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Abstract: Hybrid machine learning encompasses predefinition of rules and ongoing learning from
data. Human organizations can implement hybrid machine learning (HML) to automate some of
their operations. Human organizations need to ensure that their HML implementations are aligned
with human ethical requirements as defined in laws, regulations, standards, etc. The purpose of
the study reported here was to investigate technical opportunities for representing human ethical
requirements in HML. The study sought to represent two types of human ethical requirements
in HML: locally simple and locally complex. The locally simple case is road traffic regulations.
This can be considered to be a relatively simple case because human ethical requirements for road
safety, such as stopping at red traffic lights, are defined clearly and have limited scope for personal
interpretation. The locally complex case is diagnosis procedures for functional disorders, which
can include medically unexplained symptoms. This case can be considered to be locally complex
because human ethical requirements for functional disorder healthcare are less well defined and
are more subject to personal interpretation. Representations were made in a type of HML called
Algebraic Machine Learning. Our findings indicate that there are technical opportunities to represent
human ethical requirements in HML because of its combination of human-defined top down rules
and bottom up data-driven learning. However, our findings also indicate that there are limitations
to representing human ethical requirements: irrespective of what type of machine learning is used.
These limitations arise from fundamental challenges in defining complex ethical requirements, and
from potential for opposing interpretations of their implementation. Furthermore, locally simple
ethical requirements can contribute to wider ethical complexity.

Keywords: algebraic machine learning; artificial intelligence; functional disorders; human ethical
requirements; hybrid machine learning; psychomotor; road traffic regulations; world models

1. Introduction

Hybrid machine learning can be considered as an example of a third wave of artificial
intelligence (AI). In the first wave, deterministic “hand-crafted” rule-based expert systems
were introduced. Such systems may be referred to as Good Old Fashioned AI (GOFAI).
They are of limited usefulness amidst the complexity of real-world dynamics, because
of the difficulty of identifying each possible case in advance for an expert system and
programming each case as hard-coded behavior in rule-based implementations. The
machine learning of the second AI wave is a probabilistic data-driven approach, which
has brought some advances compared to GOFAI. Yet, ML can have limited potential to
transfer what it has learned from training data to situations that differ from the training
data. Also, ML implementations can rely on goals needing to be expressed as a single
numerical value. Consequently, there is some interest in what can be described as a third
wave of AI, which involves combining deterministic and probabilistic approaches in hybrid
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machine learning [1,2]. One hybrid approach is Algebraic Machine Learning (AML), which
allows for the explicit embedding of rules directly and uses multiple data inputs [3,4]. It
is not the purpose of the paper to compare AML and other types of hybrid ML. Rather,
AML is an example of hybrid machine learning, which is used here to illustrate technical
opportunities and fundamental challenges.

The purpose of the study reported here was to investigate technical opportunities for
representing human ethical requirements in AML. The study sought to represent two types
of human ethical requirements in AML: locally simple and locally complex. Here, local
refers to the place and time of interaction between people and human ethical requirements
as defined in regulations and implemented by technology. The locally simple case is road
traffic regulations. This can be considered to be a relatively simple case because human
ethical requirements for road safety, such as stopping at red traffic lights, are defined clearly
and have limited scope for personal interpretation. The locally complex case is diagnosis
procedures for functional disorders, which can include medically unexplained symptoms.
This can be considered to be locally complex because human ethical requirements for func-
tional disorder healthcare are less well defined and are subject to personal interpretation.
Findings are reported in the remaining three sections of the paper. Next, in Section 2, the
representation in AML of human ethical requirements for road safety is reported. In addi-
tion, it is explained how locally simple ethical requirements can contribute to wider ethical
complexity. Then, in Section 3, the representation in AML of human ethical requirements
in diagnosis procedures for functional disorders is reported. In conclusion, in Section 4,
practical implications are discussed and directions for further research are proposed.

