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Abstract: Due to their anisotropic behavior, composite structures are weak in transverse direction
loading. produces transverse cracks, which for a laminated composite, may lead to delamination and
total failure. The transition from transverse crack to delamination failure is important and the subject
of recent studies. In this paper, a simulation of transverse crack and its transition to delamination on
cross-ply laminate was studied extensively using a cohesive element Finite Element Method (FEM).
A pre-cracked [0/90] composite laminate made of bamboo was modeled using ABAQUS/CAE.
The specimen was in a three-point bending configuration. Cohesive elements were inserted in the
middle of the 90◦ layer and in the interface between the 0◦ and 90◦ layer to simulate transverse
crack propagation and its transition to delamination. A load–displacement graph was extracted
from the simulation and analyzed. As the loading was given to the specimen, stress occurred in the
laminates, concentrating near the pre-cracked region. When the stress reached the tensile transverse
strength of the bamboo, transverse crack propagation initiated, indicated by the failure of transverse
cohesive elements. The crack then propagated towards the interface of the [0/90] laminates. Soon
after the crack reached the interface, delamination propagated along the interface, represented by
the failure of the longitudinal cohesive elements. The result of the numerical study in the form of
load–displacement graph shows a consistent pattern compared with the data found in the literature.
The graph showed a linear path as the load increased and the crack propagated until a point where
there was a load-drop in the graph, which showed that the crack was unstable and propagated
quickly before it turned into delamination between the 0o and 90◦ plies.

Keywords: composite; transverse crack; delamination; cohesive element; traction separation law

1. Introduction

In recent years, composite material has been vastly used in many engineering indus-
tries due to its enhanced property (high strength and specific stiffness, durability, corrosion
resistant, etc.) and weight reduction potential, among other exceptional advantages [1–3].
However, the analysis of strength and failure mechanism of a composite is more complex
than that of isotropic materials due to its inhomogeneous and anisotropic nature. There are
several factors affecting the properties of composite materials, making the strength analysis
and the failure modes more complex. Sometimes, more than one failure mode will appear
and interact before the material comes into a complete failure [4]. One of the factors which
significantly affects the strength and damage mechanism of a composite’s structure is the
direction of fiber.

The strength of a unidirectional composite lamina lies in its fiber direction or longitu-
dinal direction. In the transverse direction, however, the composite material is weak since
there is no fiber reinforcement contribution in this direction. The strength in the transverse
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direction is determined mostly by the strength of the matrix and fiber–matrix bonding.
For a multidirectional composite laminate, failure usually starts at the ply enduring the
transverse load [5]. Failure due to transverse loading usually starts either with matrix
transverse crack or fiber–matrix debonding. Transverse crack could propagate and induce
delamination in the interface between plies. Delamination (or interface debonding) is one
of the most common and anticipated failure modes on composite structures. Normally, it is
caused by the interaction of normal stress with shear stress, but it could also be caused by
other failure modes such as transverse crack, low-velocity impact, fatigue, or manufacturing
flaws [6–8].

Predicting transverse crack and delamination is crucial. Composites have a tendency
as a brittle material, making a crack initiate and propagate quickly [4]. Delamination
could happen in a relatively low loading, and it is very hard to detect since it happens
between layers. It could also cause a significant degradation of the overall load-bearing
capabilities. Finite element analysis is one of the reliable tools to analyze structural response
and mechanism due to loadings, including crack propagation and delamination. One of
the tools that is commonly be used to analyze the propagation of a crack is cohesive
elements [6,7], also used to model responses in adhesively bonded interface. A cohesive
element is normally designed to represent the separation at the zero-thickness interface
between layers by combining material strength and fracture mechanics concepts to identify
the failure phenomenon [9,10].

The cohesive element was developed from a proposition developed by Dugdale and
Barrenblatt [11,12]. The proposition assumes that there is a process zone ahead of the crack
tip which undergoes a softening response before crack occurs. Within this zone, opening is
resisted by cohesive tractions. It is then known that the absorbed energy before the zone
finally opens is equal to the fracture energy of the materials. The cohesive zone was firstly
implemented in finite element analysis to simulate concrete cracking by Hillenborg [13],
and has been widely developed up to this day.

