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Abstract: We present a novel statistical methodology for analyzing shifts in spatio-temporal fire
occurrence patterns within the Brazilian Pantanal, utilizing remote sensing data. Our approach
employs a Log-Gaussian Cox Process to model the spatiotemporal dynamics of fire occurrence,
deconstructing the intensity function into components of trend, seasonality, cycle, covariates, and
time-varying spatial effects components. The results indicate a negative correlation between rainfall
and fire intensity, with lower precipitation associated with heightened fire intensity. Forest formations
exhibit a positive effect on fire intensity, whereas agricultural land use shows no significant impact.
Savannas and grasslands, typical fire-dependent ecosystems, demonstrate a positive relationship with
fire intensity. Human-induced fires, often used for agricultural purposes, contribute to an increase in
both fire frequency and intensity, particularly in grassland areas. Trend analysis reveals fluctuating
fire activity over time, with notable peaks in 2018–2021.

Keywords: Brazilian Pantanal; fire modeling; spatiotemporal point process

1. Introduction

The Pantanal biome is recognized as the world’s largest wetland ecosystem, situated
in the Upper Paraguay River Basin (UPRB) in South America, between the Cerrado and
Amazon biomes [1]. The Brazilian Pantanal is situated in the southwest region, mostly
in the state of Mato Grosso do Sul (65%), but also in the state of Mato Grosso (35%) [2].
The biome is marked by the well-defined dry and wet seasons, which cause periodic
fluctuations in the water level (flood pulse), shaping the scope of terrestrial and aquatic
places on the lowland, and influencing the fauna and flora. The vegetation in the Pantanal
is heterogeneous, with several vegetation classes identified, also serving as the habitat for
substantial populations of animals, including threatened species [3].

The high biological diversity of the Pantanal has attracted considerable attention,
rendering this biome increasingly susceptible to anthropogenic threats. Over the past few
decades, the Pantanal has experienced a rapid evolution of its agricultural and livestock
systems, with natural vegetation areas being replaced by production zones [4–6]. The
monitoring activities of 2012–2014 to assess the environmental impact in the UPRB have
identified that 58% of the original vegetation in the plateau areas was converted to anthropic
uses, whereas in the lowlands this conversion corresponds to 42%. In addition, the report
also has found that 99% of all converted areas have been used as pastureland, 0.6% for
agriculture, and 0.4% for mining and urban areas [7].

Related to agriculture and cattle ranching, the inclusion of exotic grass species and
the burning practice are important threats in the region. As a consequence of replacing the
original vegetation by cultivated pastures and uncontrolled fires, severe erosion has led to
changes in the hydrological regimes and the patterns of water flow [4]. As discussed by [8],
changes in the vegetation productivity in these landscapes are likely linked to changes in
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rainfall and the flood pulse, with different responses based on position relative to inundated
areas. As a consequence, these changes in the vegetation cycle can lead to changes in the
fire activity. Although occasional fire plays an important ecological role in wetland, with
positive impacts on some vegetation structure and nutrient recycling [9,10], fire is one of
the most important environmental disturbances, affecting the variations in flood and dry
periods, and, as a consequence, changing the required time of plants and animals to recover
after the dry periods [11].

In recent years, extensive and more frequent fire events have been reported in the
Brazilian Pantanal. For instance, in 2020, more than 22 thousand fire outbreaks were
registered in the Pantanal, with a burned area of 33,000 km², exceeding by 176% the
historical record of fire outbreaks registered in 2005 since the beginning of the monitoring
by the Instituto Nacional de Pesquisas Espaciais (INPE) in 1998. In addition, the area burnt
in 2019 in the Brazilian Pantanal was surprisingly 996% higher than in 2018, which is
particularly high when compared with the neighboring biomes (Cerrado and Amazon)
that have recorded an increase around 40% and 65% of the burned area from 2018 to 2019,
respectively. In addition, it is worth noting that 95.72% of the fire events in the Pantanal
have occurred in native vegetation, whereas only 4.28% was in anthropized areas.

One reason for this increase may be related to land use and climate changes, which
have the potential to affect the rainfall intensity and the dry period, thus favoring the
frequency of fire events, mostly human-induced (accidentally or deliberately), which tends
to start in grasslands and then move to woodlands [10]. In the absence of specific legislation
requiring that landowners restrict a minimum percentage of native vegetation cover in the
farms, an average vegetation loss of around 10% for the plateau and 3% for the lowland
is expected by 2050 [12,13]. Given the widely expected trend of agriculture and livestock
expansion, and the importance of the Brazilian Pantanal to provide ecosystem services
and the economic valuation of the region [1,14–16], there is an urgency to evaluate the
possible changes in the patterns of fire occurrence in the region, in order to find solutions
to minimize the impacts.

In this sense, to monitor the patterns of fire occurrence in the Brazilian Pantanal, we
propose to model the dynamics of the point process of geolocated events (fire spots) based
on remote sensing data resources through a spatiotemporal decomposition for the spa-
tiotemporal point process, for the period 1999–2022. In particular, we use a novel dynamic
representation of a Log-Gaussian Cox Process (LGCP), where the intensity function is
modeled through decomposition of components in trend, seasonality, cycles, covariates,
and spatial effects [17–20], assuming that spatial effects are time varying, based on an
autoregressive functional structure.

Our method introduces a dynamic modeling approach that incorporates spatiotempo-
ral decomposition to capture the underlying dynamics of fire events. This method utilizes
remote sensing data to model the point process of geolocated events (fire spots), allowing
for a comprehensive understanding of fire patterns over time and space. By employing
techniques such as the Log-Gaussian Cox Process (LGCP), which builds upon the Bayesian
framework for Log-Gaussian Cox Processes originally advanced by [21], and incorporating
common latent components and time-varying spatial effects, this approach accounts for the
evolving nature of fire dynamics in the region.

Integrating remote sensing technology with statistical modeling, the methodology
offers a robust framework for assessing and predicting fire occurrences in the Pantanal,
contributing to the advancement of environmental science research. Consequently, it pro-
vides a robust means for investigating potential anthropogenic factors contributing to the
spatiotemporal distribution of fires. This modeling approach provides a robust founda-
tion for understanding and analyzing the spatiotemporal dynamics of fire occurrences in
the Pantanal.

This article has the following structure. Section 2 presents a brief literature review on
fire occurrence patterns in the Pantanal and the methods used in the analysis. The analyzed
data are presented in Section 3, and the methodology used in this study is placed in
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Section 4. The results are presented and discussed in Section 5, and the general conclusions
are in Section 6. The Appendix contains additional discussions of the representation used
for the LGCP (Appendix A.1) and the spatial covariance function (Appendix A.2) and
additional results using a non-separable version of the model (Appendix A.3).

