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Abstract: Millimeter-Wave Radar is one promising sensor to achieve robust perception against
challenging observing conditions. In this paper, we propose a Radar Inertial Odometry (RIO) pipeline
utilizing a long-range 4D millimeter-wave radar for autonomous vehicle navigation. Initially, we
develop a perception frontend based on radar point cloud filtering and registration to estimate the
relative transformations between frames reliably. Then an optimization-based backbone is formulated,
which fuses IMU data, relative poses, and point cloud velocities from radar Doppler measurements.
The proposed method is extensively tested in challenging on-road environments and in-the-air
environments. The results indicate that the proposed RIO can provide a reliable localization function
for mobile platforms, such as automotive vehicles and Unmanned Aerial Vehicles (UAVs), in various
operation conditions.

Keywords: radar inertial odometry; localization; point cloud; UAV

1. Introduction

Reliable localization is a prerequisite for most autonomous operations of mobile robot
platforms [1]. Localization methods based on various sensory mechanisms have been
proposed for different robot operation conditions, especially for GPS-denied environments.
Cameras [2,3] and LiDARs [4,5] are the most commonly used exteroceptive sensors for
localization functions in GPS-denied environments. The localization reliability and accu-
racy can be further improved by fusing exteroceptive measurements with interoceptive
measurements, such as the Inertial Measurement Units (IMUs). Visual–Inertial-Based
Navigation Systems (VINSs) [6], and LiDAR–Inertial-Based Navigation Systems [7] have
been extensively investigated and have become essential elements for many robotics appli-
cations, such as indoor service robots [8], and outdoor civil and industrial robots [9–11].
When the application field of autonomous robots is further expanded to more complex
tasks and environments, cameras and LiDARs become less competitive, as their perception
qualities are easily degraded by light condition changes, particles, or weather conditions
such as fog, rain, or snow [12].

Millimeter-wave radar is considered a more robust mobile sensor against various
perception interference. However, the traditional radar sensor often suffers from low
spatial resolution and highly noisy measurement, which makes it hard to utilize to sup-
port decent environment perception—and afterward reliable localization—in complex
large-scale environments. To improve the perception density, the Frequency-Modulated
Continuous Wave (FMCW) technique has been implemented on millimeter-wave radar
recently, which enables a more elaborate localization framework such as Simultaneous
Localization and Mapping (SLAM) [12]. To further expand the application fields from 2D
space to 3D space, millimeter-wave radar that can simultaneously measure the azimuth
angle, elevation angle, range, and Doppler speed, named 4D millimeter-wave radar, is
further developed, which aids more mobile robots, such as UAVs, to achieve perception
tasks in more complex environments.
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Radar-based localization has begun to attract researchers’ attention in recent years.
The MulRan dataset [13] introduces a multimodal range dataset that includes both radar
and LiDAR data for environment perception, especially for place recognition. The radar
data are defined in an image format for later association convenience. Similar 2D formatting
has also been used in [14] to represent 2D point clouds, and the ORB descriptor [2] was used
to associate point clouds in consecutive frames. The effects of motion distortion and the
Doppler effect on localization have been investigated. To tackle the effect of outliers on radar
odometry, a novel outlier-robust method called ORORA was proposed in [15], which is an
abbreviation of Outlier-Robust Radar odometry. The work [12] described a complete radar
SLAM that demonstrates the power of using 3D radar to achieve reliable localization in
challenging perception conditions. Although radar-based localization has been successfully
demonstrated in the above works, most of them are based on 3D measurement, which
contains an azimuth angle, a range, and a Doppler velocity. The methods can be hardly
to extended to 3D environments. Until very recently, a 4D millimeter-wave radar with an
extra elevation angle has been adopted for localization and navigation purposes. Ref. [16]
provided a 4D radar dataset for 3D odometry and mapping. However, the range of the
radar was short and could not be used for large-scale scenarios localization and navigation
purposes. Ref. [17] presented a real-time imaging radar inertial odometry and mapping
method, iRIOM, based on the submap concept. iRIOM was the first to achieve real-time 3D
odometry and consistent mapping using 4D radar data. Considering that its experimental
data were collected on an unmanned vehicle, its performance on a 3D UAV platform still
needs to be verified.

