the action of proposed opera-
tors [20–22]. Specifically, Soar begins by constructing state spaces with MEs (Memory
Elements) through the application of domain-specific planning knowledge. MEs consist
of long-term memory elements and short-term memory elements. Long-term memory
elements represent domain knowledge. Short-term elements entail information from the
current environment, serving for temporary storage and processing. When short-term
memory elements meet all conditions of long-term elements, it is termed as the current sit-
uation matching the state space associated with the rule. Next, Soar retrieves the operators
corresponding to the state space and stores these operators in the operator candidate set.
After traversing all the state spaces, the operator candidate set will contain all available
operators. Each operator carries an attribute called Preference, where a higher preference
indicates a higher priority for the operator. Then Soar selects an operator based on their
preferences, executes corresponding actions in the operator, orchestrates transitions be-
tween states, and repeats the above steps until the problem is resolved, culminating in
the desired results [23,24]. Through its rule-based reasoning mechanism, Soar can derive
decisions from interpretable rules, further enhancing its problem-solving capabilities.

Notably, Soar not only offers interpretability but also incorporates learning mecha-
nisms for continuous improvement. Chunking, an experiential learning technique, moni-
tors the historical problem-solving process, capturing relevant scenarios and final decisions
to derive new rules. These new rules are promptly activated upon encountering similar
scenarios, thereby reducing decision retrieval time [25]. The RL (Reinforcement Learning)
mechanism updates operators’ preferences based on rewards from historical behaviors,
adjusting the probability of operator selection and application to maximize future re-
wards [26]. Episodic learning records historical problem-solving processes and acquires
experience by comparing historical and current scenarios based on activation [27]. These
learning capabilities enable Soar to make decisions even in the absence of matching rules,
gradually enhancing and optimizing decisions to meet the collaborative cognitive gaming
requirements of multi-unmanned systems in complex and dynamic environments.

Historically, Soar applications have primarily focused on a single intelligent agent,
encompassing a range of fields such as robotics [28–32], target identification and alloca-
tion [33,34], and autonomous learning systems [35–38]. However, multi-agent models
are also employed, albeit in a smaller proportion. Examples include the TacAir-Soar
project [39,40] and MOUTBots project [41].

In Soar-based multi-agent projects, extensive knowledge bases are established to
meticulously decompose potential scenarios. Tasks are abstracted into hierarchical struc-
tures, and actions are encoded layer by layer, culminating in the completion of the entire
project [39–41].
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This paper models collaborative and adversarial behaviors under complex and dy-
namic environments, establishing a multi-unmanned adversarial system based on Soar,
and it validates the model in Unity.

Section 1 introduces the research objectives and content while briefly outlining the
basic principles of the Soar cognitive architecture and related work. Section 2 elaborates on
the modeling of multi-unmanned systems based on the Soar architecture and knowledge
establishment. Section 3 shows the adversarial environment and game settings based on
Unity. Section 4 analyzes the simulation results. Section 5 is a conclusion section, providing
an overview of the research achievements and future prospects.

2. System Design Based on Soar Cognitive Architecture
2.1. Overall Framework Design

Implementation of the Soar framework hinges on knowledge establishment, which
enables the system to thoroughly comprehend information, and the interface facilitates
an accurate interaction with the environment. Soar interprets the knowledge, compares it
with the environmental information, develops reasoning, and finally makes decisions that
should be taken and implemented. The overall framework design is illustrated in Figure 1.
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2.2. Interface

The environmental information is provided by Unity in this paper. Soar interacts
with the external world through the SML interface and handles tasks such as receiving
environmental information and outputting decisions [42]. Unmanned systems transmit
information obtained from the Unity environment to a Java program through sockets. This
paper presents a Java program that organizes symbolic information through a series of
procedural steps, ensuring that the feature symbols conform to the requirements of the
Soar kernel. The processed information is then sent to the Soar kernel. Soar receives and
integrates the information, conducts knowledge reasoning to generate decisions, and finally
outputs the decision results to the Java program. The Java program packages the decisions,
utilizes sockets to transmit them back to the unmanned systems, and the unmanned systems
interpret the decisions and execute corresponding actions, forming the OODA loop, as
shown in Figure 2.
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2.3. Knowledge Establishment

