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Abstract: In the paper, we first develop a novel automatically energy-preserving scheme (AEPS) for
the undamped and unforced single and multi-coupled Duffing equations by recasting them to the
Lie-type systems of ordinary differential equations. The AEPS can automatically preserve the energy
to be a constant value in a long-term free vibration behavior. The analytical solution of a special
Duffing–van der Pol equation is compared with that computed by the novel group-preserving scheme
(GPS) which has fourth-order accuracy. The main novelty is that we constructed the quadratic forms
of the energy equations, the Lie-algebras and Lie-groups for the multi-coupled Duffing oscillator
system. Then, we extend the GPS to the damped and forced Duffing equations. The corresponding
algorithms are developed, which are effective to depict the long term nonlinear vibration behaviors
of the multi-coupled Duffing oscillators with an accuracy of O(h4) for a small time stepsize h.

Keywords: multi-coupled Duffing equations; Duffing–van der Pol equation; automatically energy-
preserving scheme; group-preserving scheme; nonlinear vibration

1. Introduction

In our real world, the nonlinear vibrational phenomena are ubiquitous, mainly mod-
eled by nonlinear ordinary differential equations. Nonlinear vibrations and their periodic
motions are important topics [1]; the study of related issues from nonlinear vibrations is
greatly important for many practical applications, which are considered not only in me-
chanics and physics but also in other disciplines of science. In this paper, a quite powerful
numerical integration method, namely an automatically energy-preserving scheme (AEPS),
is developed to solve the following Duffing equation:

ẍ(t) + γẋ(t) + αx(t) + βx3(t) = f (t), (1)

as well as multi-coupled Duffing equations.
Almost a century ago, the Duffing equation was derived [2]. Nowadays, it describes

vibrational motion with more complex phenomena than the harmonic motion, showing rich
behavior of period-doubling route to chaos and displaying vibration jumps in the changing
frequency for the forced oscillator with nonlinear restoring force. A lot of applications of
Duffing equations in science and engineering have appeared [3–8]. Computational methods
gave been developed for solving the transient and steady oscillatory problems of nonlinear
Duffing equations [9–23].

Analytical methods have been reviewed by Cvetićanin [2] for the unforced and un-
damped Duffing equation, presented in the form of some elliptic functions. In general, for
nonlinear Duffing equations, there exists no analytical solution, and some semi-analytical
methods such as as the power series and harmonic balance methods, have to be invoked [24–
26]. In continuous works, Liu et al. [27] developed the scaled power series techniques for
solving the Duffing equation.
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Since the works of Liu [28], the group-preserving scheme (GPS) was applied in many
places of the scientific computations. Akgül et al. [29] developed a group-preserving scheme
method for the Poisson–Boltzmann equation for semiconductor devices. Hashemi et al. [30]
applied the group-preserving scheme method to the one-dimensional hyperbolic telegraph
equation by line discretization. In [31], a powerful group-preserving scheme was presented
to solve the Klein–Gordon equation, where graphs of the exact solution, numerical solution,
absolute error and the contour plot of error were provided successfully. The GPS is a
robust method used to solve different problems such as fractional Poisson equation [32], the
fractional diffusion equation [33], the Cauchy problem [34], the sine-Gordon equation [35],
and the Burgers equation [36]. Recently, Xu and Wu [37] developed the MGPS: a midpoint-
series group-preserving scheme for solving a quite general nonlinear dynamics system.
Partohaghighi et al. [38] applied the group-preserving scheme method to solve fractional
differential equations.

The most famous Lie-group is the three-dimensional rotation group denoted as G,
which is a single parameter of time t to describe the motion x(t) of a rigid body in R3.
When initial state x(0) has a certain length ∥x(0)∥ > 0, then the Lie-group action by
G(t) ∈ SO(3):

x(t) = G(t)x(0), (2)

keeps the length invariant,
∥x(t)∥ = ∥x(0)∥, (3)

due to
GT(t)G(t) = I3. (4)

The corresponding Lie-algebra of SO(3) is A ∈ so(3), satisfying

ATg + gA = 0, (5)

where

g =

 1 0 0
0 1 0
0 0 1

 (6)

is a metric tensor of R3. In g, we have three positive identities on the diagonal, which is then
said to have a signature (3, 0). General space Rp,q with p positive identity and q negative
identity is a pseudo-Euclidean space, whose invariant Lie-group G = exp(tA) ∈ SO(p, q)
satisfies

GT(t)gG(t) = g, (7)

where A ∈ so(p, q) and g has p positive identity and q negative identity on the diagonal.
The pseudo-Euclidean length of x(t) ∈ Rn, n = p + q is invariant under G(t) ∈ SO(p, q):

xT(t)gx(t) = xT(0)gx(0). (8)

Inserting Equation (2) for x(t) into the left-hand side, we have

xT(t)gx(t) = xT(0)GTgGx(0), (9)

which, by Equation (7), proves Equation (8).
Because G in Equation (2) can preserve the quadratic form invariant, the developed

numerical integration method called a group-preserving scheme (GPS) is better than the
traditional Runge–Kutta integration method. However, for the nonlinear Duffing coupled
oscillators system, this task is difficult, which is not at all trivial work. Our principal goal is
developing the SO(p, q) Lie-group integrator for such a complex system to preserve energy
automatically.

Among the attempts to address the issue of energy preservation, the projection and
symmetric projection techniques are coupled with symplectic schemes to enforce the
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numerical solution to lie on a proper manifold of energy conservation. Simo et al. [39]
introduced energy-preserving schemes for unconstrained rigid bodies, nonlinear dynamics
of beams and shells and nonlinear elastodynamics, devised a one-parameter family of
symplectic integrators by determining that the time stepsize takes place on the level of
constant angular momentum, and showed that the parameter may be suitably tuned in
a way to enforce the conservation of energy. Earlier, Liu [40] proposed a method to keep
the constraints of a nonlinear dynamical system by adjusting the integrating factors. In
addition, there are several energy-preserving integrators [41–46]. In general, these schemes
used to enforce energy conservation are quite time consuming, and are not performed
automatically.

For its vital role of an energy-conserving technique in different systems, many applica-
tions and energy-conserving methods have been presented, e.g., a 3D stochastic nonlinear
Schrödinger equation with multiplicative noise [47], a nonlinear Schrödinger equation [48],
nonlinear wave equations with dynamic boundary conditions [49], nonlinear space frac-
tional Schrödinger equations with a wave operator [50], the pitch-angle scattering in
magnetized plasmas [51], the nonlinear Dirac equation [52], the linear wave equation [53],
the Rosenau-type equation [54], nonlinear fourth-order wave equations [55], the multi-
dimensional Hermite-DG discretization of Vlasov–Maxwell equations [56], the Vlasov–
Ampère system [57], the Vlasov–Ampère system with an exact curl-free constraint [58],
relativistic Vlasov–Maxwell equations of laser–plasma interaction [59], the linear wave
equation with forcing terms [60], Hamiltonian systems (including the high amplitude
vibration of strings and plates) [61], the multi-dimensional Vlasov–Maxwell system [62],
generalized nonlinear fractional Schrödinger wave equations [63].

The novelties involved in the paper are as follows:

• For the single, two-coupled and three-coupled undamped and unforced Duffing
equations, novel methods to automatically preserve energy were developed.

• Detailed formulations of energy invariants, variable transformations, Lie algebras and
Lie groups used in long-term computations of nonlinear free vibrations were derived.

• For the damped and unforced Duffing equations, group-preserving schemes were
developed at the first time.

• Highly accurate solutions of responses were obtained.