Overall, the paper makes four contributions to debate about how human ethical
requirements can be represented in machine learning. First, technical opportunities for
representation of human ethical requirements in a hybrid machine learning are described in
detail. Second, fundamental limitations to representation of human ethical requirements in
hybrid machine learning are explained. Third, the implications of fundamental limitations
of hybrid machine learning are related to other types of machine learning. These contri-
butions are relevant to AI system engineering [5] and AI-informed decision making [6].
Fourth, a contribution is made to machine ethics [7]. The paper goes beyond previous stud-
ies that have considered different forms of normative ethics [8], i.e., normative statements
about what should be done, by focusing on the behavioral ethics of what people actually
do when under pressure [9–12], such as driving faster than speed limits and/or across road
junctions as traffic lights turn from amber to red [13]. Behavioral ethics is fundamentally
an ecological analytical framework within which people might not adhere to regulations,
etc., if doing so would be unfair because doing so would undermine their survival in
their preferred states. An example of a preferred state is having a job that pays enough to
support oneself and a young family. Behavioral ethics can be summarized by the title of the
paper: “Why good people sometimes do bad things” [9]. Human organizations that need
their HML implementations to operate in alignment with human ethical requirements as
defined in regulations, etc., need to take behavioral ethics into account [13,14].

2. Representing Human Ethical Requirements in AML-Enabled Traffic Predictions
2.1. Ethical Requirements

The sanctity of human life is an important ethical construct in many cultures [15]. Road
traffic regulations are an example of everyday normative ethics related to the protection of
human life. Road traffic regulations are implemented through, for example, traffic lights
that indicate where and when drivers must stop their vehicles to reduce the risk of road
accidents that could cause grave injuries to people. Road traffic regulations can entail
locally simple cases. This is because human ethical requirements for road safety, such
as where and when to stop road vehicles, are defined clearly by traffic lights and have
limited scope for personal interpretation. For example, although the color red can have
different associations generally in different cultures, red is used in traffic lights to indicate
stop throughout the world [16,17]. Also, the consistent ordering of traffic lights can provide
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visual clarity for people who have color-vision deficiency: for example, red for stop always
being positioned at the top. In addition, technological innovations are being developed to
support drivers who have color-vision deficiencies in cities [18], where there can be a many
traffic lights. This example illustrates how big ethical ideas can be expressed as vague
general statements, such as the sanctity of human life [15], which can become increasingly
specific as they come closer to particular implementations.

However, despite more than one hundred years of increasing traffic regulations, there
continue to be road traffic accidents. Contributing to this can be individual people’s
changes in balance between their moral motivation and their ethical temptation [9–11].
Within behavioral ethics, being able to resist ethical temptation can depend upon a person
having sufficient internal control to be able to resist external pressure. In particular, having
sufficient self-regulatory control [19]. Combinations of psychological fatigue and physical
fatigue can undermine self-regulatory control [20]. For example, a driver could have
reduced self-regulatory control due to psychological and physical fatigue caused by many
hours of driving that have involved having to stop at many traffic lights. If the driver is
already very late (time pressure [12]) for an important meeting with the biggest customer
of the driver’s employer (organizational pressure [21]), the driver may be more likely to
not slow down and stop when traffic lights are changing from amber to red.

Hence, a human driver may agree generally with the need for traffic regulations as
described in the road traffic authority’s official documentation and as implemented with
traffic lights. Nonetheless, in particular situations that have led to psychomotor stress, the
same human driver may accelerate above the speed limit to drive across road junctions as
traffic lights turn to red [13]. Predicting the violation of traffic regulations, such as driving
through red traffic lights, is an established topic in machine learning [22].

2.2. Representing Ethical Requirements in AML

As summarized in Figure 1, selected concepts for an application are first described
through the definition of constants to represent those concepts. In this case, the concepts
relevant to the real-world system are time-insensitive data, such as locations (e.g., latitude
and longitude coordinates) and points of interest (e.g., road crossings, traffic lights), and
time-sensitive data, such as traffic events (e.g., road closures, road works), and weather
conditions (e.g., fog, snow) [22].

Figure 1. Steps involved in the formulation of an AML model: road traffic example.

AML models are mathematical models comprising algebraic representations. AML
is founded upon several core algorithms that can learn from human-defined constraints
and from data [3,4]. The concepts and relationships between them, which are selected to
represent those aspects of the real-world system that the AML model interacts with, are
application specific.

Defining concepts for an application of AML is akin to other hybrid machine learning
approaches. In AML, constants are the primitives used by the algebra. As with any machine
learning application, it is necessary to specify the input that the machine learning model
will receive. For example, for neural networks, it is necessary to define the size of the image
before training an image classifier. Defining constants for AML is as flexible as defining
inputs for sub-symbolic approaches, as images and time series data can also be represented
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by constants. Moreover, for hybrid machine learning approaches, it is also necessary to
specify the high-level concepts and their relationships with the underlying data.