Knowledge establishment is a crucial step in implementing the Soar framework. In
the construction of multi-unmanned systems, it involves conceptualizing, encoding, and
integrating various types of knowledge to enable them to function effectively within the
Soar cognitive architecture. Generally, the cognitive process can be divided into two main
stages. Firstly, it utilizes domain knowledge to summarize and contemplate the initial
information, forming a deeper cognitive foundation. This process does not generate output
commands to the environment but is akin to the internal thought process in the human
mind, creating new cognitive elements. Secondly, it integrates new cognitive information
with environmental information, reasons, and then formulates appropriate action plans.
This dual-stage cognitive processing approach adapts more effectively to complex and
dynamic scenarios.

This paper categorizes knowledge into three types: Situation Cognition Knowledge,
Mission Planning Knowledge, and Action Selection Knowledge. These knowledge cate-
gories will guide unmanned systems in making appropriate decisions.

Situation Cognition Knowledge helps the system to develop a deeper understanding
and cognition of the information, which is a type of internal reasoning knowledge, as shown
in Figure 3. It effectively integrates complex information into a comprehensive cognitive
structure, which includes terrain analysis, orientation perception, capability awareness,
distance judgment, role inference, threat assessment, and comprehensive value assessment.
These elements permeate the entire cognitive process, ensuring that unmanned systems
can understand and respond to various scenarios as well as provide a cognitive foundation
for subsequent planning decisions.
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Figure 3. The key design analysis of Situation Cognition Knowledge involves refining rules in Soar
to endow unmanned systems with situational awareness.

Mission Planning Knowledge encompasses various factors and strategies that are
considered during mission execution. It represents decision-oriented knowledge that
generates sequences of autonomous decisions. Soar’s subgoal structure is utilized to
decompose the overall mission into a combination of different types of tasks, such as
reconnaissance, strike, etc., which are shown in Figure 4.
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Generally, a task can also be subdivided into combinations of various actions, as clearly
defined in Table 1.

Table 1. Description of action and tactic.

Type of Action Description

Cross formation When the team advances to a narrow road, a formation is designed to
ensure safety both in the front and on both sides.

Vertical formation When the team advances to a very narrow pathway allowing only
single-person passage, a formation is designed for safe progression.

Horizontal formation When the team advances to a wide area, a formation is designed to
ensure the full utilization of firepower.

Focus fire Both sides of the team maintain a horizontal alignment and launch a
joint attack.

Kiting The kiting tactic involves launching attacks by leveraging the
advantages of range and speed.

Cover(tactic) The cover strategy protects the attacker and completes the assault.
Move Autonomous navigation to the corresponding point.

Retreat Quick location of nearby large obstacles and resistance to
rival attacks.

Fire Firing at the target, but only one target can be attacked at a time.
There is a certain cooldown period after firing.

Hide Seeking cover while changing ammunition (no offensive capability).

Cover(action) When there is not enough cover on the front lines, roles are switched
to provide cover for teammates.

Speed up When team members are distant, members positioned at the rear of
the team accelerate to catch up.

Slow down When team members are widely spaced, members positioned at the
front of the team slow down.

Action Selection Knowledge involves the detailed modeling of individual behavior,
primarily addressing two issues: the predictability problem caused by entities tending to
choose only the best behavior in similar situations, and the problem of behavior merits
and demerits. This knowledge models multiple behaviors for each scenario to ensure
behavioral variability, and it assigns priority values to these behaviors. The priority values
are closely related to the probability of behavior selection: the higher the priority value, the
greater the likelihood of selection. Table 2 outlines these preferences. It helps systems to
make more flexible and intelligent decisions in various situations.

Table 2. Preferences of tactics.