The paper is organized as follows. In Section 2, we introduce a novel variable transfor-
mation and the AEPS for hardening and softening cases of the Duffing equation without
considering the damping term and external force; the resulting Lie groups are, respectively,
SO(2) and SO(1, 1). Then, in Section 3, we extend the Lie-group scheme to a group-
preserving scheme (GPS) for solving the forced Duffing equation equipped with a damping
term. In Section 4, we develop the GPS for the Duffing–van der Pol equation, where the
Poincaré section is used to display the chaotic behavior of Duffing–van der Pol equation.
In Section 5.1, we develop the Hamiltonian form for coupled Duffing equations. Lie-type
forms and AEPS for two coupled Duffing equations without considering damping effect
and external force are developed in Sections 5.2 and 5.3; the resulting Lie-groups, depend-
ing on the parameters of nonlinear springs, are divided into three types: SO(4), SO(3, 1),
and SO(2, 2). The group-preserving schemes for the damped and forced two coupled
Duffing equations are developed in Section 5.4. Section 6 solves the three coupled Duffing
equations considering damping and external force; the resulting Lie-groups, depending on
the parameters of nonlinear springs, are divided into four types: SO(6), SO(5, 1), SO(4, 2)
and SO(3, 3). Finally, we conclude the paper in Section 7.

2. An Automatically Energy-Preserving Scheme

To demonstrate energy-preserving behavior, we consider an unforced Duffing equation:

ẍ(t) + αx(t) + βx3(t) = 0, (10)
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which does not include a damping term to be an undamped Duffing oscillator. Taking the
product of the above equation with ẋ(t) and integrating it leads to

d
dt

[
1
2

ẋ2(t) +
α

2
x2(t) +

β

4
x4(t)

]
= 0, (11)

1
2

ẋ2(t) +
α

2
x2(t) +

β

4
x4(t) = C, (12)

where C is constant energy determined by initial values with C = ẋ2(0)/2 + αx2(0)/2 +
βx4(0)/4. Equation (12) indicates that the energy combined kinetic energy and potential
energy is a constant value, which inspires us to develop an AEPS.

The energy-preserving condition in space (x, ẋ) renders a framework from the dif-
ferentiable manifold and its Lie-group transformation, which played a decisive role in
devising superior numerical methods [28,64–66]. As shown by Liu [67], the Lie-group
scheme can find an approximation of

Ẏ = A(Y, t)Y, Y(0) = Y0, (13)

where A is a matrix Lie-algebra, and Y is the corresponding matrix Lie-group.
The AEPS can automatically preserve energy ẋ2/2 + αx2/2 + βx4/4 in

Equation (12) for both the hardening case β > 0 and th softening case β < 0, in the
undamped and unforced Duffing equation, i.e., γ = 0 and f = 0. However, developing a
numerical integrating method which can automatically preserve energy is not a trivial task;
it needs some mathematical analysis.

Equation (8) reveals that the invariant form must be quadratic, which is permitted
by Lie-group action in Equation (7). However, energy Equation (12) is not of quadratic
form owing to the appearance of x4(t); hence, the Lie-group cannot be applied directly.
Below, we recast Equation (12) to a quadratic form by the transformation to new variables,
such that benefit can be gained by Lie-group Equation (7), which can bring out a novel
method for the preservation of energy automatically as shown in Equation (8). Before the
construction of the Lie-group G, we must derive the Lie-algebra A in the Lie-type system
as shown in Equation (13).

2.1. Lie-Group SO(2) for β > 0

First, we consider the case with β > 0. Then, Equation (12) can be written as

ẋ2(t) +
β

2

(
x2(t) +

α

β

)2
= 2C +

α2

2β
, (14)

where the right-hand side is a constant value determined by given initial values x(0) and
ẋ(0), and parameters α and β.

We let

y(t) :=

√
β

2

(
x2(t) +

α

β

)
(15)

be a new variable to replace x; hence, we have

ẋ2(t) + y2(t) = 2C +
α2

2β
, (16)

which shows that (y, ẋ) is located on a circle with a radius of
√

2C + α2/(2β).
Using Equations (10) and (15), we can derive

d
dt

[
y
ẋ

]
=

[
0

√
2βx

−
√

2βx 0

][
y
ẋ

]
, (17)
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which belongs to Equation (13). Because the coefficient matrix is skew-symmetric, the
resulting Lie-group is SO(2), of which constant matrix

Āk :=
[

0
√

2βx̄k
−
√

2βx̄k 0

]
(18)

is available for a small time increment, where x̄k = (1 − θ)xk + θxk+1 and xk and zk = ẋk
are the numerical values of x and ẋ given at the previous time step. The corresponding
Lie-group Gk ∈ SO(2) is obtained by exponential mapping:

Gk = exp(hĀk) =

[
cos(

√
2βx̄kh) sin(

√
2βx̄kh)

− sin(
√

2βx̄kh) cos(
√

2βx̄kh)

]
. (19)

The resulting AEPS reads as follows:
(i) We give 0 ≤ θ ≤ 1, h, ε and (x0, z0) = (x0, ẋ0).
(ii) For k = 0, 1, . . .,

xk+1 = xk + hzk,

zk+1 = zk − h(αxk + βx3
k),

yk+1 =

√
β

2

(
x2

k+1 +
α

β

)
. (20)

(iii) We compute

x̄k = (1 − θ)xk + θxk+1,[
ŷk+1
ẑk+1

]
=

[
cos(

√
2βx̄kh) sin(

√
2βx̄kh)

− sin(
√

2βx̄kh) cos(
√

2βx̄kh)

][
yk
zk

]
,

xk+1 = ±
(√

2
β

ŷk+1 −
α

β

)1/2

. (21)

If the convergence is satisfied,√
(ŷk+1 − yk+1)2 + (ẑk+1 − zk+1)2 < ε, (22)

then we proceed to (ii) for the next time step; otherwise, we let yk+1 = ŷk+1 and zk+1 = ẑk+1,
and proceed to (iii).

We fix θ = 1/2 for all computations given below. The iteration part in (iii) is used
to enhance the accuracy of Lie-algebra Āk in Equation (18), and hence the accuracy of
the numerical solution to the designed criterion ε can be achieved. Part (iii) is not for the
preservation of energy, because the Lie-group integrator AEPS is already automatically
preserving the energy without any iteration.

2.2. Lie-Group SO(1, 1) for β < 0

Next, we consider the case with β < 0. Upon letting

y(t) :=

√
−β

2

(
x2(t) +

α

β

)
(23)

be a new variable, it follows from Equation (14) that

ẋ2(t)− y2(t) = 2C +
α2

2β
, (24)

which reveals that point (y, ẋ) is located on a hyperbola in the plane.
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Using Equations (10) and (23),

d
dt

[
y
ẋ

]
=

[
0

√
−2βx√

−2βx 0

][
y
ẋ

]
(25)

is just the form of Equation (13).
Because the coefficient matrix is symmetric, the resulting Lie-group is Gk ∈ SO(1, 1),

whose implicit scheme based on SO(1, 1) for the integration of Equation (10) with β < 0 is

Āk :=
[

0
√
−2βx̄k√

−2βx̄k 0

]
, (26)

Gk = exp(hĀk) =

[
cosh(

√
−2βx̄kh) sinh(

√
−2βx̄kh)

sinh(
√
−2βx̄kh) cosh(

√
−2βx̄kh)

]
. (27)

The resulting AEPS: (i) we offer h, 0 ≤ θ ≤ 1, ε and (x0, z0) = (x0, ẋ0); (ii) for
k = 0, 1, . . .,

xk+1 = xk + hzk,

zk+1 = zk − h(αxk + βx3
k),

yk+1 =

√
−β

2

(
x2

k+1 +
α

β

)
; (28)

(iii) the new (yk+1, zk+1) is iteratively solved by

x̄k = (1 − θ)xk + θxk+1,[
ŷk+1
ẑk+1

]
=

[
cosh(

√
−2βx̄kh) sinh(

√
−2βx̄kh)

sinh(
√
−2βx̄kh) cosh(

√
−2βx̄kh)

][
yk
zk

]
,

xk+1 = ±
(√

−2
β

ŷk+1 −
α

β

)1/2

. (29)

If convergence is satisfied by√
(ŷk+1 − yk+1)2 + (ẑk+1 − zk+1)2 < ε, (30)

then we proceed to (ii); otherwise, we let yk+1 = ŷk+1 and zk+1 = ẑk+1, and procewed to
(iii) for computing Equation (29).