As shown in the second box of Figure 1, constants will in turn be used to specify
labeled training examples and to specify domain knowledge. This specification is called an
embedding. Models for that embedding are learned using the algorithms described in [3,4].
As summarized in the third box of Figure 1, once the embedding is defined, AML learns
by creating atoms. AML models have a fundamentally simple structure. They comprise
only three layers: inputs, atoms, and outputs. Relationships between inputs and outputs
defined in atoms are binary. In this case, the binary definition is safe driving/unsafe
driving. Safe driving refers to adherence to road traffic regulations. Unsafe driving refers
to violation of road traffic regulations. An atom can be linked to one or more inputs and
is said to be present in an example if at least one of those inputs is present. AML models
expand as they learn patterns from training data. The number of atoms can increase from
tens to thousands during training. Nonetheless, the simple three-layer structure persists.
The core AML algorithms check that the human-defined constraints are maintained in
the subsequent binary relationships between inputs and outputs that are learned as new
atoms are generated during training. As illustrated in Figure 2, this is an example of the
representation of ethics in machine learning world models in general, and AML world
models in particular, being a computer engineering challenge.

Figure 2. From big ethical ideal to technological implementation of ethical requirements.

This is because implementations take place at the end of a typical engineering progres-
sion from vagueness to precision, as follows: big ethical ideal—debate about culture-
bound social choices—legislation of new laws—definition of regulations—data from
observations—definition of implementation requirements—technological implementations.
Within the framing summarized in Figure 2, important debates about complex interactions
between ethical ideals and social choices take place before the definition of requirements
for technological implementations, which are the focus of this paper.

In this case, debate about culture-bound social choices [23,24] can lead to consensus
that there need to be actions to minimize road traffic dangers. This can be followed by
the legislation of broad road traffic laws, which can provide a basis for the formulation
of detailed road traffic regulations. These regulations can then provide a basis for local
governments to prepare location-specific road traffic management plans. Subsequent
monitoring of road traffic can provide data, which can be used to train machine learning
applications to predict risks of road traffic violations. For example, for each city block,
machine learning can be used to predict, given its general features and recent (two hours)
history, whether or not an accident will occur in the next 15 min [22]. More generally, the
engineering progression from a big ethical ideal to technology implementations can be seen
as a progression from the intractable unpredictability of vaguely defined “large worlds”
to the more tractable, more predictable, precisely defined “small worlds” [25,26] in which
specific rules can be implemented to try to reduce unethical behavior [27].

2.3. Opposing Interpretations of Ethical Requirement Representations

Locally, road traffic regulations can involve simple cases of representing human ethical
requirements. This is because road safety requirements, such as where and when to
stop road vehicles, are defined clearly and have limited scope for personal interpretation.
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However, traffic regulations can be involved in wider ethical complexity. Firstly, traffic
regulations are culturally bound social choices, which can be changed by new culturally
bound social choices [23,24]. For example, in recent years, some lights and signs have been
removed in order to improve the efficiency and safety of road traffic [28,29]. Thus, location-
specific ethical requirements, as indicated by traffic lights, speed signs, etc., can change
from one day to the next. This can lead to situations where people can have to pay fines
and accept other penalties for driving at a speed above a new speed limit, despite having
driven legally at that same speed at that same place every day for many previous years.
This can happen if, for example, satellite navigation systems are not immediately up to date,
and hence drivers do not have comprehensive information about where new speed limits
apply [30]. Under such circumstances, some people who are penalized may not consider
that road traffic regulations are applied ethically. More widespread complexity arises from
the practice of delivery organizations arranging deliveries by self-employed gig economy
delivery drivers to have short time durations and payment reductions if they deliver late.
Such arrangements can entail organizational pressure and time pressure for drivers, which
can be on top of chronic resource depletion due to poor employment conditions that can
reduce moral motivation [13]. Such situations can lead to delivery drivers exceeding speed
limits. However, it is only the delivery drivers who are penalized for violating road traffic
regulations. This is because they are categorized as being self-employed: rather than
being employees of the delivery company [31]. Accordingly, gig economy drivers may not
interpret fines for violating traffic regulations as being ethical, even though they may not
dispute that they have driven above speed limits. Eventually, there may be new culturally
bound social choices that lead to new laws, regulations, and procedures, which could
end the categorization of gig economy drivers as being self-employed [32]. This example
illustrates the diverse scope of what needs to be updated in an AML model as ethical
requirements change at specific locations, such as speed limits, and at many locations
as employment regulations related to road traffic are changed. The updating of ethical
requirements at specific locations could be carried out through automatic data collection
via, for example, MapQuest. By contrast, the updating of ethical requirements due to
changes in driver employment regulations would need to be human-defined.