2. Literature Review
2.1. Literature Review on Fire Activity in the Brazilian Pantanal

Despite the existence of long-term studies evaluating variations in rainfall patterns
in the Pantanal and their consequences for fire frequency, research on climate landscape
dynamics remains underdeveloped in the region [22]. Specifically, regarding fire occur-
rences, there exists a notable research gap that our study intends to address. Moreover, the
advancement of remote sensing technology has emerged as a tool for assessing fire events
and monitoring potential shifts in their patterns.

The significant surge in fire outbreaks witnessed in the Pantanal during 2020 [23] has
sparked crucial discussions regarding both climatic and anthropogenic factors influencing
this unprecedented occurrence. Ref. [24] thoroughly analyzes the convergence of climatic
and environmental conditions contributing to this phenomenon. Their study identifies
a severe drought, extreme temperatures, and increased fuel availability as key elements
underpinning the record number of fires in 2020. For a broader examination of this
correlation within Brazil, a comprehensive discussion is available in [25]. Additionally,
ref. [26] addresses the impact of heatwaves, projecting their likelihood of recurrence in the
future of the Pantanal.

However, it is noteworthy that not all climatic influences are equally pertinent in
explaining the fire patterns observed in the Pantanal. Ref. [27] investigates the role of
lightning as fire igniters, revealing limited evidence of their association with fires, thereby
suggesting that human-related activities primarily drive ignitions.

Anthropogenic aspects, including changes in land use (e.g., [28,29]), and the implica-
tions of climate change, are discussed in [30]. This study analyzes how the combined effects
of precipitation, temperature, soil moisture, and evapotranspiration exhibited atypical
behavior during this period. Furthermore, changes in land use, particularly land use and
land cover (LULC) classes, are underscored as significant contributors to the 2020 fire
patterns by [31]. Their findings demonstrate a preference for forest regions in the 2020 fires,
with forests and grasslands experiencing larger fire patches compared to crops, consistent
with results from [32]. This study highlights the pivotal role of reduced water surface area
in the Pantanal and emphasizes that 84% of new fires occurred within natural vegetation,
with 39% affecting forests—an alarming 514% increase. Forest fires alone accounted for 47%
of the carbon loss in 2020. Notably, a staggering 70% of the fires in 2020 transpired within
rural properties, with 5% in indigenous lands and 10% in protected areas, accentuating
the complex interplay between human activities and environmental factors in shaping fire
dynamics in the Pantanal.

2.2. Literature Review on the Method

Our objective is to analyze the temporal and spatial patterns of the occurrence of
fires in the Pantanal biome, using the structure of spatial points processes [33,34]. Spatial
point processes are a mathematical framework used to model the spatial distribution of
points or events occurring in a particular region of interest. The basic idea behind spatial
point processes is to describe the random occurrence of points within a defined spatial
domain. These processes can be either discrete or continuous, depending on the nature
of the underlying phenomena. In a discrete spatial point process, the points are distinct
and separate entities, whereas in a continuous spatial point process, points are distributed
continuously over space, which is the form used in our analysis.

There are various types of spatial point processes, each with its own characteristics
and properties [34]. Some common types include the homogeneous Poisson Process,
that is the simplest type of spatial point process, where points are distributed randomly
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and independently throughout the spatial domain, with a constant intensity rate. In
the inhomogeneous Poisson process, the intensity rate varies spatially, meaning that the
probability of finding points at different locations in the spatial domain is not uniform.

The Log-Gaussian Cox Process (LGCP) [34–36] is a spatial point process that combines
elements of Gaussian processes with Cox processes to model spatial point patterns where
the intensity varies smoothly over space. Applications of LGCP in health data modeling,
epidemiology, and species distribution can be found at [37–39], and in the modeling of
fire occurrence in [19,20,40]. This model is particularly useful when the intensity of point
occurrences is believed to be influenced by underlying continuous spatial covariates. In
LGCP, the log of the intensity function, log(λ(s)), is modeled as a Gaussian process.

A Gaussian process [41] is a collection of random variables, any finite number of which
have a joint Gaussian distribution. It is fully specified by its mean function and covariance
function. LGCP allows for the inclusion of spatial covariates, such as temperature or land
use, which are believed to influence the intensity of point occurrences. These covariates
can be incorporated into the mean function of the Gaussian process to capture their effect
on the intensity.

The inference procedures for the LGCP are based on the estimation of intensity func-
tion. This involves estimating the spatial variation in the intensity of point occurrences.
Using the estimated intensity function we can realize the spatial prediction, predicting the
expected number of points within the spatial domain [34].

To properly deal with point pattern data we use a spatiotemporal decomposition
based on a LGCP, where the log-intensity function is given by a Gaussian Markov random
field (GMRF) ([41]). This framework is a flexible way to overcome the limited structure of
the Poisson process, by allowing to introduce more complex stochastic structures in the
intensity function, controlling for general processes of spatial dependence.

However, inference procedures on the LGCP are difficult given the fact that the likeli-
hood of these processes is analytically intractable. To bypass this problem, Ref. [21] proposed
to approximate the LGCP likelihood through the stochastic partial differential Equa-
tion (SPDE) approach [42] representation of the latent random field, which is a com-
putationally effective way to deal with spatiotemporal models in the context of point
pattern data.

In addition, as proposed by [18,43], the LCGP structure allows us to estimate long-
term changes and transient components through a structural decomposition (à la [44]) of
the intensity function. We present the details of the methodology used in the analysis
in Section 4.

3. Data

Our main goal is to analyze the changes in the permanent and transitory patterns of
fire occurrence in the Brazilian Pantanal biome, which was delimited based on The Map of
Biomes and Coastal-Marine System of Brazil from Instituto Brasileiro de Geografia e Estatística
(IBGE) Available at https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-
ambientais/15842-biomas.html, accessed on 31 January 2023. For that, we use daily data
of fire spots in the Brazilian Pantanal from July 1998 to December 2022, provided by the
Programa Queimadas Data and more information available at http://queimadas.dgi.inpe.
br/queimadas/portal, accessed on 31 January 2023, from Brazilian National Institute of
Spatial Research (Instituto Nacional de Pesquisa Espacial-INPE). We also included covariates
that could be important in the fire observations since our data set includes fire occurrences
of different causes, such as human sources and natural causes, which can be influenced
by climate variables. In particular, we included information on maximum temperature,
rainfall, and land use/land cover from 1998 to 2022, as explained below.