Situation Focus Fire Cover Kiting Retreat

Both teams have similar configurations. 4 3 2 1
Team 1 has a significant speed advantage. 3 2 4 1

Team 1 possesses a distinct power advantage. 3 4 2 1
Team 1 has critically low health. 1 2 3 4

Upon receiving environmental information, Soar first utilizes Situation Cognition
Knowledge to form cognitive elements. Based on this cognitive understanding, the system
further decomposes tasks and selects execution based on Mission Planning Knowledge
using the subgoal structure. In this paper, a comprehensive understanding of elements is
not entirely achieved at the initial stage. Since the system prioritizes different cognitive
elements under different tasks, differentiated cognitive strategies are formed during the
subtask stage to optimize system performance and reduce resource costs. Finally, the system
formulates appropriate decisions and outputs corresponding behaviors to the external
environment. The entire process is shown in Figure 5, presenting an organic and coherent
cognitive and decision-making flow.
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3. Game Setting
3.1. Scene

The scenario draws inspiration from the game Tank Wars. Unlike the two-dimensional
game, this paper implements a three-dimensional scene in Unity, which includes various
types of unmanned systems and obstacles as elements. The view of each unmanned system
is limited to increase local observability, while the movement characteristics and action
orientations of unmanned systems are expanded to make the game more complex and
dynamic. The environment is shown in Figure 6.
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Figure 6. Three-dimensional Tank Battle game interface, Team 1’s spawn point is located at the
bottom of the map. Team 2 has two possible spawn points, located on the right and left sides of
the map, respectively. Different scenes are set based on different surrounding environments. Area
1 is a jungle passage with a constantly changing width, and it provides a necessary path to Area 2.
Team 1 needs to make appropriate formation changes here to ensure safe progress. Area 2 is the
confrontation area near Team 2’s spawn point 1, with many obstacles. Area 3 is the confrontation
area near Team 2’s spawn point 2, which is open with no cover to block attacks.
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Area 1, Area 2, and Area 3 are designed to verify the capabilities of the unmanned
systems, including terrain awareness, an understanding of adversarial scenarios, and
combat capabilities.

3.2. Team Configuration

This paper aims to investigate the collaboration and adversarial confrontation among
multiple unmanned systems. Team 1 adopts the Soar intelligent collaborative confronta-
tion rules, while Team 2 uses single-player confrontation rules. Team 1 possesses robust
collaborative perception capabilities and shares information; if any member detects rival
information, they publish it to the platform which shares information to other members,
ensuring that all team members can promptly access dynamic rival information, even if
they have not directly detected the rival’s position themselves. Team 2 relies solely on the
members’ own perceptual information.

Furthermore, Team 1 dynamically calculates the comprehensive value and threat
within the team, choosing to attack the Team 2 member with the highest comprehensive
value to quickly weaken the opponent’s strength. Team 2, on the other hand, focuses on
attacking the nearest Team 1 member, ensuring safety.

In addition, this paper tests multi-roles and asymmetric scenarios. The attribute design
for different roles is shown in Table 3.

Table 3. Character attributes table.

Type ATK HP CD Attack Range Field of View Speed Range Tag

HT 500 5000 5 220 350 15–25 Team 1/Team 2
LT 300 3000 3 280 350 25–35 Team 1/Team 2

3.3. Game Flow

Figure 7 illustrates the cyclic interaction process between the environment and un-
manned systems, which involves the following steps:

(1) Initialize: Initialize scene and unmanned system properties, establish the connection
between the client and server, send information to the server, and start client reception.

(2) Step: Unmanned systems choose actions to execute at each time step, affecting the
environment and various properties of all unmanned systems.

(3) Monitor: Monitor the environment and various data to determine whether the termi-
nation condition is met.

(4) Game Done: The combat experiment terminates when the number of unmanned
systems for either side reaches 0 or reaches the maximum number of combat steps
(10,000). If one side achieves victory, record one victory for the winning side. If both
sides fail to eliminate each other, then record one draw.

(5) Reset: Reset the game. Set the step count back to 0, kill all systems, and regenerate
two teams of unmanned systems.
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4. Result Analysis

This article adopts the scale of a two-drone formation to investigate scenarios of
2V2 distributed unmanned system conflicts. In order to validate the feasibility and effec-
tiveness of the system in this study, independent decision models are equipped for each
unmanned system. The rationality of the decision-making approach is verified through
simulation results.