Cohesive elements relate stresses in material in terms of surface traction with the
relative displacement between adjacent nodes using Traction–Separation Law [14]. This
law links the bulk material property to fracture characteristics of the material [15]. Thus, a
cohesive element method is characterized by the properties of the bulk material, the crack
initiation condition, and the crack evolution function [16].

The objective of this work is to utilize cohesive elements in modeling transverse crack
propagation and its transition to delamination in the interface of a cross-ply composite
laminate. Analysis of load–displacement graphs will also be presented to better expand
the understanding about the mechanism of transverse crack propagation and its transition
to delamination. A comparison between two specimens with different spans will also be
presented to give insights about the effect of geometry factors (in this case, the span of a
beam) to the bending response of the overall structure, before and after transverse crack
and delamination.

In this paper, a bamboo specimen was used to model the transverse crack since bamboo
is widely available and has a natural unidirectional fiber composite. The specimen consists
of two parts. The bottom part has a 90◦ fiber direction, where the fiber is in the transverse,
thickness direction, while the upper part has a 0◦ fiber direction, where the fiber is in the
longitudinal, span direction. The bottom and the upper parts were glued together with
PVAc adhesive. Three-point bending was applied to the specimen and an initial crack was
produced in the bottom part to start the transverse crack. The mechanical behavior of the
bamboo is given in [17–19], while the properties of PVAc are given in [20,21], and the Mode
I fracture toughness of bamboo is given in [22].

2. Cohesive Element
2.1. Traction–Separation Law

As mentioned before, cohesive elements’ modeling adopts Traction–Separation Law
to predict microstructural failure within an element. This law correlates traction happening
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in the element interface with the relative displacement of adjacent nodes in the cohesive
elements. Based on this law, when loading is given to the element, there will be a relative
displacement between the adjacent nodal of the element. As the loading continues, traction
in the element grows larger until reaching a predetermined maximum traction number
where damage to the element is initiated. After the maximum traction is reached, damage
develops in the cohesive element, indicated by the degradation of stiffness, before it finally
comes into a complete failure. The degradation of cohesive elements’ stiffness is known as
the softening response.

The traction and relative displacement in the cohesive element were modeled in
several constitutive equations, as shown in Figure 1. The Bilinear—also called the linear
elastic–linear softening—model is one of the simplest models. This model is also the default
model of the Traction–Separation Law used in ABAQUS/CAE [23]. The maximum nominal
stress of the graph links to the interfacial strength of the cohesive element (in this case, the
tensile transverse strength) and the area under the Traction–Separation model equals the
fracture energy of the material. The response of the cohesive element to loading according
to Traction–Separation Law is well explained by C. G. Davilla [24].
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Figure 2 shows a detailed illustration of the cohesive element responses to loading
P. The slope of the bilinear equation before maximum traction (point 0-1-2) represents
the initial stiffness of the cohesive element, Kp. It is a numerical value rather than one
obtained from experiment. Several studies have been conducted to determine the ideal
number for this parameter. Point 2 represents the maximum allowable traction σc of the
cohesive elements. This point corresponds to the interfacial strength of the material being
represented by the cohesive elements. The underlying constitutive equation for the linear
range δ < δ0 is given by Equation (1):

σ = Kpδ (1)

The slope after the maximum stress (point 2-3-4) characterizes the rate of degradation
of the cohesive element stiffness. After the maximum traction is reached, the cohesive
elements will undergo a softening response where the penalty stiffness Kp will be degraded.
The underlying constitutive equation for the softening response δ0 ≤ δ ≤ δF is given by
Equation (2):

σ = (1 − D)Kpδ (2)

where D is the scalar damage variable ranging from 0 to 1, where 0 means no damage and
1 means complete failure.

The cohesive element undergoes a softening response until it comes into a complete
failure (point 4). In the softening process, damage accumulates at the interface of the
elements and the interface only bears a loading below σc. The energy released when the
element reached point 3 is the area of the triangle 0-2-3. Point 4 represents the critical value
of the energy release of the cohesive element. This value corresponds to the fracture energy
of the material. Cohesive elements do not carry any tensile or shear stress above point 4.
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In other words, point 4 is where the cohesive elements come to a complete failure (all of
the available interfacial fracture energy has been consumed). At this point, Kp is zero and
the cohesive element no longer bear any loads. Any loadings after point 4 are no longer
carried by the cohesive element since it no longer has stiffness (point 5).
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The area under the traction–separation curve relating to fracture energy can also be
calculated using Equation (3): ∫ δ f

0
σ(δ) dδ = GC (3)

The integration suggests that for an assumed shape of curve, the stress at initiation, σc
and displacement at failure can be set such that the energy absorbed per unit cracked area
is equal to the material’s critical failure energy.