The daily data of fire spots used in the paper are provided by the Programa Queimadas
(data and other information available at https://terrabrasilis.dpi.inpe.br/queimadas/
bdqueimadas/), accessed on 31 January 2023, from the Brazilian National Institute of Spatial
Research (Instituto Nacional de Pesquisa Espacial-INPE), which uses two different sensors as

https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais/15842-biomas.html
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http://queimadas.dgi.inpe.br/queimadas/portal
https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/)
https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/)
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the main source of information, namely Moderate Resolution Imaging Spectroradiometer
(MODIS) Aqua and Terra products, and the Advanced Very High Resolution Radiometer
(AVHRR) from the National Oceanic and Atmospheric Administration (NOAA).

Initially, from 1 June 1998 to 3 July 2002, NOAA-12 (with the AVHRR sensor, passing
in the late afternoon) was employed. Subsequently, AQUA_M-T (with the MODIS sensor,
passing in the early afternoon) took over. This transition led to a disruption in the number
of observed outbreaks in our data analysis, potentially underestimating the true count of
burning spots and forest fires. Despite this, employing the same detection methodology
and generating images at similar times across the years allows us to utilize results from the
“reference satellite” to scrutinize spatial and temporal trends in outbreaks.

Note that the fire point data released by INPE coincides with the dataset from NASA
and the University of Maryland (UMD) in the USA, referred to as “Collection 6”, which
has been in operation since 2016, supplanting “Collection 5” globally. INPE did the
same with its MODIS database (AQUA and TERRA) in March/2017. This comprehensive
replacement of the database necessitated reprocessing thousands of past images, driven by
advancements in image focal point extraction algorithms, yielding more dependable end
products. Prior to “Collection 5”, INPE maintained its own detection algorithm for MODIS
images, ensuring robust data. However, with the advent of “Collection 6”, this approach
became redundant, prompting the Queimadas Program to adopt the same algorithm as
NASA and UMD for detecting MODIS outbreaks. This alignment renders the databases
compatible, thereby broadening the range of potential applications for the data. See the
notes at https://terrabrasilis.dpi.inpe.br/queimadas/portal/faq/index.html, accessed on
31 April 2024, on the properties and limitations of the database.

However, despite the discontinuity in the observed data, it is worth noting that even
indicating a fraction of the actual number of fires and forest fires, using the same detection
method and collecting images at close times over the years, the results obtained from both
reference satellite allow us to analyze the spatial and temporal trends of the fires. In this
sense, to reach our goal, we use the data from the MODIS/NASA and AVHRR/NOAA
satellites, with the data validation carried out by the Queimadas system. The dataset
provides geographical information and the time and period of fire spots within the Brazilian
Pantanal, which is located within the states of Mato Grosso do Sul and Mato Grosso in the
southwest region. In addition, in order to provide a clearer interpretation of the results
obtained, we used a quarterly aggregation of the daily data, which is the sum of the
observed fire events in each quarter of the year.

We plotted the number of quarterly observed fire spots (see Figure 1), from 1998 to
2022, where it is possible to see the unprecedented fire outbreak in 2020. To emphasize
the large number of fire outbreaks detected in 2020, in Figure 2 we show the observed
fire events (black dots) in the Brazilian Pantanal in the third quarters of 2018 and 2020
(on the top of the figure). Furthermore, in the bottom of Figure 2, it is possible to observe
the non-parametric kernel density estimate of the intensity function [34] of the occurrence
process. We choose to compare the fire outbreak in 2020 with 2018 since the latter presented
fire patterns close to the average in comparison to the past 20 years. Based on Figure 2, we
can see a notable increase in the intensity and spatial distribution of fire outbreaks in 2020
compared to 2018.

Regarding the covariates, it is worth discussing a meaningful limitation related to the
selected covariates in our analysis. Since the proposed model performs a spatiotemporal
analysis for the occurrences of a process observed continuously in space, the covariates
must be available at every location of the interest region within the observation window.
Due to this methodological constraint, the number of available covariates is limited, and we
were able to include limited information in climatic patterns and land use. In particular, re-
garding the rainfall and maximum temperature data, we calculated the spatially continuous
projections from weather station data, following the [43] methodology, as discussed below.

https://terrabrasilis.dpi.inpe.br/queimadas/portal/faq/index.html
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Figure 1. Observed fire events by quarter in Brazilian Pantanal.

The rainfall data were constructed using the time series of the monitoring stations
provided by the Brazilian National Agency of Waters (Agência Nacional de Águas—ANA)
and National Institute of Meteorology (Instituto Nacional de Metereologia—INMET), whereas
the maximum temperature data were obtained based on the information provided by the
INMET. For both data, we calculated the spatially continuous projections for each period in
the sample, following the methodology proposed by [43].

By adopting this methodology, we were able to avoid some common problems faced
in the analysis of the data sources used in climatology; namely, the dimensionality of
the spatiotemporal dataset, the importance of the spatial features, and missing data. In
particular, by combining a structure of trend-cycle decomposition with the continuous
spatial formulation, the approach allows us not only to estimate the patterns throughout the
spatial continuum and how it propagates throughout the area of interest, but also provides
a way to solve the missing data problems by adding the latent components with the
prediction obtained for the spatial effect in the geographic position of the weather station
using the continuous projection of the spatial effect, without the necessity of additional
treatments for missing data or interpolation methods. In summary, this methodology
allows us to control possible changes in weather patterns, and is also based on possible
changes in trends, seasonality, and cycles in climate data.

In addition, we included, as categorical variables, yearly information on land use/Land
Cover (LULC) provided by the Landsat-based MapBiomas project (Collection 5). The
database includes annual historical maps of each biome, which contains a hierarchical
system of classification of land use/land cover following the Food and Agriculture Organi-
zation (FAO) and Instituto Brasileiro de Geografia e Estatística (IBGE) classification systems.
The first level contains six classes; namely, forest, non-forest formation, farming, non-
vegetated area, water, and non-observed. Forest constitutes natural forest and forest
plantation, whereas the non-forest natural formation includes wetland, grassland, salt
flat, rocky outcrop, and other non-forest formations. The farming class includes pasture,
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agricultural land, and mosaic. The non-vegetated areas are defined by beaches and dunes,
urban areas, mining, and other non-vegetated areas. Finally, the water class includes rivers,
lakes, oceans, and aquaculture. The accuracy statistics vary according to the level and
biome. In particular, considering the Pantanal biome, the first level has 81.6% overall
accuracy with 12.9% allocation mismatch and 5.6% quantity mismatch. For the second and
third levels, the overall accuracy is 73.5%, whereas the allocation and quantity mismatch
are 17.5% and 9%, respectively. The methodology overview of the MapBiomas project is
available at https://mapbiomas.org/, accessed on 31 January 2023, whereas the accuracy
assessment for the Brazilian biomes is available in the MapBiomas accuracy statistics web
page https://mapbiomas.org/en/estatistica-de-acuracia?cama_set_language=en, accessed
on 31 January 2023. A detailed description of the MapBiomas land use/land cover clas-
sification can be found in Table 1, whereas Figure 3 shows a map with the Mapbiomas
classifications for the year 2019.
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Figure 2. Observed fires (top left and top right) and non-parametric intensity estimation (bottom left
and bottom right)—2018Q3 (top and bottom left) and 2020Q3 (top and bottom right).
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Figure 3. Land use/land cover in the Brazilian Pantanal from MapBiomas—2019.