2.3. Testing the Efficiency of AEPS

For testing the performance of AEPS, Equation (10) under the same initial conditions
x(0) = 0 and ẋ(0) = 1 is considered, with the same parameter value α = 4 but different
parameter values of β = 0.1 and β = −0.01.

We solve the first problem with β = 0.1 using the AEPS with h = 0.001 and ε = 10−10,
and compare the responses with those obtained by the power series method (PSM) [25]. As
shown in Figure 1 in the time range of t ∈ [0, 5], these two solutions are almost coincident.
The exact value of C = 0.5 is compared with that computed by the AEPS and the PSM,
of which the errors of energy defined by |z2

k/2 + αx2
k/2 + βx4

k/4 − C| are compared in
Figure 2a. It can be seen that the capability of the AEPS is much better than that of the PSM
in the preservation of energy. The errors of energy obtained by the AEPS are in the range
from 10−12 to 10−14; however, the errors of energy obtained by the PSM are fast tending to
10−2.
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Fig. 1 For β=0.1 comparing the responses obtained by the AEPS and power series method: (a) 
displacement vs. time, and (b) velocity vs. time. 
Figure 1. For β = 0.1, comparing the responses obtained by the AEPS and power series method:
(a) displacement vs. time, and (b) velocity vs. time.

Even under a stringent convergence criterion with ε = 10−10, the AEPS converges
very fast with 2 or 3 iterations at each time step.

We compare the responses for the second problem with β = −0.01 obtained by
the AEPS with those obtained by the power series method (PSM) [25]. As shown in
Figure 3, in the time range of t ∈ [0, 5], these two solutions are almost coincident. The
exact value of C = 0.5 is compared with that computed by the AEPS and the PSM with
z2

k/2 + αx2
k/2 + βx4

k/4 being the numerical values of the energy, of which the errors of
energy are compared in Figure 2b. The errors of energy obtained by the AEPS are in the
range from 10−10 to 10−13; however, the errors of energy obtained by the PSM are fast
tending to 10−3. The accuracy of the AEPS is much better than that of the PSM in the
preservation of energy.

Lie-groups Gk as shown in Equation (19) for β > 0 and Equation (27) for β < 0 possess
the following property:

detGk = 1, (31)

which indicates that Gk has a constant determinant equal to one. Therefore, iteration
Part (iii) in each algorithm converges to a fixed point on the manifold specified by Equa-
tion (31). Part (iii) is crucial to determine the accurate value of Gk, such that the predicted
values in (ii) are corrected to the accurate values on the energy-preserved manifold.
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Fig. 2 For (a) β=0.1 and (b) β=-0.01 comparing the errors of energy obtained by the AEPS and 
Figure 2. For (a) β = 0.1 and (b) β = −0.01 comparing the errors of energy obtained by the AEPS
and power series method.
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Fig. 3 For β=-0.01 comparing the responses obtained by the AEPS and power series method: (a) 
Figure 3. For β = −0.01 comparing the responses obtained by the AEPS and power series method:
(a) displacement vs. time, and (b) velocity vs. time.
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2.4. General Setting

Upon comparing two different formulations in Section 2.1 for the hard spring Duffing
oscillator with β > 0, and in Section 2.2 for the soft spring Duffing oscillator with β < 0,
we can summarize the key points as follows:

Hard spring : g =

[
1 0
0 1

]
, A ∈ so(2), G ∈ SO(2), (32)

Soft spring : g =

[
1 0
0 −1

]
, A ∈ so(1, 1), G ∈ SO(1, 1). (33)

The corresponding quadratic forms to signify the energy conservation are different, with
Equation (16) for hard spring case β > 0 and Equation (24) for soft spring case β < 0.

As for multi-coupled Duffing oscillators to be discussed below, the situation becomes
more complex with many different cases needing to be considered for the metric tensors,
Lie-algebras, Lie-groups and the quadratic forms of energy equations. Therefore, we outline
a general setting of the numerical algorithm, namely the AEPS, given as follows.

When x represents the original variables, y expresses the transformed variables, whose
Lie-type equation is

ẏ(t) = A(y)y(t). (34)

In terms of matrix–vector notations, the algorithm can be written more clearly as follows:
(i) We give y0 = y(0), θ, ε, step size h, t0 = 0 and a final time t f > 0.
(ii) For k = 0, 1, . . ., tk+1 = tk + h ≤ t f , we predict, by an Euler step,

yk+1 = yk + hAkyk = yk + hA(yk)yk. (35)

(iii) We compute

ȳk = (1 − θ)yk + θyk+1, (36)

Gk = exp[hA(ȳk)], (37)

ŷk+1 = Gkyk. (38)

If
∥ŷk+1 − yk+1∥ < ε, (39)

then we proceed to (ii) for the next time step; otherwise, we let yk+1 = ŷk+1, and proceed
to (iii).

The above numerical processes guarantee that new state variable yk at each time step
preserves the quadratic invariant,

yT
k gyk = yT

0 gy0, (40)

such that the energy is preserved. Because the restoring force of the Duffing equation is a
cubic nonlinear function of the state variable, the transformation of the energy equation
to a quadratic form is not a trivial task. Difficulty especially arises when the dimension
of the Duffing equation system is increased. The work to construct the Lie-algebra, Lie-
symmetry and the quadratic form of the energy-conserving equation becomes more difficult
and challenged for the multi-coupled Duffing oscillator system. The major novelty of
the constructions of these mathematical tools is not yet existent in the literature for the
multi-coupled Duffing oscillator system. Below, we explore these interesting issues for
single, two-coupled and three-coupled Duffing oscillator systems. When the quadratic
invariant can be guaranteed by the proposed algorithm, the energy of the system can be
conserved automatically. For this reason, the automatically constructed energy-preserving
scheme (AEPS) has high performance of the computational ability to observe the long-term
vibration behavior, unlike the traditional numerical methods, like as the Runge–Kutta
method.
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The existing methods mentioned in Section 1 need the projection technique such that
they do not automatically preserve the energy. In the AEPS, the energy equation must be
transformed to a quadratic form to a pseudo-sphere in space Rp,q, which is a limitation of
the AEPS for needing to seek for a suitable transformation between original variables and
new variables. Of course, to construct such type of transformation is itself a great challenge.

3. The GPS for Equation (1)

Now, we return to Equation (1) with β > 0, of which, using Equation (15), we can
derive

d
dt

[
y
ẋ

]
=

[
0

√
2βx

−
√

2βx −γ

][
y
ẋ

]
+

[
0

f (t)

]
. (41)

Letting

A :=
[

0
√

2βx
−
√

2βx −γ

]
, (42)

we can observe that

A = S + W, S =

[
0 0
0 −γ

]
, W =

[
0

√
2βx

−
√

2βx 0

]
, (43)

where S and W are, respectively, the symmetric part and the skew-symmetric part of A.
According to Liu [68], the Lie-group generated is a dilation rotation group, denoted by
DSO(2). The advantage of the group-preserving scheme (GPS) can be continued, if we can
derive the corresponding Lie-group G by the exponential mapping, such that G ∈ DSO(2).
This is performed below for the damped and forced Duffing oscillator system.