Simulation using cohesive elements is very sensitive to the size of the mesh. Few
elements will result in an inaccurate representation of traction ahead of the crack tip region.
There are several studies that have been conducted to establish the minimum number of
elements. Turon suggested that a minimum of three cohesive elements in the processing
zone is sufficient to conduct a successful FEM simulation [15].

2.2. Numerical Parameters

There are three parameters needed to be defined for the cohesive elements to satisfy
the traction–separation calculation: cohesive stiffness, damage initiation, and damage eval-
uation. Since the cohesive stiffness is a numerical value, choosing the initial stiffness should
be carefully considered because the success of the simulation depends on the determination
of this number. Several values have been proposed for this numbers, but for this paper, the
initial stiffness of 106 N/mm2 was chosen based on Da Villa’s experiment [24].

Damage initiation refers to the beginning of the degradation of the cohesive element. It
occurs when a prespecified maximum stress or strain value as the damage initiation criteria
is reached [23]. Several criteria are provided by ABAQUS/CAE as the initial damage
criteria. In this study, the MAXS damage initiation criteria were chosen. τn, τs, and τt
represent the nominal maximum nominal stress tensors specified for the criteria. Damage
is assumed to begin when the maximum nominal stress ratio (as defined in the expression
below) reaches a value of one, as represented by the function in Equation (4):

max
{

⟨tn⟩
Nmax

,
⟨ts⟩
Smax

,
⟨tt⟩
Tmax

}
= 1 (4)
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where

⟨tn⟩ =
{

σn f or σn > 0
0 untuk σn < 0

Damage evolution refers to the rate of stiffness degradation after the damage initiation
criterion is surpassed. It is specified by displacement or energy control. In this criterion,
the fracture energy Gc of each material (bamboo and PVAc) is used to define the damage
evolution criteria for each cohesive element.

3. Numerical Models
3.1. Materials and Geometries of Laminates

As mentioned before, Gigantochloa apus bamboo was used as the subject of this study. It
has unidirectional fibers with appropriate thickness to observe crack propagation. There are
two models simulated in this study, a short-span beam with a dimension of 20 × 10 × 8 mm,
and a long-span beam with the dimension of 42 × 10 × 8 mm. The long-span beam is
based on ASTM D5045 [19] for three-point bending specimens. In the middle of the bottom,
90◦ layer, a 2 mm notch is introduced to the specimen to represent the initial crack. The
laminates are staged in a three-point bending configuration to support a plane-bending load.
The loading speed is set to 1 mm/min. Figure 3 shows the dimension and configuration of
each specimen, while Table 1 sums up all the specimen dimensions.
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Table 1. Specimens dimension.

Length (mm) Width (mm) Height (mm)

Short beam 0◦ 20 10 2
Short beam 90◦ 20 10 6
Long beam 0◦ 42 10 2

Long beam 90◦ 42 10 6

3.2. Material Properties

Table 2 below shows the complete material properties for bamboo, while Table 3 sums
up all the parameter for the cohesive elements used in this study.

Table 2. Material properties for bamboo [17].

E11 (MPa) E22 (MPa) E33 (MPa) v12 v13 v23 G12 (MPa) G13 (MPa) G23 (MPa)

29,028 5605 5605 0.3 0.3 0.3 28 28 28
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Table 3. Cohesive element parameters [18–22].

Thickness,
t (mm)

Knn
(N/mm2)

Kss
(N/mm2)

Ktt
(N/mm2)

τn
(MPa)

τs
(MPa)

τt
(MPa)

Fracture Energy
(10−6 J/mm2)

Bamboo 0.001 106 106 106 4.66 7 7 429

PVAc 0.001 106 106 106 14.5 14.5 14.5 200

3.3. Numerical Models and Procedures

Since the geometry and size are relatively simple, the model was constructed directly
on ABAQUS/CAE. The results are given in Figures 4 and 5 for the short and long beams,
respectively. Data from Tables 2 and 3 were used to define the material and cohesive
element. Cohesive elements are inserted in the middle of the bottom layer and in between
the 0◦ and 90◦ layers. For the cohesive element inserted in the middle of the 90◦ layer,
the parameters used to define the cohesive element are the strength and fracture energy
of the bamboo. Therefore, cohesive elements can be considered part of the bamboo and
will represent the response of bamboo’s 90◦ layer to loadings, particularly the propagation
of the transverse crack. For the cohesive element in the interface zone, the parameters
used the strength and fracture energy of PVAc adhesive; therefore, these will represent the
response of PVAc adhesive to loading—in this case, a delamination.