In this paper, we propose a Radar Inertial Odometry (RIO)-based on a long-range
4D radar system and an IMU, which facilitates autonomous mobile systems, such as un-
manned vehicles and unmanned aerial vehicles, to localize themselves reliably in complex
environments. An illustrative example of the proposed method in a large outdoor scene
is shown in Figure 1. The framework is described in Figure 2. First, we design a point
cloud preprocessing pipeline, which contains a spatial filter and a velocity filter to eliminate
noisy points and outliers from moving objects. Afterward, the point clouds are used to
estimate ego–motion velocities based on its Doppler measurement and to obtain an odome-
try measurement based on the Normal Distribution Transformation (NDT). The IMU data
are preintegrated to provide prior information for the velocity filter and the NDT-based
point cloud matching. Finally, the three measurements, namely the velocity, the odometry,
and the IMU preintegration measurement, are factorized into a graph, and the poses of the
robot are solved. The contributions of the paper are as follows:

• We developed a 4D long-range radar-based navigation frontend, which includes
odometry and a velocity estimator to estimate the radar ego–motion.

• We built a backend estimator, which factorizes the radar odometry, Doppler velocities,
and IMU measurement in a factor graph and solves the robot’s poses in a sliding
window fashion.

• We extensively tested our framework in complex large-scale 2D/3D environments,
including dynamic objects.

The rest of the paper is organized as follows. The related works are reviewed
in Section 1. The radar odometry and radar inertial navigation system are given in
Sections 2 and 3, respectively. The experimental validations are provided in Section 4.
We conclude the paper in Section 5.

In this section, we present the preprocessing steps of the 4D radar point cloud to obtain
odometry measurement and ego–motion velocity. Initially, we give a simple but effective
process to eliminate outliers; then, the odometry and Doppler velocity are obtained based
on filtered point clouds.
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Figure 1. The 3D mapping results of radar SLAM in large outdoor scenes.
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Figure 2. Framework of the proposed RIO system.

2. Radar Odometry

In this section, we present the preprocessing steps of the 4D radar point cloud to
obtain the odometry measurement and ego–motion velocity. Initially, we give a simple
but effective process to eliminate outliers; then, the odometry and Doppler velocity are
obtained based on filtered point clouds.

2.1. Point Cloud Filter

Affected by the sensor’s own characteristics and environmental interference, the
measured point cloud data contain many outliers. The outliers make the pose estimation
inaccurate and destroy the stability of the SLAM system. There are mainly two types of
outliers in the 4D millimeter-wave radar data. The first type is clutter points from ground
effects and multipath effects. The second type comes from dynamic object perception. We
use two filters, namely the spatial filter and the velocity filter, to remove the two types
of outliners.

2.1.1. Spatial Filter

Ground effects and multipath effects are the main outlier resources in 4D millimeter
radar perception data in a complex environment. Different from most normal radar points
that belong to certain patterns, which reflect the structure of surrounding environments,
the outliers are usually rather sparse and lack neighbor points. Based on this consideration,
we implement a spatial filtering process that contains a pass-through filter and a radius
outlier removal filter.

First, the pass-through filter is constructed by defining a pass-through space S originat-
ing from the center of radar as S = {(θa, θe, d, v)|θa ∈ [θa,min, θa,max], θe ∈ [θe,min, θe,max], r ∈
[rmin, rmax], v ∈ [vmin, vmax]} ∈ R4. A point measurement is an inlier when it belongs to S.
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After that, all linear points are converted to 3D Cartesian coordinates for neighbored
analysis. Given a point pi ∈ S, its d neighborhood points set is defined as Nd(pi) =
{pj|∥pi − pj∥ ≤ d, pi, pj ∈ S}. An outlier can be defined when

i =
{

an outlier : |Nd|(oi) ≤ nth
an inlier : otherwise.