To apply the trapezoidal rule for the non-homogeneous term, the group-preserving
scheme (GPS) is obtained as follows:[

yk+1
ẋk+1

]
= Gk

[
yk
ẋk

]
+

[
0

h
2 f (tk+1)

]
+

h
2

Gk

[
0

f (tk)

]
, (44)

where

Gk = exp(hĀk), (45)

Āk :=
[

0
√

2βx̄k
−
√

2βx̄k −γ

]
. (46)

We let

a :=
√

2βx̄k, b :=

√∣∣∣∣a2 − γ2

4

∣∣∣∣, (47)

and through some derivations, we can obtain

Gk =

[
e−γh/2 cos(bh) e−γh/2 sin(bh)

− e−γh/2

2a [γ cos(bh) + 2b sin(bh)] e−γh/2

2a [2b cos(bh)− γ sin(bh)]

]
[

1 0
γ
2b

a
b

]
, if a2 − γ2

4
> 0, (48)

Gk =

[
e−γh/2 cosh(bh) e−γh/2 sinh(bh)

e−γh/2

2a [2b sinh(bh)− γ cosh(bh)] e−γh/2

2a [2b cosh(bh)− γ sinh(bh)]

]
[

1 0
γ
2b

a
b

]
, if a2 − γ2

4
< 0. (49)

In Figure 4, we display a typical response of the Duffing equation with γ = 0 and
under a periodic force f = f0 sin(ωt). We compute the response for parameters α = −1,
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β = 0.2, f0 = 0.32, and ω = 1.2, and with a time stepsize h = 0.005 in a time interval of
t ∈ [0, 500]. With ε = 10−8, the number of iterations is two or three for each time step.

displacement vs. time, and (b) velocity vs. time. 
 
 
 
 
 
 
 

 
Fig. 4 For the undamped Duffing equation showing the response obtained by the GPS. 
 
 
 

Figure 4. For the undamped Duffing equation showing the response obtained by the GPS.

In Figure 5, we compare a non-chaotic response of the Duffing equation under param-
eters γ = 0.3, α = −1, β = 1, f0 = 0.2, and ω = 1.2, and with a time stepsize of h = 0.001
in a time interval of t ∈ [0, 200]. The results are close to those computed using the power
series method (PSM) [25]. With ε = 10−10, the number of iterations is two or three for each
time step.

 

 

Fig. 5 For the damped and forced Duffing equation comparing the responses obtained by the GPS Figure 5. For the damped and forced Duffing equation comparing the responses obtained by the GPS
and power series method: (a) responses vs. time, and (b) orbits in the plane.

When the Duffing oscillator system has a negative dissipation with γ < 0, the Lie-
group Gk in Equations (48) and (49) has an exponential growth factor, e−γh/2 > 1. In each
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time step, the magnitude is amplified as shown in Figure 6 for γ = −0.1 up to t f = 40 s.
Eventually, the oscillator system becomes unstable.

Figure 6. For the negative dissipation and forced Duffing equation showing the responses being
amplified with time and then tending to unstable: (a) response vs. time, and (b) unstable orbit in
the plane.

4. The GPS for a Duffing–van der Pol Oscillator

In this Section, we extend the GPS to

ẍ(t) + [γ + ηx2(t)]ẋ(t) + αx(t) + βx3(t) = f (t), (50)

which is a Duffing–van der Pol oscillator [69,70]. We apply the GPS to solve this problem
but replacing γ in Equations (48) and (49) by γ + ηx̄2

k .
For the special case of Equation (50) with α = 3/η2, γ = 4/η, β = 1, and f (t) = 0, it is

one of the first kind Abel equations. Chandrasekar et al. [71] showed that Equation (50)
can be transformed as

w′′(z)− η2

2
w2(z)w′(z) = 0, (51)

where
z := e−2t/η , w := −xet/η . (52)

Then, a particular solution is available:

x(t) =
−
√

3

η
√

t0e2t/η − 1
, (53)

where t0 > 1 is an arbitrary constant. If t0 is given, then

x(0) =
−
√

3
η
√

t0 − 1
, ẋ(0) =

√
3t0

η2(t0 − 1)3/2 . (54)

If x(0) is given, then, we have

t0 = 1 +
3

η2x2(0)
, ẋ(0) =

√
3t0

η2(t0 − 1)3/2 . (55)
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Mukherjee et al. [69] applied the differential transform method (DTM) using x(0) =
−0.288675134595 (t0 = 5) and η = 3. Using Equation (55), we can obtain t0 and ẋ(0). GPS
is compared with the DTM solution as follows:

xDTM = 0.28868 + 0.120281305t − 0.080187536t2 − 0.019916649t3

−0.02341443t4 − 0.019687577t5 − 0.010351679t6. (56)

Table 1 compares the results provided by Mukherjee et al. [69] with the present results
computed by GPS with h = 0.01. With the maximum error of 4.7 × 10−8, GPS is more
accurate than the DTM.

Table 1. Comparing solutions: DTM, GPS and exact solution.

t Exact DTM GPS

0.1 −0.2769871994 −0.27743 −0.2769872174

0.2 −0.2659399328 −0.26759 −0.2659399639

0.3 −0.2554793822 −0.259 −0.2554794220

0.4 −0.2455581425 −0.2515 −0.2455581874

0.5 −0.2361343462 −0.24495 −0.2361343933

In Figure 7, we compare two responses of Duffing–van der Pol oscillators under a
periodic force f = f0 sin(ωt). We compute the response over a time interval of t ∈ [0, 1000]
for parameters γ = 0.02, α = −1, β = 0.5, f0 = 0.4, and ω = 1.5, and with time stepsize
h = 0.01. However, under a slight difference of η = 0.0395 and η = 0.04, the responses
as shown in Figure 7a,b are quite different. In Figure 8, we plot the Poincaré section of
the Duffing–van der Pol oscillator, overall 10,000 periods, under parameters γ = 0.05,
η = −0.01, α = −1, β = 0.2, f0 = 0.4, and ω = 2.5.

Fig. 7 For the Duffing-van der Pol oscillator comparing the responses obtained by the GPS under a 

Figure 7. For the Duffing–van der Pol oscillator comparing the responses obtained by the GPS under
a slight difference of (a) η = 0.0395, and (b) η = 0.04.
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slight difference of (a) η=0.0395, and (b) η=0.04. 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 For the Duffing-van der Pol oscillator showing the Poincare section obtained by the GPS 

under η=-0.01. 

 
 
 

Figure 8. For the Duffing–van der Pol oscillator showing the Poincaré section obtained by the GPS
under η = −0.01.

5. Two Coupled Duffing Equations
5.1. Hamiltonian Form

In this Section, we extend the AEPS to solve the two coupled Duffing equations:

m1q̈1(t) + c1q̇1(t) + k1q1(t) + β1q3
1(t) + c2[q̇1(t)− q̇2(t)]

+k2[q1(t)− q2(t)] + β2[q1(t)− q2(t)]3 = f1(t), (57)

m2q̈2(t)− c2[q̇1(t)− q̇2(t)]− k2[q1(t)− q2(t)]− β2[q1(t)− q2(t)]3 = f2(t). (58)

For the energy-preserving scheme, we consider the undamped and unforced coupled
Duffing equations:

m1q̈1(t) + k1q1(t) + β1q3
1(t) + k2[q1(t)− q2(t)] + β2[q1(t)− q2(t)]3 = 0, (59)

m2q̈2(t)− k2[q1(t)− q2(t)]− β2[q1(t)− q2(t)]3 = 0. (60)

Taking the product of the above equations with q̇1(t) and q̇2(t), respectively, summing the
results and integrating, we yield

d
dt

[
m1

2
q̇2

1 +
k1

2
q2

1 +
β1

4
q4

1 +
m2

2
q̇2

2 +
k2

2
[q1 − q2]

2 +
β2

4
[q1 − q2]

4
]
= 0, (61)

m1

2
q̇2

1 +
k1

2
q2

1 +
β1

4
q4

1 +
m2

2
q̇2

2 +
k2

2
[q1 − q2]

2 +
β2

4
[q1 − q2]

4 = C, (62)

where C is a constant determined by the initial values. Equation (62) indicates that the
energy combined kinetic energy and potential energy is a constant value, which inspires us
to develop an energy-preserving scheme.