Table 1. MapBiomas land use/land cover classification.

LULC ID

1. Forest 1
1.1. Natural Forest 2
1.1.1. Forest Formation 3
1.1.2. Savanna Formation 4
1.1.3. Mangrove 5
1.2. Forest Plantation 9
2. Non-Forest Natural Formation 10
2.1. Wetland 11
2.2. Grassland Formation 12
2.3. Salt Flat 32
2.4. Rocky Outcrop 29
2.5. Other Non-Forest Formation 13
3. Farming 14
3.1. Pasture 15
3.2. Agriculture 18
3.2.1. Temporary Crop 19
3.2.1.1. Soybean 39
3.2.1.2. Sugar cane 20
3.2.1.3. Other Temporary Crops 41
3.2.2. Perennial Crop 36
3.3. Mosaic of Agriculture and Pasture 21
4. Non-Vegetated area 22
4.1. Beach and Dune 23
4.2. Urban Infrastructure 24
4.3. Mining 30
4.4. Other Non-Vegetated Areas 25
5. Water 26
5.1. River, Lake, and Ocean 33
5.2. Aquaculture 31
6. Non-Observed 27
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4. Methods

Our aim is to examine the temporal and spatial distribution of fires within the Pantanal
biome, employing spatial point processes to analyze the patterns. In particular, we proposed
to decompose the intensity function into latent factors of trend, seasonality, and cycle, along
with covariates and spatial effects.

In the analysis of the temporal pattern, the main object is the trend component,
which shows the evolution of the average level of occurrences over time, and thus shows
the persistent patterns of fire occurrence in the Pantanal. Variations in this component
may indicate variations that are possibly related to changes in the patterns of land-use
management in agricultural activities, such as the use of burning for the removal of native
vegetation and later use in pastures and plantations. This interpretation is possible by
controlling the climatic effects through covariates, and also by controlling other possible
non-permanent effects by including the seasonality and cycle components. In addition
to the inclusion of these common temporal and covariate components, the model used
in the analysis includes a structure of time-varying spatial random effects, which allow
the capture of the remaining spatial patterns, also allowing us to analyze if there are other
effects in the fire patterns that have spatial dependence.

To provide a clearer idea of the method employed to reach our goals, we present a
brief description of the likelihood approximation proposed by [21]. Our approach is based
on the extension of the static approach to Log-Gaussian Cox Processes proposed in [21] for
a spatiotemporal dynamic structure, modeling the pattern of fire occurrences over time.
Herein, we provide some details about the model structure used in our analysis. Assuming
a bounded region Ω ⊂ R2, the number of points within a region D ⊂ Ω in period t is
Poisson distributed with mean Λt(D) =

∫
D λ(s, t) ds, where λ(s, t) is the intensity surface

function of the point process. Under this structure, the likelihood of the Poisson process Yt
is given by

π(Yt | λ) = exp
{
|Ω| −

∫
Ω

λ(s, t) dsdt
}

∏
si∈Yt

λ(si, t). (1)

We assume the structure of a spatiotemporal Log-Gaussian Cox Process, decomposing
the spatiotemporal log-intensity function log λ(s, t) as a latent random field given by the
sum of covariates and latent stochastic components:

log λ(s, t) = µt + st + ct + z(s, t)β + ξ(s, t)

µt = µt−1 + ηµ

st = st−1 + st−2 + . . . + st−m + ηs

ct = θ1ct−1 + θ2ct−2 + ηc

ξ(s, t) = Θξ(s, t − 1) + ω(s, t) (2)

where µt is the long term trend, st represents the seasonal components, ct is a cycle compo-
nent represented by a second-order autoregressive process with complex roots, z(s, t) is a
set of covariates observed in the location s and period t, and ξ(s, t) are the spatial random
effects represented by the Gaussian process ω(s, t) continuously projected in space and
given by

Cov[ω(s, t), ω(s′, t′)] =

{
0 if t ̸= t′

σ2C(h) if t = t′
for s ̸= s′ (3)

In this structure, the trend component is modeled as a first-order random walk, which
is a way widely used to model persistent components in time series models. The seasonality
component is given by components that add up to zero within the year, which incorporate
seasonal deviations from the series average in each period. The cyclic component is
modeled with a second-order stationary autoregressive process, which is a parsimonious
way of recovering periodic patterns in time series.
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The spatial component is defined by a spatially continuous covariance function. By
assumption, C(h) is a covariance function of the Matérn class, which can be written as

C(h) =
21−ν

Γ(ν)
(κ||h||)νKν(κ||h||) (4)

where h = ||s − s′|| is the Euclidean distance between locations s and s′, κ > 0 is a spatial
scale parameter, ν > 0 is the smoothness parameter, and Kν is a modified Bessel function.

The spatial random effects included in the model are a statistical mechanism to capture
the aggregate effect of all variables omitted in the model that present a structure of spatial
dependence, and the addition of this component serves to capture the spatial heterogeneity
generated by the variables omitted from the model. Its addition is especially relevant
in models where the space is treated continuously as such models require covariates
that are also continuously observed in space, and due to measurement difficulties and
costs, the observed set of covariates is quite limited. Therefore, the spatial random effects
component allows controlling the compound effect of omitted covariates in space and time,
allowing robust estimation of the parameters associated with the covariates and latent
factors included in the model.

To sum up, our goal is to obtain the intensity function of a latent spatiotemporal points
process model, which is decomposed into components of trend, seasonality, cycle, plus
the effect of covariates and the so-called spatial random effect, which captures the local
effects not captured by the other components. By using this structure, we are able to assess
possible changes in the patterns of fire occurrence in the Brazilian Pantanal. In addition, the
reason to incorporate covariates in the analysis is to control the impact of climate variables
and other effects related to land use and land cover.

As discussed before, we extend the likelihood approximation proposed by [21] to
represent the likelihood function of a spatiotemporal LGCP and perform inference for
hyperparameters and latent components using a Bayesian method by means of Integrated
Nested Laplace Approximations introduced in [45] using the SPDE representation for
the latent log-intensity function proposed by [42] and the approximation of the likelihood
function introduced by [21]. We present the main details of these likelihood approximations
for the LGCP in Appendix A.1 and the SPDE representation in the Appendix A.2.