4.1. Real-Time Analysis

The promptness of decision-making during confrontation is a crucial aspect of un-
manned system games. This section records the average execution time of a single decision
to comprehensively evaluate the system’s performance, assessing whether the system can
make decisions promptly to meet real-time requirements in the game.

As the initial run may involve some additional initialization work, such as model
loading and connection establishment, the time required for the first run far exceeds that of
subsequent single decisions. This section calculates the execution time of multiple decision
cycles. The average execution time for a single decision is displayed in Figure 8. The
outcomes show that the average time for a single decision, excluding the initial run, with
the model incorporating all decision rules is 2.5–7.0 milliseconds, which fully satisfies the
rapid response requirements in online real-time decision-making.
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Furthermore, the changing outcomes of decision-making time align with the growth
pattern observed in human decision-making, where the cycle gradually shortens as more
events (computational cases) are experienced.

4.2. Decision Analysis

In Area 1, unmanned systems are capable of autonomously adapting their formation
while traversing a narrow forest passage. As depicted in Figure 9, the unmanned systems
depart from the starting point and sequentially undergo formation changes, transitioning
from a vertical to a cross-shaped and finally to a horizontal formation, based on their
surroundings. They assess the road width ahead and autonomously adjust their formation
relative to the team’s position. The internal cognitive computations and decision outcomes
during this process are also illustrated in Figure 9. These results demonstrate the unmanned
systems’ environmental perception and their ability to autonomously adapt their formation
based on team position.

Area 2 represents a dense scenario, primarily testing the Cover strategy during the
confrontation. In this strategy, unmanned systems calculate distances to obstacles, which
are sufficient for block firing, and autonomously choose the nearest cover for evasion, as
depicted in the action sequence in Figure 10.

Area 3 is an open and spacious scenario where confrontation primarily tests three
strategies.

In the Cover strategy, unmanned systems A and B, based on their type, health status,
and the condition of the teammates, choose one member as a cover. In the scenario with
a lack of cover, the cover member acts as bait to attract rival fire, while another member
serves as the main output. During the confrontation, the roles of the members flexibly
adjust according to the changing situation. The decision outputs and action sequences are
illustrated in Figure 11.

In the Focus Fire strategy, A and B are arranged in a horizontal formation to maximize
frontal confrontation capabilities, as depicted in Figure 12.
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capable of blocking attacks for evasion.
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Figure 12. In the Focus Fire strategy, Team 1 members are aligned in a horizontal formation, targeting
the highest-value objective. The solid line represents the direction of the attack, while the dashed line
indicates the maneuvering direction. (a) Testing 2V2; (b) Testing 2V1.

Kiting is a strategy that involves launching attacks while systematically withdrawing.
When the unmanned system’s firepower is ready, it selects the target with the highest value.
During the cooldown period, it swiftly withdraws, moving away from the rival towards a
safe zone. This tactic aims to fully leverage the advantages of range and speed, ensuring
self-preservation while engaging the rival, as illustrated in Figure 13.
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4.3. Performance from Past Outcomes

This section presents numerous asymmetric confrontation experiments involving two
conflict scenarios. The experimental results were systematically collected and organized
and are presented in Table 4.

Table 4. Results of asymmetric confrontation experiments in different scenarios. Team 2’s configura-
tion is represented by a preceding “VS”, while Team 1’s configuration by a succeeding “VS”. The
strategies chosen by Team 1 are indicated in parentheses.

Confrontation
Scenario

Both Parties’
Configurations and

Strategies
Team 1 Wins Team 2 Wins Draws Team 1’s Win Rate

Area 2 2HT VS 2LT (Cover) 36 16 2 66.67%

Area 3

2HT VS 2LT (Kiting) 39 17 1 68.42%
HTLT VS 2LT (Kiting) 33 18 4 60%
2HT VS HTLT (Kiting) 28 16 0 63%

HTLT VS 2HT (Focus Fire) 42 9 0 82.35%%
HTLT VS 2HT (Cover) 43 0 2 95.56%
HT VS 2LT (Focus Fire) 25 0 0 100%

3HT VS 2LT (Kiting) 28 15 7 56%

The experiments demonstrate that the Soar multi-unmanned system can autonomously
plan tasks and engage in adversarial games across diverse environments. This validates
the effectiveness of the Soar cognitive architecture in decision-making for multi-unmanned
system confrontations and provides crucial insights for autonomous decision-making and
cooperative operations in complex environments. The success of the collaborative decision-
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making model also provides robust support for the future application of unmanned systems
in more complex scenarios.