3. Representing Human Ethical Requirements in AML-Enabled Diagnoses
3.1. Ethical Requirements

Some societies seek to provide universal healthcare [33]. In such societies, it would be
considered unethical to deny healthcare to people who are not in good health. However,
demand for healthcare services can exceed the supply of healthcare services, and triage
may be needed in their allocation. Triage involves deciding which people have most need
for healthcare and are most likely to respond positively to healthcare. However, deciding
which people are most in need of healthcare and are most likely to respond positively to
healthcare is particularly difficult for functional disorders. This is because these are disor-
ders that impair normal bodily functioning but cannot be explained fully. Studies indicate
that functional disorder patients “have often been misdiagnosed, correctly diagnosed after
lengthy delays, and/or subjected to poorly delivered diagnoses that prevent diagnostic un-
derstanding and lead to inappropriate treatments, iatrogenic harm, unnecessary and costly
evaluations, and poor outcomes” [34]. The term iatrogenic harm refers to inappropriate
healthcare treatment that aggravates rather than improves a health problem [35]. Overall,
high economic costs can arise from delayed diagnosis of functional disorders [36], which
can reduce total healthcare budgets for all who are in need of healthcare. Furthermore,
there is an ethical requirement to avoid conflicting interpretations of functional disorder
diagnoses. This is because functional disorder patients who do not agree with a diagnosis
may be less likely to respond to treatment [37]. By contrast, successful explanation of a
functional disorder can contribute positively to treatment [38].

This example illustrates how big ethical ideals can be expressed as vague general
statements, such as universal healthcare, which can become increasingly specific as they
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come closer to particular implementations. In this case, the aspiration to provide healthcare
to all those in need of healthcare is related to the need for improved diagnoses of func-
tional disorders. One option for applying machine learning in functional motor disorder
diagnoses is to apply machine learning in gait analyses used to detect affective disorders,
such as depression. The term gait refers to walking, running, and other means of natural
locomotion combined with posture. It has been argued that gait analyses can provide
a readily quantifiable objective approach to monitoring depression and related affective
disorders [39]. This is important because, regardless of what type of event may initiate
functional disorders, they can be amplified or perpetuated by affective disorders [34].
Apropos, machine learning has been applied to Kinect-recorded gait data in order to fa-
cilitate recognition of anxiety and depression [40]. In the next Section 3.2, a description is
provided of representations in Algebraic Machine Learning, which can be used to examine
relationships between gait and disorders. This example illustrates how representation of
ethical requirements in machine learning can be concerned with specific dimensions of
human psychomotor functioning, which are related to big ethical ideals such as universal
healthcare, through causal chains that begin with vague general statements and end with
precise technical representations.

3.2. Representing Ethical Requirements in AML

All AML models encompass selected concepts and relationships between them to
represent those aspects of the real-world systems that they interact with. The first box in
Figure 3 shows concepts relevant to this case. As shown in the second box of Figure 3, those
constants will in turn be used to specify labeled training examples and to specify domain
knowledge. As in the first case described in Section 2 above, and in all applications of AML,
this specification is called an embedding. Models for that embedding are learned using the
algorithms described in [3,4].

Figure 3. Steps involved in the formulation of an AML model: diagnosis example.

The gait analysis embedding comprises relevant features, as represented by AML. In
this case, the domain knowledge consists of the notion of ordered intensity (i.e., telling
the algebra that each feature is a number), while the training examples come from an
existing real-world dataset [40]. The relevant 10 features are summarized in the first box
of Figure 3. These features are based on analysis of previous studies by others that are
reported in [41–48] and combined in [40]. As summarized in the third box of Figure 3, once
the embedding is defined, AML learns by creating atoms. The core AML algorithms check
that the human-defined constraints are maintained in the subsequent binary relationships
between the inputs and outputs, which are learned as new atoms are generated during
training. In the case of gait analyses, the real-world system that AML interacts with at the
beginning consists of numbers describing gait features. These numbers come from conver-
sion by specialist software of gait recordings are made by video cameras and/or wearable
sensors. At the end, the real-world system that AML interacts with is the communication
media of healthcare providers, such as their computer monitors.

As summarized in Figure 4, the performance of the AML can be considered in terms
of perceptual, instrumental, and epistemic inference: i.e., cycles of active inference. Per-
ceptual inference refers to inferring sensory stimuli from predictions based on internal



Mach. Learn. Knowl. Extr. 2024, 6 586

representations in world models. Instrumental inference involves inferring action options
and consequences in the environment. Epistemic inference refers to updating internal
representations in world models [14,49].