A relevant concern about the formulation given by Equation (2) is the identification
of the model, composed of the sum of several latent components. A formal analysis of
the identification of this model would require analyzing the spectral representation of the
LGCP process with the log-intensity function used in our analysis, since the identification
of the latent components of trend, cycle, and seasonality in state space representations is
based on the spectral generating function, as discussed by [46]. As we are using a direct
representation in the time and space domains for this process, we do not have a spectral
representation available, and thus the identification is based on the numerical optimization
properties of the inference procedures.

Since we are using Bayesian inference methods through Integrated Nested Laplace
Approximations, it is possible to verify signs of identification problems through the numer-
ical procedures for estimating the posterior mode necessary for the application of Laplace
approximations. Signals of identification problems can be noted through the presence of
singularities and negative eigenvalues in the numerical Hessian matrix evaluations used in
the optimization procedure used for mode finding.

In estimating all the models used in this work, there were no signs of numerical
problems related to non-identification conditions, which shows that empirically the model
seems to be identified. We assumed additional restrictions on the definition of random
effects, assuming that the cycle (AR(2)), seasonality, and the spatial random effect sum
to zero in time, avoiding problems of identification with the process average. It is also
important to note that the estimates are robust to the initial values used in the numerical
optimization, indicating the absence of multiple modes, which would also be evidence of a
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lack of identification. Thus, although we do not have a formal proof of identification in our
model, the evidence of numerical stability is favorable to the parameterization used.

5. Results and Discussion

In this section, we discuss the results of the final specification for the analyzed model
based on Equation 2, where the statistically significant covariates were rainfall, given by
the rainfall accumulated in the quarter, and land use/cover variables in each location
analyzed. Regarding the maximum temperature variable, it did not provide a statistically
significant pattern to explain the variation in the fire events, even though there was a
long-term increase in maximum temperature trends in the Pantanal region.

As discussed in the Data and Methods sections, the estimation of the spatiotemporal
model is based on the construction of a mesh, which represents a discretization of the
continuous space for the evaluation of the likelihood function of the Log-Gaussian Cox
Process using the SPDE approximation to numerically evaluate the latent random field. In
this work, we use a mesh with 1002 triangles, as shown in Figure 4. Through the INLA
method, we estimated the posterior distribution of the parameters described in Equation (2).

Figure 4. Spatial mesh of the Brazilian Pantanal.

The estimated parameters of Equation (2) are the precision of the trend component
(1/ηµ), seasonal component (1/ηs), and cycle component (1/ηc), the parameters of the
second-order autoregressive process of the cycle component (PACF1 and PACF2), the
parameters associated with the set of observed covariates (β), the parameters of spatial
covariance (log τ and log κ), and the parameter of spatial time dependence (Φ) are available
in Table 2. We comment below on the effect of the covariates in the model, and then on the
estimated parameters and latent components.
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Table 2. Estimated parameters.

Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode

Fixed effects
Rainfall −0.001 0.000 −0.002 −0.001 −0.001 −0.001
Forest formation 0.071 0.036 0.000 0.071 0.141 0.071
Savanna formation 0.084 0.038 0.009 0.084 0.158 0.084
Grassland formation 0.185 0.036 0.115 0.185 0.255 0.185

Random effects
Precision for trend 5.468 0.159 5.175 5.468 5.820 5.426
Precision for seasonality 13,100.823 324.050 12,436.171 13,096.492 13,783.429 13,095.810
Precision for cycle 1.220 0.033 1.149 1.219 1.284 1.227
PACF1 for cycle 0.069 0.012 0.044 0.069 0.093 0.069
PACF2 for cycle −0.128 0.012 −0.154 −0.128 −0.105 −0.125
Log τ −4.153 0.008 −4.171 −4.154 −4.137 −4.152
Log κ 2.168 0.007 2.153 2.168 2.183 2.168
Group Φ 0.345 0.004 0.337 0.345 0.355 0.345

Note: The fixed effects denote the parameters for the covariates in the model. Precision denotes the estimated
precision (inverse of variance) for the latent component. PACF1 and PACF2 denote the first- and secord-order
partial autocorrelations of the cycle component. Log τ and Log τ are the parameters of the Matérn covariance
function, and Group Φ denotes the autoregressive persistence of Matérn covariance.

From the obtained results (see Table 2), it is possible to observe a negative relation
between rainfall and the intensity of fire events, i.e., the lower precipitation leads to higher
fire intensity. Our findings align with those presented in [24], which pinpoint severe
drought and heightened fuel availability as pivotal factors driving the unprecedented surge
in fires during 2020, corroborating the conclusions discussed by [25].

On the other hand, natural forests such as forest formation, savanna, and natural
grassland have a positive effect on fire intensity. It is important to emphasize that other
types of land use/cover were not statistically significant in terms of the intensity of the
process, especially land use in agricultural activities. It is not surprising that ecosystems
formed by savannas and grasslands are positively related to fire intensity since they are
mostly fire-dependent ecosystems [47].

Our results are consistent with the patterns found by [31,32]. Their findings demon-
strate a preference for forest regions in the 2020 fires, with forests and grasslands experi-
encing larger fire patches compared to crops. Ref. [31] highlights the finding that 84% of
new fires occurred within natural vegetation, with 39% affecting forests. The estimated
parameters for the forest, savanna, and grassland vegetation formations indicate different
magnitudes of impact on the intensity of fires, with a greater intensity of occurrence in
savanna and especially grassland covers, with posterior mean parameters of 0.084 and
0.185, respectively, compared to the value of 0.071 for forest formations. This implies a
greater susceptibility of these formations to the occurrence of fires.

Indeed, fires in this type of formation are typically mild and frequent, often occur-
ring in the transitional months between seasons and providing benefits to the fauna and
flora [48,49]. However, in this kind of vegetation, there is also the occurrence of anthro-
pogenic fires, which are used to clean the field, control pests, and stimulate the regrowth of
grasses for cattle, increasing the fire frequency.

Natural fires are usually controlled by the rainy season, whereas human-induced fires
also usually occur in the dry season and are more intense than natural fires, spreading
more easily and without rain to extinguish them. As a consequence, recurrent human-
induced fires can affect the spatial pattern and intensity of the fire activity even in fire-
dependent environments. In combination with drought, these alterations can cause severe
and catastrophic fires, as those recorded in 2020 in the Pantanal [49]. Additionally, it is
important to emphasize that riparian and gallery forests along water bodies in the grassland
and savanna formation are classified as fire-sensitive environments, and can be gradually
reduced when in contact with recurrent fires [10].
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However, it is important to highlight that our data sources do not distinguish whether
the fire occurrence is natural or caused by human actions, and thus additional studies
are needed to better elucidate the role of human influences in fire activity of this kind
of vegetation.