First, we demonstrate that Equations (59) and (60) can be recast to a standard Hamilto-
nian form:

d
dt


q1
q2
p1
p2

 = J∇H, (63)



Vibration 2024, 7 112

where

p1 = m1q̇1, p2 = m2q̇2, (64)

H =
1

2m1
p2

1 +
1

2m2
p2

2 +
k1

2
q2

1 +
β1

4
q4

1 +
k2

2
[q1 − q2]

2 +
β2

4
[q1 − q2]

4, (65)

J :=

 02 I2

−I2 02

, (66)

and ∇ denotes gradient with respect to the state variables (q1, q2, p1, p2). Many numerical
methods have been developed to preserve the symplectic structure of the Hamiltonian
systems, but in general, they do not preserve the energy, i.e., Hamiltonian function H.

The classical Hamiltonian system possesses the structures of symplecticity and energy
preservation. There have been many successfully developed symplectic integrators which
were used in the solution of a classical Hamiltonian system. But the symplectic integrator
can only preserve the symplectic structure leading to the conservation of momentum, and
which cannot guarantee the conservation of energy for the non-quadratic type Hamiltonian
system. Instead of developing the symplectic integrator for the Duffing oscillators system,
we are more interested in preserving the energy by developing an automatically energy-
preserving scheme.

5.2. Lie-Type Forms

We propose a new approach to preserve the energy. For this purpose, we consider
four possible cases (A) β1 > 0 and β2 > 0, (B) β1 > 0 and β2 < 0, (C) β1 < 0 and β2 > 0,
and (D) β1 < 0 and β2 < 0.

Case (A): β1 > 0 and β2 > 0. We let

ẋ1 :=
√

m1q̇1, (67)

ẋ2 :=
√

m2q̇2, (68)

y1 :=

√
β1

2

(
q2

1 +
k1

β1

)
, (69)

y2 :=

√
β2

2

[
(q1 − q2)

2 +
k2

β2

]
, (70)

and Equation (62) can be written as

ẋ2
1 + ẋ2

2 + y2
1 + y2

2 = 2C +
k2

1
2β1

+
k2

2
2β2

. (71)

With the help from Equations (59), (60) and (67)–(70), we can derive

ẏ1 =

√
2β1

m1
q1 ẋ1, (72)

ẏ2 =

√
2β2

m1
(q1 − q2)ẋ1 −

√
2β2

m2
(q1 − q2)ẋ2, (73)

ẍ1 = −

√
2β1

m1
q1y1 −

√
2β2

m1
(q1 − q2)y2, (74)

ẍ2 =

√
2β2

m2
(q1 − q2)y2. (75)
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Equations (72)–(75) can be written as

d
dt


y1
y2
ẋ1
ẋ2

 = A


y1
y2
ẋ1
ẋ2

, (76)

where

A :=



0 0
√

2β1
m1

q1 0

0 0
√

2β2
m1

(q1 − q2) −
√

2β2
m2

(q1 − q2)

−
√

2β1
m1

q1 −
√

2β2
m1

(q1 − q2) 0 0

0
√

2β2
m2

(q1 − q2) 0 0


(77)

is skew symmetric, and the resulting Lie-group is SO(4).
Case (B): β1 > 0 and β2 < 0. We let

ẋ1 :=
√

m1q̇1, (78)

ẋ2 :=
√

m2q̇2, (79)

y1 :=

√
β1

2

(
q2

1 +
k1

β1

)
, (80)

y2 :=

√
−β2

2

[
(q1 − q2)

2 +
k2

β2

]
. (81)

In Equation (76), we have

A =



0 0
√

2β1
m1

q1 0

0 0
√

−2β2
m1

(q1 − q2) −
√

−2β2
m2

(q1 − q2)

−
√

2β1
m1

q1

√
−2β2

m1
(q1 − q2) 0 0

0 −
√

−2β2
m2

(q1 − q2) 0 0


, (82)

where the constraint is

ẋ2
1 + ẋ2

2 + y2
1 − y2

2 = 2C +
k2

1
2β1

+
k2

2
2β2

, (83)

which is a pseudo-sphere in the pseudo-Euclidean space R3,1. Because A satisfies

ATg + gA = 0, (84)

g :=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

, (85)

the resulting Lie-group is SO(3, 1).
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Case (C): β1 < 0 and β2 > 0. We let

ẋ1 :=
√

m1q̇1, (86)

ẋ2 :=
√

m2q̇2, (87)

y1 :=

√
−β1

2

(
q2

1 +
k1

β1

)
, (88)

y2 :=

√
β2

2

[
(q1 − q2)

2 +
k2

β2

]
. (89)

In terms of Equation (76), A is given by

A =



0 0
√

−2β1
m1

q1 0

0 0
√

2β2
m1

(q1 − q2) −
√

2β2
m2

(q1 − q2)√
−2β1

m1
q1 −

√
2β2
m1

(q1 − q2) 0 0

0
√

2β2
m2

(q1 − q2) 0 0


, (90)

where the constraint is

ẋ2
1 + ẋ2

2 − y2
1 + y2

2 = 2C +
k2

1
2β1

+
k2

2
2β2

. (91)

Because A satisfies Equation (84) with

g :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, (92)

the resulting Lie-group is SO(3, 1).
Case (D): β1 < 0 and β2 < 0. We let

ẋ1 :=
√

m1q̇1, (93)

ẋ2 :=
√

m2q̇2, (94)

y1 :=

√
−β1

2

(
q2

1 +
k1

β1

)
, (95)

y2 :=

√
−β2

2

[
(q1 − q2)

2 +
k2

β2

]
. (96)

We have Equation (76) but with

A =



0 0
√

−2β1
m1

q1 0

0 0
√

−2β2
m1

(q1 − q2) −
√

−2β2
m2

(q1 − q2)√
−2β1

m1
q1

√
−2β2

m1
(q1 − q2) 0 0

0 −
√

−2β2
m2

(q1 − q2) 0 0


, (97)



Vibration 2024, 7 115

where the constraint is

ẋ2
1 + ẋ2

2 − y2
1 − y2

2 = 2C +
k2

1
2β1

+
k2

2
2β2

, (98)

which is a pseudo-sphere in the pseudo-Euclidean space R2,2. Because A satisfies
Equation (84) with

g :=


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

, (99)

the resulting Lie-group is SO(2, 2).

5.3. Automatically Energy-Preserving Scheme

For deriving an AEPS for Equations (59) and (60), we develop the numerical method
from Equation (76) to compute a solution. We only consider the case of β1 > 0 and β2 > 0.
Other cases can be worked on similarly.