(1)

The effect of using the above operations on radar point clouds is shown in Figure 3.

 
 

before filtering 

after filtering

Figure 3. The spatial filter effects on 4D radar measurement.

2.1.2. Point Cloud Filtering from Dynamic Targets

It is well known that moving objects may generate false motion estimation in the
SLAM-based method. Removing the point cloud that belongs to the moving object is
critical for localization in dynamic environments. Thanks to the Doppler effect, the points
that belong to moving objects have obvious velocity differences. For a point i belonging to a
static object, the following Equation (2) for the Doppler velocity and the radar ego–motion
velocity is defined as follows:

p⊤i
∥pi∥

vradar + vi = 0. (2)

For a dynamic point, the above equation does not hold. Therefore, we use (2) to check
points within a scan. As the true value vradar is not known ahead, we turn to an IMU to
acquire a guess of the ego–motion of the radar. We assume there is an IMU fixed to the body
frame, and there is a rigid transformation between the radar and the IMU, Tradar

imu , as shown
in Figure 4. First, an ego–motion velocity of the IMU temporally that is aligned with the
radar, which we denoted as vi

imu, is obtained by preintegrating the IMU measurement data.
Subsequently, the prior guess of the radar ego–motion in the radar local frame based on the
IMU data, denoted as vr

imu, is obtained by applying a constant transformation between the
radar frame and the IMU frame, which is denoted as on vi

imu. We replace vradar with vi
imu in

(2) to check whether a point is static or not. Moreover, considering the uncertainties of the
IMU preintegration and Doppler measurement, we can set a threshold vthr to determine
whether a point is an outlier as (3).

i =

{
an outlier : | p⊤i

∥pi∥
vr

imu + vi| ≥ vthr

an inlier : otherwise.
(3)

A demonstrative result of the radar odometry by removing velocity outliers is provided
in Figure 5. As shown in Figure 5b, the moving objects (pedestrians) will cause unwanted
trajectories in the map and will affect the localization as well. By filtering out the velocity
outliers, more clear and more accurate localization can be obtained, as shown in Figure 5c.
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Figure 4. The transformation relationship between vradar and vi
imu.

(a) (b) (c)

Figure 5. The filtering of moving objects. (a) Visuals captured pedestrians as moving objects. (b) Side-
effect by wrongfully taking moving points. (c) Localization and mapping after velocity filtering.

2.2. NDT-Based Odometry

Point cloud registration is the main process for localization tasks. By registering
between frames, the pose of the robot can be obtained incrementally. In this paper, we
implement the Normal Distribution Transformation (NDT) method, which is known for
its efficiency and tolerance to outliers [18]. The basic idea behind NDT is to represent
a point cloud as a probability distribution and then to use statistical methods to match
the distributions of two point clouds. Our registration goal is to calculate the pose trans-
formation between millimeter-wave radar frames collected at consecutive time instances.
Specifically, each point in the point cloud is assigned a Gaussian distribution with a mean
and covariance matrix. The mean represents the location of the point, and the covariance
matrix describes the uncertainty of the point’s location. The NDT algorithm then finds the
transformation that minimizes the difference between the two probability distributions.

Given two point clouds P1 and P2, each consisting of n points, the NDT algorithm
seeks to find the transformation T that best aligns P2 with P1. The objective function to be
minimized can be written as

E(T) =
n

∑
i=1

n

∑
j=1

wij
∥∥t + Rpj − pi

∥∥2 (4)

where t and R are the translation and rotation components of the transformation T, pi and
pj are the ith and jth points in P1 and P2, respectively, and wij is a weight function that
determines the influence of the jth point in P2 on the ith point in P1. The weight function
is typically chosen to be a function of the distance between the mean of the Gaussian
distributions assigned to the two points.