On the other hand, forest formation is considered fire-sensitive, i.e., not capable of
adapting to natural fire regimes, and where fire disrupts the ecosystem [47]. However,
according to our results, this formation is positively related to the intensity of fire activity
in the Pantanal, which may be due to a combination of factors, such as recurrent droughts,
human activities, and the lack of environmental policies to cope with illegal fires [49],
for example.

Regarding the precision parameters trend (1/ηµ), seasonality (1/ηs), and cycle (1/ηc),
they cannot be directly interpreted, and are better interpreted through the time series of the
posterior distribution of these components as shown in Figure 5. Thus, we decided to focus
on the interpretation of the figures with the time series containing the posterior averages
(solid lines) and the estimated 95% Bayesian credibility intervals (shaded areas) for each
component. These components are interpreted as the contribution to the log-intensity
function of the process for each period in time.

In the trend component (Figure 5a), we can observe a constant growth between 1998
and 2005, a rapid reduction between 2005 and 2008, with a stabilization in the values of the
trend between 2008 and 2014. From 2015 until 2023, we can see two peaks, with the most
significant between 2018 and 2021. Finally, at the end of the observed period, the trend
reverts to a lower average level between 1998 and 2022.

The estimated seasonal component (Figure 5b) is quite stable, and the model does
not indicate relevant changes in this pattern; that is, the estimated component captures a
consistent seasonal pattern over the observed years.

Regarding the cyclical component (Figure 5c), it is important to note that it has stable
behavior over time. This component has the capability to capture aperiodic changes that
deviate from the mean, such as climatic anomalies, for example. Additionally, the estimated
cycle parameter indicates low persistence in this component, with low values of partial
autocorrelations (PAF1 and PACF2; see Table 2), but with a relevant variance over time, as
shown in Figure 5.

The parameters Log τ , Log κ, and Group Φ are linked to the representation of
the Matérn spatial covariance matrix used in the representation of the model, which is
also better interpreted by the posterior distribution of the spatial random effect, shown
in Figure 6. It is important to note that the temporal persistence of the spatial effect is
relatively low, with Group Φ parameter estimated with a posterior mean value of 0.345,
indicating a persistence in the spatial patterns of fire occurrence in the Pantanal.

The quarterly spatial heterogeneity of the fire events over 1998 and 2022 in the Brazilian
Pantanal is clearer through the estimated spatial random effects (see Figure 6), which
capture the observed variability of dry (with higher risk of fire occurrence) and wet periods
in the region, with higher variability in the most fire-susceptible areas, i.e., mainly in the
south and central areas, but also in the northeast and north portion of the Pantanal.

In Figure 6, we can see that the variability in the occurrence of fires is not homogeneous
in time and space. For example, in 2001, 2009, 2012, and 2015, we observe a greater intensity
in the southern region of the Pantanal, whereas in the period of record fires in 2020 there
was a greater intensity in almost the entire area of the Pantanal, with emphasis on the
northern region in the third quarter of 2020.

Figure 7 shows the predicted values for the model for the log intensity of the LGCP
process, between 1998 and 2022. The adjusted intensity function reflects the sum of the
effects of covariates, trend components, seasonality, and cycle and the spatial effects esti-
mated by the model. We can observe that this function adequately explains the variations
observed in the occurrences of fires in each quarter of the sample, in particular the periods
with the record of occurrences of events in 2005Q3, 2007Q3 and 2020Q3.
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(a)

(b)

(c)

Figure 5. Trend, seasonal, and cycle decomposition of fire occurrences in the Brazilian Pantanal.
(a) Trend, (b) seasonal, (c) cycle.
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Figure 6. Spatial random effects. The figure shows the Bayesian estimation of the posterior mean
of spatial random effects, for each period (quarter) in the sample, summarizing the spatial effects
estimated by the model.

The spatiotemporal model proposed in this study is based on a separability structure
between time and space and, despite the fact that this is quite a flexible structure, it is
possible to have an alternative form using a non-separable structure for the interaction
between time and space, allowing for a more complex dependency structure [19]. In this
context, in the Appendix A.3, we provide a non-separable version of our spatiotemporal
model, which allows us to analyze a more complex dependency structure, despite the
computational cost involved in this type of analysis. The Appendix A.3 presents the mesh
used in this analysis (Figure A1), the estimated parameters (Table A1), the estimated trend,
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cycle, and seasonality components (Figure A2), and the spatial random effects obtained
with this representation (Figure A3). The results obtained with the non-separable model are
similar to those of the separable model, indicating the robustness of the results in relation
to the separability assumption.

Figure 7. Fitted log intensity . The figure shows the Bayesian estimation of the posterior mean of
the log-intensity function of the spatial point process for each period (quarter) in the sample. The
log-intensity function is given by the sum of the trend, seasonality, and cycle components and the
effect of covariates in the model.
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6. Conclusions

To assess changes in fire occurrence patterns in the Brazilian Pantanal, we propose
using a dynamic version of a Log-Gaussian Cox process. This approach decomposes the
intensity function into latent components such as trend, seasonality, cycles, covariates, and
spatial effects. It enables us to identify long-term changes in occurrence intensity over time
and capture mean-reverting effects, while also accounting for spatial heterogeneity.

Statistically significant covariates included rainfall, represented by accumulated rain-
fall per quarter, and land use/cover variables specific to each analyzed location. Regarding
the included covariates, our results are consistent with other studies that analyzed changes
in the pattern of fires in the Pantanal and the potential climatic and anthropogenic causes
of these changes.

In particular, we observed a statistically significant increase in fire incidence in natural
vegetation areas, consistent with the results of [28,29], and especially with the results of [31]
that demonstrate a preference for forest regions during the 2020 fires, with forests and
grasslands experiencing larger fire patches compared to crops, consistent with previous
results from [32].

Additionally, our findings support the evidence that rainfall patterns play a crucial
role in explaining the heterogeneity in fire occurrence. This aligns with the findings of [24],
which highlight severe drought, extreme temperatures, and increased fuel availability as
key factors contributing to the record number of fires in 2020.

Regarding the estimated latent components, within the proposed framework, our
findings suggest the existence of a variability in the trend component, which exhibits a
growth pattern between 1998 and 2005, and after 2019, whereas it remained relatively stable
between 2008 and 2019. On the other hand, seasonal and cycle estimated components have
stable behaviors over time.

The model presented in this work represents a new tool for statistical monitoring of
changes in the fire pattern. It allows the decomposition of variations observed in time and
space into permanent (trend) and transitory (seasonal and cyclical) components, controlling
climatic causes and patterns of land use and cover, and can be applied in real time using
the information obtained by remote sensing of fire occurrences.