The transversal cohesive element, longitudinal cohesive element, and initial crack are
highlighted by yellow-dashed squares 1, 2, and 3, respectively, in both specimens shown in
Figures 4 and 5.
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In the FEM model, orientation was defined to the specimen according to the coordinate
system to distinguish the 0◦ and 90◦ layer. A local coordinate system was preset to the
material so that x(+) was the 0◦ direction. General surface-to-surface was used to define
contact interaction between specimens with pin or stands. The pin was given a roll
constraint, and the pin impactor was set to have vertical axis movement only. An automatic
stabilization parameter was used to help the calculation on ABAQUS/CAE smoother and
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faster to reach convergence. This parameter was used because a simulation involving the
failure of materials (in terms of crack propagation for this study) is often unstable and a
convergence result is difficult to reach.
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4. Results and Discussion
4.1. Simulation Results of Short and Long Beams

There are two specimens modeled in this study (short beam and long beam) differing
in the span of the specimen. The two models showed similar damage characteristics. As
the load was applied, stress occurred in the structure and concentrated near the initial
cracked region. Tensile stress dominated in the bottom ply of the laminate in the transverse
direction of the composite specimens. The stress kept increasing until it finally reached the
transverse tensile strength of the bamboo, which was predefined as the damage initiation
criteria for the transverse cohesive element. The stress caused a degradation in stiffness
and eventually fell into a complete failure, representing crack propagation in the specimen.

The crack propagated in a stable manner towards the laminates interface. When the
crack reached its critical length, the crack became unstable and propagated quickly before
coming into a halt when reaching the interface zone. At this stage, the crack had divided the
bottom ply into two totally separate parts; hence, it can be said that the 90◦ layer had failed.
Figure 6 shows the stress distribution in the composite structures at the time transverse
crack reached the interface. The minimum distribution of stress in the 90◦ layers confirms
the failure of the 90◦ layer.

The longitudinal cohesive elements are now the focus points. Due to the failure of
the bottom layer, the stress was then sustained by the upper layer (0◦ layer). The normal
stress occurring in the upper ply was parallel to the direction of the ply’s fiber. As the
loading from the pin continued, shear stress was introduced to the interface of the [0/90]
laminates. When the shear stress reached the adhesive shear strength, the longitudinal
cohesive elements experienced stiffness degradation before it completely failed, indicating
the initiation of delamination. Further loading showed what happened after delamination
occurred, that was, the delamination propagated along the interface. Figure 6 shows the
visualization of the cohesive element’s failure (red zones).
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ing the initiation of delamination. Further loading showed what happened after delami-
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4.2. Load–Displacement Graph Analysis

Figure 7a,b shows the load–displacement graph (P − δ) simulation for short beam and
long beam, respectively. This graph correlates the reaction force exerted by the impactor
pin as a reaction from the specimen with pin displacement. As previously mentioned,
the simulation began when the pin gave a loading to the specimen. As a response to this
loading, normal stress emerged in the specimen and increased as the pin moved down. This
response was recorded in the load–displacement graph, following a linear path. Point 1 in
Figure 7 marks the point when the transverse crack propagation began. Since the crack was
still small, the specimen could still bear the load, indicated by the increasing loading in the
load–displacement graph. The graph kept going up and the crack kept propagating until it
reached its critical length (point 2). At this point, the crack turned unstable and propagated
quickly towards the interface of the laminate before it stopped. This incident is denoted by
a sudden load-drop in the load–displacement graph (point 2–3). The load-drop indicates
there is a rapid energy release when the structure fails. The transverse crack stopped when
it reached the interface of the laminate. This point is depicted as the bottom valley of the
load–displacement graph (point 3). It was then determined that the 90o layer had failed.
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Figure 7. Load–displacement graph (a) Short beam. (b) Long beam.