Figure 4. Operation of a trained AML model.

A machine learning world model, like all other world models, encompasses selected
concepts and relationships between them to represent those aspects of the real-world system
that it interacts with. Figure 3 above provides a summary of the selected concepts and
relationships between them in this case of gait analysis. When evaluating a gait example,
AML perceptual inference is in terms of constants present for that example (as indicated
by the blue squares in Figure 4). The instrumental inference of AML is in consulting its
learned representation for its world model (atoms) and, based on its analysis (the number
of atoms present, i.e., not missing), making classification decisions. The accuracy of AML
models can be evaluated using standard machine learning metrics such as the Macro F1
Score, which is calculated from the precision and recall of the test. Precision is the number
of true positive predictions divided by the number of all positive predictions, including
those not identified correctly. The recall is the number of true positive predictions divided
by the number of all samples that should have been identified as positive. The Macro F1
Score is the mean of the F1 of each individual class.

As summarized in Figure 5, AML can perform epistemic inference when updating
the model through retraining. This can be done to include new gait examples or even
new knowledge regarding the gait analysis problem. Figure 5 summarizes that AML is
a type of hybrid machine learning, as internal representations and relationships between
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them involve both constraints being defined by people and data-driven learning from new
labeled examples.

Figure 5. AML model updating.

3.3. Opposing Interpretations of Ethical Requirement Representations

This example further illustrates that the representation of ethics in machine learning
world models in general, and AML world models in particular, is a computer engineering
challenge. For example, there can be culturally bound social choices to accept that func-
tional disorders are an important and increasingly widespread medical phenomenon. Then,
related normative ethics can be defined in laws related to healthcare, which provide regula-
tory frameworks for human organizations’ operating procedures: in this case healthcare
providers’ operating procedures for carrying out diagnoses of functional disorders. For
many organizations, operating procedures are defined within their quality management
systems (QMSs), which are developed and audited in accordance with international stan-
dards. AML, like other computational methods, can be implemented at the end of such
progressions from vagueness to specificity [50].

However, even though the core AML algorithms check that the human-defined con-
straints are maintained, no amount of diligence in computer engineering can ensure that
individual people who interact with a healthcare organization’s implementation of ma-
chine learning will consider that their diagnoses are ethical. Rather, there can be profound
challenges to address before opposing participants in interactive human-centric machine
learning systems can agree shared interpretation of machine learning models and their
outputs. These profound challenges can arise from human embodied psychomotor func-
tioning, which can resist definition due to dynamic, non-conscious interactions between
variables such as personality type and body memory [51]. For example, gait is related
to personality in ways that are not fully understood. This problem is exacerbated by the
difficulty of defining where one personality type ends and another begins. Furthermore,
gait is related to memory in ways that are not fully understood. This problem is exacerbated
by the difficulty of defining what aspects of memory are in the mind and what aspects are
in the body [52]. In this case, there is the profound challenge that functional disorders have
medically unexplained physical symptoms [53]. Thus, as summarized in Figure 6, even the
most advanced computer engineering of machine learning world models for healthcare
diagnoses cannot easily enable shared understanding of something that cannot yet be
explained fully by medical science.

Furthermore, it is important to note that there are decades of evidence that organiza-
tions and individuals can continue to have opposing interpretations of exactly the same
information, even if it is explained in detail with high-quality visual content [54]. Hence, as
summarized in Figure 7, the representation of ethical requirements in machine learning
world models needs to be carried out with consideration of human organizations’ docu-
mented world models in their QMS, individual people’s embodied psychomotor world
models, and the potential for deeply rooted opposition between them [14,55].

As summarized in Figure 7, HML-enabled gait analyses and other related information
such as image study findings and self-reporting pain scales can be considered to be bound-
ary objects between a healthcare provider’s internal model of itself in the world (i.e., a
documented world model) and an individual’s model of self in the world (i.e., an embodied
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world model). Boundary objects have different meanings in different social worlds but
nonetheless can be meaningful in more than one social world. Boundary objects include
written words, spatial diagrams, and any other types of information that can facilitate
development and maintenance of coherence across intersecting world models [56,57]. How-
ever, reference to existing world models can lead to organizations’ lock-ins [58] and path
dependencies [59] coming into opposition with individuals’ motivated cognition [60] and
wishful seeing [61]. All of which can lead to new information being interpreted to serve
explanations that support preconceptions [62] and confirm biases [63]. Hence, even seeking
to support results from analyses carried out with HML with information from other sources
may be of limited usefulness in facilitating agreement between healthcare providers and
patients. For example, results from gait analyses could be combined with other information
from imaging studies, such as scans and self-reported pain scales. However, these can be of
limited usefulness because patients’ prior expectations can determine their interpretation
of imaging studies [64] and can determine the extent to which they experience pain [65].