We can enumerate the main contributions of our analysis:

1. Dynamic Spatiotemporal Modeling: We propose a dynamic modeling approach to
monitor fire occurrence patterns in the Brazilian Pantanal. This method involves
modeling the dynamics of point processes of geolocated events (fire spots) using remote
sensing data, through a spatiotemporal decomposition for the period 1999–2022.

2. Incorporation of Flexible Statistical Methodology: Our approach employs a dynamic
version of a Log-Gaussian Cox Process (LGCP), which decomposes the intensity func-
tion into latent components such as trend, seasonality, cycles, covariates, and spatial
effects. This novel methodology builds upon previous research and incorporates
time-varying spatial effects based on an autoregressive functional structure.

3. Comprehensive Understanding of Fire Patterns: By integrating remote sensing tech-
nology with statistical modeling, our methodology provides a robust framework for
assessing and predicting fire occurrences in the Pantanal. It enables a comprehensive
understanding of fire patterns over time and space, contributing to the advancement
of environmental science research.

4. Contribution to Environmental Science Research: Our modeling approach provides
a robust foundation for investigating potential anthropogenic factors contributing
to the spatiotemporal distribution of fires in the Pantanal. It offers insights into the
underlying dynamics of fire occurrences, aiding in the identification of factors driving
changes in fire patterns.

5. Consistency with Previous Studies: Our results align with other studies analyzing
changes in fire patterns in the Pantanal and the possible climatic and anthropogenic
causes of these changes. We corroborate the importance of factors such as rain-
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fall patterns and land cover/use in explaining the heterogeneity and intensity of
fire occurrences.

6. Tool for Statistical Monitoring: The model presented in our work represents a new tool
for statistical monitoring of changes in fire patterns. It allows for the decomposition
of variations observed in time and space into permanent and transitory components
while controlling for climatic causes and patterns of land use and cover.

7. Real-time Application and Integration with INPE’s Queimadas System: Our model
offers a direct application as a complementary analysis tool to INPE’s Queimadas
system data. Integrating estimations of trend, seasonality, and cycle components
enhances the system’s data summaries and aids in elucidating statistical patterns and
overall trends in spatiotemporal data. Additionally, utilizing spatial random effects
enables visualization of shifts in the spatial occurrence patterns of fires, augmenting
the analytical capabilities of the Queimadas system.
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Appendix A

Appendix A.1. LGCP Likelihood Approximation

The method proposed by [21] is based on constructing an approximation to the
intractable likelihood function for a LGCP process with a stochastic intensity function
in the form

π(Y | λ) = exp
{
|Ω| −

∫
Ω

λ(s) ds
}

∏
si∈Y

λ(si). (A1)

https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/
https://terrabrasilis.dpi.inpe.br/queimadas/bdqueimadas/
https://mapbiomas.org
https://mapbiomas.org
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The main idea is to construct a continuously specified random field using a basis
expansion, as follows:

Z(s) =
n

∑
i=1

ziϕi(s), (A2)

with z = (z1, . . . , zn)T being a multivariate Gaussian random vector and {ϕi(s)}n
i=1 is a set

of linearly independent deterministic basis functions. The log-likelihood
log π(y | Z) = |Ω| −

∫
Ω exp{Z(s)} ds + ∑N

i=1 Z(si) is the sum of two components: the
stochastic integral, and the field evaluated at the data points. Using a deterministic inte-
gration rule

∫
Ω f (s) ds ≈ ∑

p
i=1 α̃i f (s̃i), for fixed nodes {s̃i}

p
i=1 and weights {α̃i}

p
i=1, ref. [21]

proposed the approximation

log{π(y | z)} ≈ C −
p

∑
i=1

α̃i exp

{
n

∑
j=1

zjϕj(s̃i)

}
+

N

∑
i=1

n

∑
j=1

zjϕj(si)

= C − α̃T exp(A1z) + 1T A2z, (A3)

with C as a constant, [A1]ij = ϕj(s̃i) as a matrix containing the values of the latent Gaussian
model (A2) at the integration nodes {s̃i}, and [A2]ij = ϕj(si) evaluates the latent Gaussian
field at the observed points {si}. As discussed by [21], the main advantage of the approxi-
mation (A3) follows a Poisson representation. Given z and θ, the approximate likelihood
is composed of N + p-independent Poisson random variables. To show this property,
ref. [21] write log η = (zT AT

1 , zT AT
2 )

T and α = (α̃T , 0T
N×1)

T . For pseudo-observations
y = (0T

p×1, 1T
N×1)

T , the approximate likelihood factors are given by

π(y | z) ≈ C
N+p

∏
i=1

η
yi
i e−αiηi , (A4)

which is analogous to the likelihood for observing N + p conditionally independent Pois-
son random variables with means αiηi and observed values yi. The properties of this
approximation are discussed in [21]. The essential results about the convergence properties
of the approximations for the stochastic integral and the random field are demonstrated in
Section 4 and the Appendix of [21].

Our parameterization is based on decomposing the random field representation of the
intensity function of a spatiotemporal LGCP as the composition of the static representation
of for each period t, and in each period the log-intensity function is given by the sum of the
common latent components of trend, seasonality and cycle and the effects of covariates,
given by Equation (2). The random field generated by intensity function of the LGCP
approach of [21] is represented using the SPDE framework of [42]. We describe this method
in the next section.

Appendix A.2. The Spatial Covariance Function and Model Details

In this section, we provide a brief description of the SPDE approach proposed by [42].
The spatial structure of the model is given by the Matérn family, as discussed in the
section Data and Methods. The marginal variance of the covariance function σ2 is given by
the following:

σ2 =
Γ(ν)

4πκ2ντ2Γ(ν + d
2 )

(A5)

where τ is a scaling parameter and d is the space dimension. In order to easier obtain the
results, we adopt a parameterization in terms of log τ and log κ for the covariance function,
following [42]:
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log τ =
1
2

log
(

Γ(ν)
Γ(α)(4π)d/2

)
− log σ − ν log ρ

log κ =
log(8ν)

2
− log ρ (A6)

where ρ = (8ν)1/2

κ . To approximate the LGCP likelihood, we adopt SPDE approach, using
the fact that the term ω(s, t) corresponds to a random field with a Matérn covariance, which
allows to approximate this structure with a Gaussian Markov Random Field (GMRF).