After the 90◦ layer failed, the loading was then carried by the 0◦ layer (the upper ply
of the laminates). There was a recovery in the load–displacement graph since the loading
was now accounted by 0◦ layer. The tension/compression stress was now parallel to the
direction of the fiber. The load–displacement graph formed another linear relation after
the load-drop (point 3–4). Delamination due to shear stress was initiated when the graph
was still inclining upward, marked at point 4. Figures 8 and 9 show the cohesive element’s
failure, representing transverse crack propagation and its transition to delamination for the
case of the short and long beams, respectively.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 10 of 15 
 

 

After the 90° layer failed, the loading was then carried by the 0° layer (the upper ply 
of the laminates). There was a recovery in the load–displacement graph since the loading 
was now accounted by 0° layer. The tension/compression stress was now parallel to the 
direction of the fiber. The load–displacement graph formed another linear relation after 
the load-drop (point 3–4). Delamination due to shear stress was initiated when the graph 
was still inclining upward, marked at point 4. Figure 8 and Figure 9 show the cohesive 
element’s failure, representing transverse crack propagation and its transition to delami-
nation for the case of the short and long beams, respectively. 

 

Figure 8. Delamination visualization of short beam. 

 
Figure 9. Delamination visualization of long beam. 

Figure 10 below shows that the delamination occurs on the interface of the laminate 
for both the short and long beams. The delamination is represented by the red zone in the 

1 

2

3 

4 

Figure 8. Delamination visualization of short beam.



J. Compos. Sci. 2024, 8, 158 10 of 15

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 10 of 15 
 

 

After the 90° layer failed, the loading was then carried by the 0° layer (the upper ply 
of the laminates). There was a recovery in the load–displacement graph since the loading 
was now accounted by 0° layer. The tension/compression stress was now parallel to the 
direction of the fiber. The load–displacement graph formed another linear relation after 
the load-drop (point 3–4). Delamination due to shear stress was initiated when the graph 
was still inclining upward, marked at point 4. Figure 8 and Figure 9 show the cohesive 
element’s failure, representing transverse crack propagation and its transition to delami-
nation for the case of the short and long beams, respectively. 

 

Figure 8. Delamination visualization of short beam. 

 
Figure 9. Delamination visualization of long beam. 

Figure 10 below shows that the delamination occurs on the interface of the laminate 
for both the short and long beams. The delamination is represented by the red zone in the 

1 

2

3 

4 

Figure 9. Delamination visualization of long beam.

Figure 10 below shows that the delamination occurs on the interface of the laminate
for both the short and long beams. The delamination is represented by the red zone in the
longitudinal cohesive elements (in this case, modeling the PVAc layer), indicating that the
elements failed completely.
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To validate the load–displacement graph results from this numerical study, a com-
parison was made with the experimental results on a similar study of cross-ply laminate
conducted by Wafai et al. [5]. In their study, a glass-fiber polypropylene cross-ply composite
laminate was tested under a three-point bending configuration. Their results showed a
similar pattern to our numerical results.

Load–displacement graphs represent the response of a structure with a certain char-
acteristic (dimension and properties) due to the bending load. The characteristic of the
structure is manifested in the gradient of the load–displacement graph. Structures with
different geometry or material properties will have different load–displacement gradients.
The steeper the gradient, the more difficult it is for the structures to deflect due to the
bending moment.

Figure 11 shows the comparison of the load–displacement graph between the short
and long beams, showing how the span of a structure would give different responses to
bending. Figures 12 and 13 show the comparison of the gradients of both specimens before
and after load-drop.
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Figure 12. Load–displacement graph gradient comparison before load-drop between short beam and
long beam.
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Figure 13. Load–displacement graph gradient comparison after load-drop between short beam and
long beam.

Table 4 shows the comparisons of gradients for both specimens.

Table 4. Load–displacement gradient comparison.