The optimization problem can be solved using gradient descent, where the gradient is
given by

∇E(T) = −2
n

∑
i=1

n

∑
j=1

wij

[
pi − (t + Rpj)
pi − (t + Rpj)

][
p⊤j R⊤ 1

0 1

]
(5)
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where 1 and 0 are the 3× 3 identity and zero matrices, respectively. The NDT algorithm can
be used for SLAM by iteratively applying the algorithm to pairs of consecutive point clouds
generated by the radar sensor. The transformation between each pair of point clouds can
then be used to update the robot’s pose estimate and construct a map of the environment.
The general flow of the algorithm is outlined in Algorithm 1 below.

Algorithm 1: NDT-based SLAM algorithm
Input: Point clouds from radar scanner
Output: Map of the environment and robot’s trajectory
Initialize robot pose estimate T;
Initialize empty map;
for each consecutive pair of point clouds do

Apply NDT algorithm to obtain transformation Ti,i+1;
Update robot pose estimate: T← T · Ti,i+1;
Transform point cloud to global frame using Ti,i+1;
Add transformed points to map;

end
return Map and robot trajectory;

2.3. Doppler Ego–Motion Estimation

As one advantage over other sensors, such as LiDARs and RGBD cameras, radar
provides radial velocity over the Doppler effect. The velocity of a 4D millimeter-wave radar
can be obtained based on scanned points in each frame [19]. Multiple points with velocity
measurement vi and position pi can be used to estimate the 3D velocity of the radar vradar
according to Equation (6).

p⊤i
∥pi∥

vradar = −vi. (6)

Given n points with a radar scan, the above equation can be written as

vpc ≜


−v1
−v2

...
−vn

 =



p⊤1
∥p1∥
p⊤2
∥p2∥

...
p⊤n
∥pn∥vradar,

 ≜ Hvradar (7)

The vector vpc is the stacked −vis for all points from a radar point clouds scan. Then
the least squares solution of vradar can be obtained as

vradar =
(

H⊤H
)−1

H⊤vpc (8)

When the radar points contain outliers, using the results directly obtained from (8)
may introduce errors. The abnormal values caused by noise can be further removed by a
Random Sample Consensus (RANSAC) method, which was first proposed in [20] and has
been demonstrated to be an effective method to remove noise and outliers in radar point
clouds [21,22].

A test of the velocity estimation based on the above method against the RTK ground
truth is provided in Figure 6. It can be seen that the error of ego–velocity estimation is
within a reasonable range with RMSE 0.175 m/s. Because our millimeter-wave radar has a
long detection distance of 300 meters, and the previous work has included the removal of
outliers, we can also achieve more accurate velocity estimation in much more open areas.
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ros timestamp [ns]

Figure 6. The 3D ego–motion velocity estimation vradar ≜ [vx
radar, vy

radar, vz
radar]

⊤ compared to RTK
ground truth from dji-osdk.

3. Nonlinear Estimator
3.1. Estimator Formulation

In this part, we aim at developing a nonlinear optimization-based framework to
estimate the pose of a robot. Specially, we consider fusing the IMU measurement, radar
odometry measurement, and velocity estimation in a sliding window fashion, as shown in
Figure 7. The factor graph of our fusion scheme is shown in Figure 8. The states included
in the sliding window at time t are defined as

Xt ≜
[
{x⊤I,m}m∈Tt

]
(9)

where {xI,m}m∈Tt contains the active IMU states within the sliding window at time instance
t. Tt denotes the set of IMU measurements at t. The IMU state is

xI ≜
[

I
w q̄⊤ pw⊤ vw⊤ b⊤g b⊤a

]⊤
, (10)

where I
w q̄ is a unit quaternion that denotes the rotation from the global frame {w} to the

IMU frame {I}. pw⊤ and vw⊤ are the IMU position and velocity, respectively. bg, ba are
the random walk biases for the gyroscope and accelerator, respectively.