Thus, the first main result for the SPDE approach, is that the GF ω(s) with the Matérn
covariance function is a stationary solution to the linear fractional SPDE [42,50]:

(κ − ∆)α/2x(s) = W(s), s ∈ Rd, α = ν + d/2, κ > 0, ν > 0 (A7)

where ∆ = ∑d
i=1

∂2

∂s2
i

is the Laplacian operator and W(s) is a spatial white noise. Therefore,

in order to find a GMRF approximation of a GF, we need to find the stochastic weak
solution of SPDE (A7). Using the Finite Elements Method (FEM), it is possible to construct
an approximated solution of SPDE [42], which is given by

x(s, t) ≈ x̃(s, t) =
n

∑
j=1

wj φj(s, t) (A8)

where n is the number of vertices of the triangulation, {wj}n
j=1 are the weights with Gaus-

sian distribution, and {φj}n
j=1 are the basis functions defined for each node on the mesh. In

summary, the idea is to calculate the weights {wj}, which determine the values of the field
at the vertices, whereas the values inside the triangles are determined by linear interpola-
tion [42], and Equation (A8) represents a link between the GF and GMRF, where {ωj} has a
Markovian structure [42].

By replacing the GF by the GMRF approximation, we obtain an approximation of
the LGCP likelihood, which consists of (n + nt)T independent Poisson random variables,
where n is the number of vertices and nt is the number of observed fires [21]. Under
the GMRF structure, it is possible to estimate the model within the Bayesian framework
using the Integrated Nested Laplace Approximation (INLA) framework, which allows
the use of deterministic approximations to perform the estimation of latent parameters
and components in models with an additive structure. A more detailed description of the
INLA method can be found in [45]. In all analyses, we use the standard reference prior
structure described in [51]. We use log-gamma priors for the precision parameters of the
trend and seasonal components, and penalized complexity priors for the precision and the
autoregressive parameters of the cycle components, Gaussian priors for the parameters of
covariates, and a multivariate Gaussian prior for the parameters of the Matérn covariance
function. Details can be obtained from the authors.

Appendix A.3. Non-Separable Spatiotemporal Model

The model proposed in this paper assumes a separable structure between the spatial
and temporal effects, assuming a Kronecker product between the spatial and temporal
covariances to obtain the spatiotemporal representation, which is advantageous due to
its flexibility. Despite the computational cost, by assuming a non-separable structure for
time and space, it is possible to analyze a more complex dependency structure. In order
to provide an additional robustness analysis, we estimated a non-separable version of the
proposed model presented in the previous section, following [52], which provides a non-
separable representation for the spatiotemporal random effects using the generalization of
the Matérn covariance structure. In particular, in this representation the structure of the
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spatiotemporal random effects is given by a diffusion-based extension of the Matérn field,
i.e., the random field u(s, t) can be written as(

γt
d
dt

+ Lαs/2
)αt

u(s, t) = EQ(s, t) (A9)

with L = γ2
s − ∆, EQ(s, t) being Gaussian noise that is white in time but correlated, with

precision operator Q(γs, γϵ, αϵ) = γ2
ϵ Lαϵ , with (γt, γs, γe) being fixed scaling parameters,

and (αt, αs, αe) parameters in the model.
Defining α = αe + αs(αt − 1/2), and assuming that αt, αs, αe satisfy α > 1, the solution

u(s, t) has marginal spatial covariance function given by the following:

C(u(t, s1), u(t, s2)) =
σ2

Γ(νs)2ν−1 (γs∥s1 − s2∥)νs Kνs(γs∥s1 − s2∥), (A10)

where νs = α − 1 and

σ2 =
Γ(αt − 1/2)Γ(α − 1)

Γ(αt)Γ(α)8π3/2γ2
e γtγ

2(α−1)
s

. (A11)

In order to carry out our analysis, we estimate a non-separable version of our LGCP
model, replacing the random field structure, ξ(s, t), of the model defined in 2, with the
random field u(s, t) previously defined.

We also assume the parametrization of the parameters defining σ, rs, rt as:

c1 =
Γ(αt − 1/2)Γ(α − 1)

Γ(αt)Γ(α)4
√

π

σ = γ−1
ϵ c1/2

1 γ−1/2
t γ

−(α−1)
s

rs = γ−1
s

√
8νs

rt = γt

√
8(αt − 1/2)γ−αs

s , (A12)

and the model is estimated using parameters log σ, log rs, log rt. Due to the higher com-
putational cost and memory limitations in representing the model with the non-separable
structure, we estimate the model with an alternative mesh with a lower resolution than
the separable model, shown in Figure A1, with the same prior previously defined for the
estimation of the model (2), and also adopting the INLA approximations to perform the
Bayesian inference procedures. The estimated posterior distribution of parameters in the
non-separable spatiotemporal LGCP model is presented in Table A1, the estimated latent
components of trend, seasonal and cycle components in Figure A2, and the non-separable
spatiotemporal random effect is presented in Figure A3.

The results of the estimated non-separable spatiotemporal model indicate similar
effects for the covariates in relation to those obtained in the model with the separable
spatial random effects. Additionally, this model was able to capture a wider range of values
for the random effects when compared to those estimated by the separable model, as can
be seen in Figure A3. Regarding the estimated components, in Figure A2, it is possible
to observe that the non-separable model was able to capture an increase in the trend
component during 2019 and 2020, when the historical fires occurred in the Pantanal biome.
Despite that, the estimated cycle and seasonal components presented similar patterns to
those obtained by the model with the separable structure.
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Figure A1. Spatial mesh of the Brazilian Pantanal—non-separable spatiotemporal model.

(a)

(b)

(c)

Figure A2. Trend, seasonal, and cycle decomposition of fire occurrences in the Brazilian
Pantanal—non-separable spatiotemporal model. (a) Trend, (b) seasonal, (c) cycle.
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Figure A3. Spatial random effects—non-separable spatiotemporal model. The figure shows the
Bayesian estimation of the posterior mean of spatial random effects, for each period (quarter) in the
sample, summarizing the spatial effects estimated by the model.
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Table A1. Estimated parameters —non-separable spatiotemporal model.

Mean SD 0.025 Quant 0.5 Quant 0.975 Quant Mode

Fixed effects
Rainfall −0.001 0.000 −0.001 −0.001 0.000 −0.001
Forest formation 0.148 0.044 0.062 0.148 0.235 0.148
Savanna formation 0.186 0.049 0.090 0.186 0.283 0.186
Grassland formation 0.295 0.049 0.199 0.295 0.391 0.295

Random effects
Precision for trend 6.048 0.278 5.539 6.038 6.686 6.003
Precision for seasonality 11,785.288 710.372 10,312.207 11,752.653 13,245.996 11,827.200
Precision for cycle 0.817 0.031 0.750 0.816 0.880 0.819
PACF1 for cycle 0.077 0.013 0.050 0.077 0.105 0.077
PACF2 for cycle −0.585 0.007 −0.598 −0.585 −0.569 −0.586
log σ 0.973 0.044 0.887 0.973 1.063 0.972
log rs −0.980 0.010 −1.000 −0.980 −0.959 −0.981
log rt 0.599 0.003 0.592 0.599 0.606 0.599
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