4.4. Performance during the Game

The experimental findings were as follows:

1. In Area 2, when applying the Cover strategy, obstacles not only block rival attacks but
sometimes hinder Team 1’s attacks as well, resulting in a longer overall testing time.
Further refinement of the attack actions is needed, including the addition of criteria to
assess whether there are obstacles in the attack direction.

2. In Area 3, when facing the situation of 2HT VS 2LT, the outcome of the confrontation
is closely related to the positions of Team 1 and Team 2. When the distance between
the two sides is close, the advantage of the Kiting tactic is not fully utilized because
Team 1 remains within the rival’s attack range for an extended period. This may lead
to a decrease in Team 1’s win rate.

3. When dealing with the situation of HTLT VS 2HT in Area 3, adopting the Cover
strategy has a higher win rate than the Focus Fire strategy. Furthermore, statistics
show that during confrontations, the Focus Fire strategy can lead to victories but is also
accompanied by mate losses. The probability of losing one mate system constitutes
90% of the total victories. In contrast, when employing the Cover strategy, the loss of
one mate system accounts for only 20% of the total victories.

4. In tests with asymmetric quantities, the Focus Fire strategy is employed when Team1
has a numerical advantage, while the Kiting tactic is chosen in case of a numerical
disadvantage. In tests where there is a numerical disadvantage, the frequency of
draws increases due to multiple instances of reaching the maximum time steps.

5. There is a correlation between the decision speed of the Soar system and the number
of rules. In this paper, the knowledge set was around 200 rules, and, excluding the
first decision, the maximum time for a single decision was kept within 7 milliseconds,
meeting real-time requirements. However, when dealing with a higher magnitude of
rules, it is crucial to focus on testing and controlling decision-making times.

5. Conclusions and Future Work

This paper proposes a method for multi-unmanned system adversarial games based
on the Soar cognitive architecture, accomplishing the following tasks:

1. Constructing knowledge of cooperative and adversarial cognitive decision models
for multi-unmanned systems by designing Situation Cognition Knowledge, Mission
Planning Knowledge, and Action Selection Knowledge to assist unmanned systems
in adversarial tasks. Situational Awareness Knowledge assists systems in internal
cognition, Mission Planning Knowledge utilizes hierarchical thought to decompose
adversarial tasks into subtasks related to strategies and defines the execution actions
under each strategy, helping system devise fully hierarchical autonomous task plan-
ning, while Action Selection Knowledge assists in selecting appropriate strategies for
application.

2. Providing a complex forest simulation environment based on Unity, along with com-
munication interfaces for connecting and testing cognitive decision models. The
decision-making outcomes are intuitively displayed in the visualized scenarios. This
establishes a foundation for the subsequent development of multi-domain collabora-
tive unmanned systems.

3. The positive performance validates the feasibility and effectiveness of Soar cognitive
architecture application to multi-unmanned systems. The system demonstrated the
decision-making capabilities of Soar in complex and dynamic environments, show-
casing its ability to make appropriate decisions in various complex scenarios. These
results confirm the effectiveness of the Soar architecture in collaborative decision-
making for multi-unmanned systems.
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This study focuses on multi-unmanned systems confrontation scenarios, with decision-
making primarily concentrated on the strategic selection of combat objectives. Future
research will include more unmanned systems and focus on building more complex adver-
sarial environments. As the number of unmanned systems increases, tactical rules will also
expand. The next step will focus on optimizing and incorporating tactical and reinforce-
ment learning rules, altering the selection probability of operators through rewards, and
reinforcement learning mechanisms. This system will learn from historical experience and
acquire rewards to determine which decision-making approach will achieve the highest
reward value.
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