Figure 6. Implementation of ethical requirements may not be interpreted as ethical by all.

Figure 7. Opposing world models can lead to opposing interpretations of the same information.

Thus, in this case, there can be individual people who believe that they are suffering
from a functional disorder, but machine learning enabled analysis and other related in-
formation indicate a low probability of functional disorder. Yet, they do not believe that
they receive the healthcare that they believe they are entitled to receive within the big
ethical ideal of universal healthcare. Accordingly, while it may be possible for computer
engineering to enable implementation of a culture-bound social choice of an ethical re-
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quirement [23,24], that implementation may not be interpreted as ethical by individual
people. By contrast, red traffic signals at road junctions are boundary objects that have one
pre-agreed meaning irrespective of organizational, machine learning or personal world
models. Red traffic signals at road junctions indicate that vehicles must stop, and any
driver who does not stop their vehicle at a red traffic light violates traffic regulations that
have been agreed as a necessary intervention to contribute to protecting human lives on
the roads. In doing so, traffic regulations contribute to an ethical ideal that is prominent in
many cultures: the sanctity of human life [15].

4. Conclusions

This paper is concerned with the representation of human ethical requirements in
hybrid machine learning models, which, as summarized in Figure 2, can take place at
the end of a progression from vagueness to precision. This can involve the following
steps: big ethical ideal—debate about culture-bound social choices—legislation of new
laws—definition of regulations—data from observations—definition of implementation
requirements—technological implementations. Within this framing summarized in Figure 2,
important debates about complex interactions between ethical ideals and social choices
take place before the definition of requirements for technological implementations, which
are the focus of this paper. In this paper, findings have been reported concerning technical
opportunities and fundamental limitations for representing human ethical requirements in
hybrid machine learning, as illustrated by Algebraic Machine Learning. These contributions
are relevant to AI system engineering [5] and AI-informed decision making [6].

With regard to AI system engineering, the findings reported here illustrate that rep-
resentation of human ethical requirements in hybrid machine learning is computer engi-
neering work that can include both human-defined constraints and training from datasets
(Figures 1 and 3–5). Furthermore, this is work that takes place at the end of typical processes
that start with very broad general statements and narrow to precise application-specific
representations. Previous work has drawn attention to the need to take into account psy-
chological and cognitive aspects of human trust in AI system engineering [5]. This study
draws attention to the importance of also taking human psychomotor functioning into
account because it can determine the extent to which representations can describe human
phenomena that involve dynamic non-conscious interactions between variables such as
personality type and body memory. Also, human psychomotor functioning can influence
the extent to which decisions informed by machine learning analyses will be perceived as
ethical (Figures 6 and 7). Accordingly, this study introduces psychomotor functioning as
an important consideration for future research concerned with human interpretations of
the fairness of AI-informed decision making [6].

An important direction for further research would be to consider how to incorporate
consideration of human psychomotor functioning into efforts to define generic rules for
ethical AI implementations. For example, one generic rule that has been proposed is “AI
decisions, actions, and communicative processes must be transparent and explainable” [66].
However, there is the fundamental challenge for explainability that some psychomotor
phenomena cannot yet be explained, for example, phenomena characterized by medically
unexplained symptoms. Furthermore, as summarized in Figure 7 above, while transparency
and explainability are necessary, they are not sufficient to bring about agreement about
outputs from machine learning. This is because different people who have different
embodied psychomotor world models can have opposing interpretations of the same
information.

Also, the study reported here goes beyond previous studies concerned with AI system
engineering and AI-informed decision making that have not considered the importance of
behavioral ethics. Future research into AI systems engineering for transportation systems
could encompass predictions of the internal control levels of drivers. On-going improve-
ments in wearable devices could enable psychophysiological fatigue [67], which can be an
indicator of potential for self-regulatory control, to be measured. If drivers are willing to



Mach. Learn. Knowl. Extr. 2024, 6 590

wear devices, such as earplugs, for this purpose, AI-informed decision making systems for
improving road safety could include such measurements.
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