With the state definition (9), the objective is to minimize the cost function of different
measurement residuals in (11).

min
Xt

{
∑

m∈Tt

∥rI,m∥2
Σm

+ ∑
i∈Ot

∥ri∥2
Σi
+ ∑

j∈Vt

∥rj∥2
Σj

}
. (11)

The first term is the cost of IMU-based residual, and rI,m defines the measurement
residual between the active frames m and m + 1. The IMU samples consist of all IMU
frames between adjacent radar active frames; thus, the preintegration of the IMU samples
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is not dependent on a fixed time step but rather determined by the time interval between
radar active frames. The second term is the cost of odometry residuals, and the last term
is the cost of the velocity residuals. Ot and Vt are the set of measurements within the
sliding window at time t. Σi and Σj are the covariance of the two measurements. The
optimization of (11) is usually solved with an iterative least squares solver through a linear
approximation. In this paper, we formulate and solve the problem based on the GTSAM
package [23].

Figure 7. Time alignment of sensor data.
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NDT scan matching
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Figure 8. The factor graph of our RIO framework.

3.2. Factorization

In this part, the three information sources, namely the IMU, radar odometry, and radar
velocity, are factorized.

3.2.1. IMU Preintegration Factor

The error term rI , m incorporates the relative motion constraints between radar
keyframes. IMU measurements between m and m + 1 are preintegrated as in [24], and the
residual term at m is defined as

rI,m =
Rw⊤

m

(
pw

m+1 − pω
m + 1

2 gw∆τ2
m − vw

m∆τm

)
− α̂m

m+1

Rw⊤
m

(
vw

m+1 + gw∆τm − vw
m
)
− β̂

m
m+1

2vec
[
(qw

m)
−1 ⊗ qw

m+1 ⊗
(
γ̂m

m+1
)−1

]
ba,m+1 − ba,m
bg,m+1 − bg,m


(12)

where ẑm
m+1 =

[
α̂m⊤

m+1, β̂
m⊤
m+1, γ̂m⊤

m+1

]⊤
is the preintegrated IMU measurements incorporating

gyroscope and accelerometer readings from keyframe m to m + 1. ∆τm is the time interval
between keyframes. The operator vec(·) is to extract the vector part of a quaternion. More
details on the preintegration can be found in [24].
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3.2.2. Odometry Factor

The odometry factor relates the consecutive measurements of millimeter-wave radar
data to calculate the robot’s motion between two poses. Given the odometry observation
between m, m + 1 as ∆qk, ∆pk, the odometry residual is calculated as

ri ≜
[

2 vec
(
∆q̄−1

m ◦ ∆ ˆ̄qm
)

∆p̂m − ∆pm

]
(13)

where ◦ denotes the quaternion multiplication operator. The detailed construction of the
factor is given in [25] and is omitted here due to space limitation.

3.2.3. Velocity Prior Factor

These factors constrain the estimate of the robot’s velocity to improve the robustness
of SLAM. Let vradar be a prior velocity estimate which comes from the output of the radar
ego–velocity estimator described in Section 2.3, and the velocity residual can be simply
formulated as

rj = v̂I − vradar, (14)

where v̂I is the estimated velocity.

4. Experiment Results

In this section, we validate our proposed RIO in complex environments. Especially, the
experiments are carried out in both 2D environments with a vehicle and 3D environments
with a quadrotor UAV.

4.1. Experiment Setups
4.1.1. System Setups

In the experiment, we use a Continental ARS5484D radar as the main perception
sensor, which is a long-range millimeter-wave radar that has a 300 m maximum sensing
range, and the FOV is a 120◦ azimuth angle and 30◦ elevation angle. In addition, we use an
Xsense IMU to measure the local motion of the platform. For comparison purposes, we
use a D455 camera to carry out vision-based localization algorithms. The RTK positioning
information from the DJI M300 UAV navigation system is used as the ground truth. A
DJI Manifold-2C is used to record the sensor data and ground truth. The detailed setup is
illustrated in Figure 9.

Figure 9. Experimental equipment.
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4.1.2. Experimental Environments

As we intended to implement the proposed method in a large-scale environment, we
carried out experimental tests in two environment categories, which were (1) an on-road
experiment by carrying the UAV on a vehicle, and (2) an in-the-air experiment by flying
the UAV in a low-altitude environment with dense objects. The experiment environments
are shown in Figure 10.