Accordingly, we can develop an implicit scheme based on SO(4) for the integration of
Equations (59) and (60), of which we have

Āk :=



0 0
√

2β1
m1

q̄k
1 0

0 0
√

2β2
m1

(q̄k
1 − q̄k

2) −
√

2β2
m2

(q̄k
1 − q̄k

2)

−
√

2β1
m1

q̄k
1 −

√
2β2
m1

(q̄k
1 − q̄k

2) 0 0

0
√

2β2
m2

(q̄k
1 − q̄k

2) 0 0


. (100)

The corresponding Gk := exp(hĀk) is derived in Appendix A.
This scheme AEPS is implicit, which requires an iteration to determine the value

of (yk+1
1 , yk+1

2 , zk+1
1 := ẋk+1

1 , zk+1
2 := ẋk+1

2 ) at the next time step, which is summarized as
follows.
(i) We give 0 ≤ θ ≤ 1, h, ε and initial values, and compute (y0

1, y0
2, z0

1 := ẋ0
1, z0

2 := ẋ0
2) by

Equations (67)–(70).
(ii) We perform k = 0, 1, . . . for

qk+1
1 = qk

1 + hq̇k
1,

q̇k+1
1 = q̇k

1 −
h

m1
[k1qk

1 + β1(qk
1)

3 + k2(qk
1 − qk

2) + β2(qk
1 − qk

2)
3],

qk+1
2 = qk

2 + hq̇k
2,

q̇k+1
2 = q̇k

2 +
h

m2
[k2(qk

1 − qk
2) + β2(qk

1 − qk
2)

3],

zk+1
1 =

√
m1q̇k+1

1 ,

zk+1
2 =

√
m2q̇k+1

2 ,

yk+1
1 =

√
β1

2

(
(qk+1

1 )2 +
k1

β1

)
,

yk+1
2 =

√
β2

2

(
(qk+1

1 − qk+1
2 )2 +

k2

β2

)
. (101)



Vibration 2024, 7 116

(iii) We iteratively solve the new (yk+1
1 , yk+1

2 , zk+1
1 , zk+1

2 ) by

q̄k
1 = (1 − θ)qk

1 + θqk+1
1 ,

q̄k
2 = (1 − θ)qk

2 + θqk+1
2 ,

Compute Gk by Equation (A20),
ŷk+1

1
ŷk+1

2
ẑk+1

1
ẑk+1

2

 = Gk


yk

1
yk

2
zk

1
zk

2

,

qk+1
1 = ±

(√
2
β1

ŷk+1
1 − k1

β1

)1/2

,

qk+1
2 = qk+1

1 ±
(√

2
β2

ŷk+1
2 − k2

β2

)1/2

. (102)

If√
(ŷk+1

1 − yk+1
1 )2 + (ŷk+1

2 − yk+1
2 )2 + (ẑk+1

1 − zk+1
1 )2 + (ẑk+1

2 − zk+1
2 )2 < ε, (103)

then we proceed to (ii) for the next time step; otherwise, we let yk+1
1 = ŷk+1

1 , yk+1
2 = ŷk+1

2 ,
zk+1

1 = ẑk+1
1 and zk+1

2 = ẑk+1
2 , and proceed to (iii) for executing Equation (102).

We consider Equations (59) and (60) under initial conditions q1(0) = 0.1, q̇1(0) = 0.1,
q2(0) = 0.1 and q̇2(0) = 0, and with the same parameter values, m1 = 2, m2 = 1, k1 = 5,
k2 = 2, β1 = 0.5 and β2 = 0.2.

We solve the problem using the AEPS with h = 0.001 and ε = 10−8, and plot the
time histories and phase portraits in Figure 9 in the time range of t ∈ [0, 10]. Even under
a stringent convergence criterion with ε = 10−8, the AEPS converges very fast with 2
iterations at each time step as shown in Figure 9i. The value of C = 0.0035005 is compared
with that computed by the AEPS, of which the error is shown in Figure 9j. It can be seen
that the capability in the preservation of energy of the AEPS is good.

5.4. Group-Preserving Scheme for Damped and Forced System

Now, a group-preserving scheme (GPS) for the solution of Equations (57) and (58) is
derived. In terms of (y1, y2, ẋ1, ẋ2), we can write

d
dt


y1
y2
ẋ1
ẋ2

 = A


y1
y2
ẋ1
ẋ2

+


0
0

1√
m1

f1(t)
1√
m2

f2(t)

, (104)

where

A :=



0 0
√

2β1
m1

q1 0

0 0
√

2β2
m1

(q1 − q2) −
√

2β2
m2

(q1 − q2)

−
√

2β1
m1

q1 −
√

2β2
m1

(q1 − q2) − c1+c2
m1

c2√
m1m2

0
√

2β2
m2

(q1 − q2)
c2√

m1m2
− c2

m2


. (105)



Vibration 2024, 7 117

 
 

 
 
Fig. 9 For the undamped and unforced coupled Duffing equations showing time histories in (a), (b), Figure 9. For the undamped and unforced coupled Duffing equations showing time histories in

(a,b,d,e), phase portraits in (c,f,g,h), number of iterations in (i) and error of energy in (j).

By applying the Trapezoidal rule on the integral term, we can derive
yk+1

1
yk+1

2
zk+1

1
zk+1

2

 = Gk


yk

1
yk

2
zk

1
zk

2

+ τ


0
0

1√
m1

f1(tk+1)
1√
m2

f2(tk+1)

+ τGk


0
0

1√
m1

f1(tk)
1√
m2

f2(tk)

, (106)

where τ = h/2, and

Gk = (I4 − τĀk)
−1(I4 + τĀk), (107)

(I4 − τĀk)
−1 =

[
I2 + U(D − VU)−1V −U(D − VU)−1

−(D − VU)−1V (D − VU)−1

]
, (108)

in which the 2 × 2 matrices U, V and D are given by[
I2 U
V D

]
:=

1 0 −τ
√

2β1
m1

q̄k
1 0

0 1 −τ
√

2β2
m1

(q̄k
1 − q̄k

2) τ
√

2β2
m2

(q̄k
1 − q̄k

2)

τ
√

2β1
m1

q̄k
1 τ

√
2β2
m1

(q̄k
1 − q̄k

2) 1 + τ(c1+c2)
m1

− τc2√
m1m2

0 −τ
√

2β2
m2

(q̄k
1 − q̄k

2) − τc2√
m1m2

1 + τc2
m2


. (109)
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Therefore, the GPS for Equations (57) and (58) is an iterative algorithm to determine the
value of (yk+1

1 , yk+1
2 , zk+1

1 := ẋk+1
1 , zk+1

2 := ẋk+1
2 ) at the next time step, which is summarized

as follows.
(i) We give 0 ≤ θ ≤ 1, initial values at initial time t0 = 0 and time stepsize h, and compute
the initial values of (y0

1, y0
2, z0

1 := ẋ0
1, z0

2 := ẋ0
2) by Equations (67)–(70).

(ii) For k = 0, 1, . . ., we repeat

qk+1
1 = qk

1 + hq̇k
1,

q̇k+1
1 = q̇k

1 −
h

m1
[k1qk

1 + β1(qk
1)

3 + k2(qk
1 − qk

2) + β2(qk
1 − qk

2)
3 − (c1 + c2)q̇k

1 + c2q̇k
2 + f1(tk)],

qk+1
2 = qk

2 + hq̇k
2,

q̇k+1
2 = q̇k

2 +
h

m2
[k2(qk

1 − qk
2) + β2(qk

1 − qk
2)

3 + c2q̇k
1 − c2q̇k

2 + f2(tk)], (110)

zk+1
1 =

√
m1q̇k+1

1 ,

zk+1
2 =

√
m2q̇k+1

2 ,

yk+1
1 =

√
β1

2

(
(qk+1

1 )2 +
k1

β1

)
,

yk+1
2 =

√
β2

2

(
(qk+1

1 − qk+1
2 )2 +

k2

β2

)
.