Short Beam Long Beam Unit

Gradient P − δ graph
Before load-drop 638.31 163.69 N/mm

Gradient P − δ graph
After load-drop 615 61.98 N/mm

∆m 23.31 101.71 N/mm

The linear graph before load-drop characterizes the response of the [0◦/90◦] laminates
of each specimen to the bending load. The load-drop itself represents the transition of
the structure’s configuration of bearing the bending load from [0◦/90◦] to only [0◦]. The
transition of the load-bearing structure from [0/90] to only the [0] layer when the crack
reached the interface zone was captured as the load-drop in the load–displacement graph.
Consequently, the linear graph after load-drop characterizes the response of the remaining
[0◦] bearing the load. Table 4 gives us further information. First, the gradient of the short
beam is always greater than that of the long beam. Second, it is shown that the gradients
after the load-drop are always smaller than the gradients before the load-drop. These facts
denote that structure configuration, in this case span and thickness, governs the response
of a structure to the bending load.

The gradient of the load–displacement graph of a structure is governed by Equation (5):

m = E f
4bh3

S3 (5)

From the formulation, it can be seen that the response of a structure to the bending load
is determined by the properties of the laminates (manifested in the bending stiffness) and
the geometry of the specimen (span, width and thickness). Moreover, span and thickness
play a significant part in determining the stress occurred within a specific ply in a composite
structure due to a specific loading. The conversion of the specimen thickness from 8 mm
to 2 mm for both the short and long beams gives a prominent effect to the structure. The
alteration to the 0◦ layer also gives a notable effect to the overall structure bending stiffness.
Both factors would significantly affect the response of the structure to the bending load;
hence, the gradient decreases.
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Table 4 also shows that there was a steeper decline in the slope of the load–displacement
graph of the long beam than the decline in the short beam slope. This shows that the con-
version of load-bearing structures from [0/90] laminates to only [0] lamina affects the long
beam specimen more than it affects the short beam specimen. From this result, it can be
deduced that structures with wider spans will be affected more if failure occurs to one of
the layers of ply than structures with a shorter span. Structures with larger deformation
would be more likely to deform more easily when a layer of ply failed.

4.3. Comparison of Load-Deformation Graph in the Delamination

Table 5 shows a comparison of load and pin displacement from each crucial point
happening in the specimen. In the table, we can see that a bigger loading is needed to
initiate crack propagation and delamination in the short beam. From the table, it can be
concluded that the amount of normal stress occurring in a structure is directly proportional
to the span of a structure. In other words, for the same structure with the same geometry,
and properties, the same loading may generate a bigger stress to the structure with a bigger
span, making it more prone to failure due to the bending load. This happens because the
span of the structure acts as the moment arm to the bending load, generating a bigger stress
for the same loading.

Table 5. Load and displacement comparison between short beam and long beam.

Short Beam Long Beam Units

Pin displacement, initial crack propagation 0.12 0.16 mm
Load, initial crack propagation 73.86 26.55 N

Pin displacement, peak of load-drop 0.22 0.20 mm
Load, peak of load-drop 131.41 30.13 N

Pin Displacement, bottom of load-drop 0.25 0.26 mm
Load, bottom of load-drop 110.36 16.48 N

Pin displacement, delamination initiation 0.48 1.06 mm
Load, delamination initiation 262.31 65.69 N

5. Conclusions

A transverse crack and its transition to longitudinal crack (commonly named de-
lamination) on composite structures is simulated using finite element analysis by means
of cohesive elements. The propagation of the transverse crack and its transition to de-
lamination is represented by the failure of cohesive elements. A composite bamboo of
[0/90] laminates is modeled in a three-point bending configuration. Cohesive elements are
inserted in the mid-plane of the bottom ply of the laminate (the [90] layer) as part of the
bamboo specimen and in the interface of the [0/90] laminate to represent adhesive layers
(PVAc glue). The properties of bamboo and adhesive are defined for the cohesive element;
so, each represents the behavior of the corresponding material.

Crack propagation and delamination are represented by the failure of cohesive ele-
ments. The strength of the material and damage mechanics parameters are pre-defined for
the cohesive element as damage initiation and evolution criteria. Once the damage initia-
tion criteria are reached, the cohesive elements undergoes a softening response and came
into a complete failure. The failure of the cohesive elements is visualized by ABAQUS/CAE
by the red color of the damaged elements. The crack propagates in a stable manner, which
swiftly changes into unstable propagation when the crack length reaches its critical value.
The cracks propagate towards the interface of the laminate. Delamination occurs when
the damage initiation criteria of the adhesive are reached, and further simulation indicates
the delamination develops along the interface. The load–displacement graph extracted
from the simulation gives a more detailed representation of the phenomena happening
throughout the simulation.
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