(a) Scene 1: On-road scenes

Scene 2 Scene 3

Scene 4 Scene 4

(b) Scene 2–4: Low-altitude UAV flight scenes

Figure 10. Experimental environment.

4.1.3. Metrics

The effectiveness of our method is based on two metrics, the Relative Pose Error (RPE)
and the Absolute Pose Error (APE), which are carried out based on the EVO toolbox [26].
The RPE metric is used to evaluate the relative error between the estimated and ground
truth poses over time. It is calculated by computing the difference between the estimated
pose and the ground truth pose at each time step and then computing the Root Mean
Squared Error (RMSE) of these differences over the entire trajectory. On the other hand, the
APE metric is used to evaluate the absolute error between the estimated and ground truth
poses at a specific time step. It is calculated by computing the Euclidean distance between
the estimated position and orientation and the ground truth position and orientation at a
given time step.

4.2. Experiment Analysis

We evaluated our proposed RIO with four scenes in the above two types of envi-
ronments. Scene 1 is the on-road test in a large campus environment, and Scenes 2–4 are
in-the-air tests. In Figure 11, we stipulate that each subfigure’s top left, top right, bottom left,
and bottom right correspond to Scene 1, 2, 3, and 4, respectively. The RPE and APE results
of our methods are provided in Tables 1 and 2, respectively. Additionally, we provide the
RPE of our method in Figure 11a. Apparently, the results indicate that the accuracy of our
proposed RIO was within the acceptable level of error, with RPE errors below 0.5.

To further demonstrate the effectiveness of our proposed method, we further carried
out the localization using two vision-based methods, namely the VINS-Mono and ORB-
SLAM3. The results show that the environment and highly aggressive maneuverability of
the platform were quite challenging for vision-based navigation systems. The comparative
results of our methods and the two vision-based localization methods are plotted in
Figure 11. Specifically, Figure 11b show the estimation trajectories based on different
methods. Figure 11c shows the trajectories with respect to time. (b) and (c) indicate
that the two vision-based methods failed to achieve reliable localization in in-the-air 3D
environments due to the aggressive motion of the UAV. In Scene 1, all methods were
able to provide estimation results. Among them, our method could achieve the best
localization performance.
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(c) Comparison of positioning results with respect to time

Figure 11. Experiment results of Scene 1–4.

Table 1. RPE evaluation results [m].

Max. Mean Median Min. RMSE SSE Std.

Scene 1 2.598 0.134 0.099 0.006 0.220 63.009 0.174
Scene 2 2.697 0.082 0.067 0.006 0.106 62.806 0.066
Scene 3 4.464 0.074 0.068 0.027 0.151 56.348 0.131
Scene 4 3.468 0.078 0.075 0.009 0.091 58.641 0.047

Table 2. APE evaluation results [m].

Max. Mean Median Min. RMSE SSE Std.

Scene 1 15.863 4.027 2.961 0.255 5.067 33,357.022 3.075
Scene 2 6.417 1.768 1.693 0.244 1.917 20,415.619 0.741
Scene 3 4.902 0.337 0.300 0.016 0.390 375.374 0.197
Scene 4 0.932 0.316 0.326 0.037 0.348 841.778 0.144
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5. Conclusions

Millimeter-wave radar provides more robust sensing in harsh conditions. In this
paper, we proposed a radar inertial odometry framework using a 4D millimeter-wave
radar. First, by analyzing the strengths and weaknesses of the point cloud generated by
the 4D millimeter-wave radar, the point cloud was preprocessed to remove noise, thereby
allowing for the estimation of the robot’s relative transformation through interframe point
cloud registration. Then, we proposed a graph-based SLAM framework that fuses the
velocity information from the IMU data, millimeter-wave radar odometry, and velocity
estimation module. Our proposed method was extensively tested in challenging environ-
ments, including changing weather conditions, dynamic targets, and various platforms.
The results show that the proposed SLAM framework can provide reliable localization for
mobile platforms such as vehicles and drones under various operating conditions. In the
future, we will investigate the environmental factors that affect localization performance
and also the fusion of multimodality fusion-based methods.
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