(iii) The new (yk+1
1 , yk+1

2 , zk+1
1 , zk+1

2 ) is iterated by

q̄k
1 = (1 − θ)qk

1 + θqk+1
1 ,

q̄k
2 = (1 − θ)qk

2 + θqk+1
2 ,

We compute Gk by Equation (107) :
ŷk+1

1
ŷk+1

2
ẑk+1

1
ẑk+1

2

 = Gk


yk

1
yk

2
zk

1
zk

2

+ τ


0
0

f1(tk+1)√
m1

f2(tk+1)√
m2

+ τGk


0
0

1√
m1

f1(tk)
1√
m2

f2(tk)

,

qk+1
1 = ±

(√
2
β1

ŷk+1
1 − k1

β1

)1/2

,

qk+1
2 = qk+1

1 ±
(√

2
β2

ŷk+1
2 − k2

β2

)1/2

. (111)

If√
(ŷk+1

1 − yk+1
1 )2 + (ŷk+1

2 − yk+1
2 )2 + (ẑk+1

1 − zk+1
1 )2 + (ẑk+1

2 − zk+1
2 )2 < ε, (112)

then we proceed to (ii) for the next time step; otherwise, we let yk+1
1 = ŷk+1

1 , yk+1
2 =

ŷk+1
2 , zk+1

1 = ẑk+1
1 and zk+1

2 = ẑk+1
2 , and proceed to (iii) for conducting computations in

Equation (111).
In Figure 10, we plot the responses of the coupled Duffing oscillator under m1 = 0.5,

m2 = 1, k1 = 5, k2 = 2, m1 = 0.5, m2 = 1, β1 = 1, β2 = 2, c1 = 0.2 and c2 = 0.3, where
the external forces are given by f1(t) = 0.7 cos 1.2t and f2(t) = 0.7 sin 1.2t. Even under a
stringent convergence criterion with ε = 10−7, the GPS converges very fast with 3 iterations
at each time step as shown in Figure 10i. Under the following parameters, m1 = 0.5, m2 = 1,
k1 = 5, k2 = 2, m1 = 0.5, m2 = 1, β1 = 1, β2 = 2, c1 = 0.2 and c2 = 0.03, f1(t) = 1.5 cos 2.5t
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and f2(t) = 1.5 sin 2.5t, we plot the Poincaré sections in Figure 11 with 8000 periodic points
in total.
(d) and (e), phase portraits in (c), (f), (g) and (h), number of iterations in (i) and error of energy in 
(j). 

 

Fig. 10 For the damped and forced coupled Duffing equations showing time histories in (a), (b), (d) 
and (e), phase portraits in (c), (f), (g) and (h), and number of iterations in (i). 
 

Figure 10. For the damped and forced coupled Duffing equations showing time histories in (a,b,d,e),
phase portraits in (c,f,g,h), and number of iterations in (i).

 
Fig. 11 For the damped and forced coupled Duffing equations showing the Poincare sections (a) in 
the plane of first component displacement and velocity, (b) in the plane of second component 
displacement and velocity. 

Figure 11. For the damped and forced coupled Duffing equations showing the Poincare sections
(a) in the plane of first component displacement and velocity, (b) in the plane of second component
displacement and velocity.
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6. Three Coupled Duffing Equations

In this Section, we extend the GPS to solve the three coupled Duffing equations:

m1q̈1(t) + c1q̇1(t) + k1q1(t) + β1q3
1(t) + c2[q̇1(t)− q̇2(t)]

+k2[q1(t)− q2(t)] + β2[q1(t)− q2(t)]3 = 0,

m2q̈2(t)− c2[q̇1(t)− q̇2(t)]− k2[q1(t)− q2(t)]− β2[q1(t)− q2(t)]3 (113)

+c3[q̇2(t)− q̇3(t)] + k3[q2(t)− q3(t)] + β3[q2(t)− q3(t)]3 = 0,

m3q̈3 − c3[q̇2(t)− q̇3(t)]− k3[q2(t)− q3(t)]− β3[q2(t)− q3(t)]3 = f0 cos ωt.

Let us consider the undamped and unforced three coupled Duffing equations such that we
have

m1

2
q̇2

1 +
k1

2
q2

1 +
β1

4
q4

1 +
m2

2
q̇2

2 +
k2

2
[q1 − q2]

2

+
β2

4
[q1 − q2]

4 +
m3

2
q̇2

3 +
k3

2
[q2 − q3]

2 +
β3

4
[q2 − q3]

4 = C, (114)

where C is a constant determined by the initial values.
For Equation (114), we have four pseudo-sphere realizations depending on the values

of βi, i = 1, 2, 3. We only consider β1 > 0, β2 > 0 and β3 < 0 as a demonstrative case, and
the other cases can be examined similarly. We let

ẋ1 :=
√

m1q̇1,

ẋ2 :=
√

m2q̇2,

ẋ3 :=
√

m3q̇3,

y1 :=

√
β1

2

(
q2

1 +
k1

β1

)
, (115)

y2 :=

√
β2

2

[
(q1 − q2)

2 +
k2

β2

]
,

y3 :=

√
−β3

2

[
(q2 − q3)

2 +
k3

β3

]
,

and Equation (114) can be written as

ẋ2
1 + ẋ2

2 + ẋ2
3 + y2

1 + y2
2 − y2

3 = 2C +
k2

1
2β1

+
k2

2
2β2

+
k2

3
2β3

, (116)

where we suppose that β1 > 0, β2 > 0 and β3 < 0. Equation (116) indicates that the
constraint is a pseudo-sphere in the pseudo-Euclidean space R5,1.

In terms of (y1, y2, y3, ẋ1, ẋ2, ẋ3), we can write Equation (113) as a system:

d
dt



y1
y2
y3
ẋ1
ẋ2
ẋ3

 = A



y1
y2
y3
ẋ1
ẋ2
ẋ3

+



0
0
0
0
0

f0 cos ωt√
m3


, (117)

where
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A := (118)

0 0 0
√

2β1
m1

q1 0 0

0 0 0
√

2β2
m1

(q1 − q2) −
√

2β2
m2

(q1 − q2) 0

0 0 0 0
√

−2β3
m2

(q2 − q3) −
√

−2β3
m3

(q2 − q3)

−
√

2β1
m1

q1 −
√

2β2
m1

(q1 − q2) 0 − c1+c2
m1

c2√
m1m2

0

0
√

2β2
m2

(q1 − q2)
√

−2β3
m2

(q2 − q3)
c2√

m1m2
− c2+c3

m2

c3√
m2m3

0 0 −
√

−2β3
m3

(q2 − q3) 0 c3√
m2m3

− c3
m3



.

For the special case with ci = 0, i = 1, 2, 3, the above A is a Lie-algebra element of
the type so(p, q) with p = 5 and q = 1. Depending on the values of βi, i = 1, 2, 3 there
are four Lie-algebras: so(3, 3) (β1 < 0, β2 < 0 and β3 < 0), so(4, 2) (β1 > 0, β2 < 0 and
β3 < 0, β1 < 0, β2 > 0 and β3 < 0, and β1 < 0, β2 < 0 and β3 > 0), so(5, 1) (β1 > 0, β2 > 0
and β3 < 0, β1 > 0, β2 < 0 and β3 > 0, and β1 < 0, β2 > 0 and β3 > 0), so(6) (β1 > 0,
β2 > 0 and β3 > 0). Correspondingly, the resulting Lie-groups G have four types: SO(3, 3),
SO(4, 2), SO(5, 1) and SO(6), depending on parameters β1, β2 and β3 of nonlinear springs.

The numerical process is similar to that given in Section 5. First, we consider an
undamped and unforced case with c1 = c2 = c3 = 0, m1 = 2, m2 = 1, m3 = 0.5, k1 = 2,
k2 = 3, k3 = 1, β1 = 0.2, β2 = 0.5, and β3 = −0.2. However, under ε = 10−8, the number of
iterations is two, as shown in Figure 12a, while the error of energy as shown in Figure 12b
is very small in the order of 10−12. Then, we consider a damped and forced case with
c1 = 0.05, c2 = 0.02, c3 = 0.02, f0 = 0.2 and ω = 1.5. Other parameters are the same as
those in the above. In Figure 13a, we plot the three-dimensional orbit and the number of
iterations in Figure 13b. Finally, for the three hardening springs with β1 = 0.2, β2 = 0.5,
and β3 = 0.7, we plot the phase portraits and the number of iterations in Figure 14, where
f0 = 0.5 and ω = 0.2.
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Fig. 12 For an undamped and unforced three coupled Duffing equations showing (a) the number of 
iterations, and (b) the error of energy. 
 
 
 
 
 
 
 
 
 

Figure 12. For an undamped and unforced three coupled Duffing equations showing (a) the number
of iterations, and (b) the error of energy.
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(a) 

 
(b) 

 
Fig. 13 For a damped and forced three coupled Duffing equations showing (a) the 
three-dimensional orbit, and (b) the number of iterations. Figure 13. For a damped and forced three coupled Duffing equations showing (a) the three-

dimensional orbit, and (b) the number of iterations.

 
 
 
 
 
 

 
 
Fig. 14 For a damped and forced three coupled Duffing equations with hardening springs, showing 
the phase portraits in (a), (b) and (c), and the number of iterations in (d). 
 
 
 
 

Figure 14. For a damped and forced three coupled Duffing equations with hardening springs,
showing the phase portraits in (a–c), and the number of iterations in (d).

For the purpose of comparison, we also applied the fourth-order Runge–Kutta method
(RK4) to solve an undamped and unforced case to a large final time t f = 500. The step size
is taken to be h = 0.005. In Figure 15, the errors of energy obtained by RK4 and AEPS are
compared. Obviously, the capability of AEPS to preserve the energy is better than that of
RK4 by several orders of magnitude. When a very small value in the order of 10−13 was
achieved by AEPS, for RK4, the error was in the order of 10−10.
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Figure 15. For an undamped and unforced three coupled Duffing equations with a large time span
comparing the errors of energy obtained by the RK4 and AEPS.

A practical implication is that when the AEPS can sustain the energy automatically,
it is more suitable to observe the long-term free vibration behavior of nonlinear Duffing
oscillators, which are used to model many engineering mechanical vibration systems. Even
with a wide gap in the linear frequencies of the coupled Duffing oscillator system with
k1 = 20, k2 = 10, k3 = 1, AEPS were still performed well to preserve the energy as shown
in Figure 16 to compare with that obtained by RK4.

Figure 16. For an undamped and unforced three coupled Duffing equations with a wide range of the
linear frequencies with k1 = 20, k2 = 10 and k3 = 1, comparing the errors of energy obtained by the
RK4 and AEPS.

When the number of the components of the coupled Duffing oscillators system is
increased to n, the drawback is that it needs more time to analytically construct the transfor-
mations between 2n variables, and the dimension of the Lie-group matrix Gk is increased
to (n + 1)× (n + 1).

7. Conclusions

For the undamped and unforced Duffing equations, we transformed the invariant
condition for the conservation of energy into a pseudo-sphere in the pseudo-Euclidean
space Rp,q with a signature (p, q). The resulting new ODEs system admits an SO(p, q) Lie-
group symmetry with a local Lie-algebra, A ∈ so(p, q). Then, we developed a Lie-group
SO(p, q) scheme to preserve the pseudo-sphere invariant, which rendered the energy of
the Duffing system to be conserved automatically. Evaluating the high performance of the
developed automatically energy-preserving scheme (AEPS) for the numerical solutions of
coupled Duffing equations, we offered examples to show its high accuracy by comparison
with the power series solution and with an exact solution of the Duffing–van der Pol
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equation, of which the accuracy can arrive to the fourth order. The computational cost is
quite low, because the preservation of energy is automatic without needing iteration, which
is different from other energy-conserving methods. However, to enhance the accuracy of
the numerical integration, we adopted the mid-point value to compute the Lie-algebra and
then the Lie-group, of which a few iterations in Part (iii) of each algorithm are required.
Then, we developed group-preserving schemes for damped and forced multi-coupled
Duffing equations, and some numerical results and Poincaré sections were given and
displayed. Owing to the damped term, the resulting Lie-group is of the dilation type,
denoted as DSO(p, q). The corresponding group-preserving schemes exhibited the same
advantage of the Lie-group, which can be used to depict the long term behavior of damped
and forced multi-coupled Duffing oscillators. The methodologies including quadratic
forms, Lie-algebras and Lie-groups are novel, appearing for the first time to investigate the
nonlinear vibrational behaviors of multi-coupled Duffing oscillators.
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Appendix A

In this Appendix, we derive state transition matrix G corresponding to A given in
Equation (100). Upon letting

a :=

√
2β1

m1
q̄k

1, (A1)

b :=

√
2β2

m1
(q̄k

1 − q̄k
2), (A2)

c :=

√
2β2

m2
(q̄k

1 − q̄k
2), (A3)

we can obtain the following ODEs system:

ż1 = az3,

ż2 = bz3 − cz4,

ż3 = −az1 − bz2,

ż4 = cz2. (A4)

Through some derivations, we can obtain

d4z1

dt4 + (a2 + b2 + c2)z̈1 + a2c2z1 = 0, (A5)
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of which the general solution is

z1 = k1 cos ω1t + k2 sin ω1t + k3 cos ω2t + k4 sin ω2t, (A6)

where

a0 := a2 + b2 + c2, (A7)

b0 := a2c2, (A8)

ω1 :=

 a0 +
√

a2
0 − 4b0

2

1/2

, (A9)

ω2 =
√

a0 − ω2
1 =

 a0 −
√

a2
0 − 4b0

2

1/2

. (A10)

Similarly, we can derive

z2 = c0k1 cos ω1t + c0k2 sin ω1t + d0k3 cos ω2t + d0k4 sin ω2t, (A11)

z3 = −ω1

a
k1 sin ω1t +

ω1

a
k2 cos ω1t − ω2

a
k3 sin ω2t +

ω2

a
k4 cos ω2t, (A12)

z4 = −e0k1 sin ω1t + e0k2 cos ω1t − f0k3 sin ω2t + f0k4 cos ω2t, (A13)

where

c0 =
ω2

1
ab

− a
b

, (A14)

d0 =
ω2

2
ab

− a
b

, (A15)

e0 =
bω1

ac
− c0ω1

c
, (A16)

f0 =
bω2

ac
− d0ω2

c
. (A17)

In terms of the following matrix:

H(t) :=



cos ω1t sin ω1t cos ω2t sin ω2t

c0 cos ω1t c0 sin ω1t d0 cos ω2t d0 sin ω2t

−ω1
a sin ω1t ω1

a cos ω1t −ω2
a sin ω2t ω2

a cos ω2t

−e0 sin ω1t e0 cos ω1t − f0 sin ω2t f0 cos ω2t


, (A18)

Equations (A6) and (A11)–(A13) can be written as
z1(t)
z2(t)
z3(t)
z4(t)

 = H(t)


k1
k2
k3
k4

. (A19)

Finally, the state transition matrix can be written as
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G(t) = H(t)H−1(0) (A20)

=



cos ω1t sin ω1t cos ω2t sin ω2t

c0 cos ω1t c0 sin ω1t d0 cos ω2t d0 sin ω2t

−ω1
a sin ω1t ω1

a cos ω1t −ω2
a sin ω2t ω2

a cos ω2t

−e0 sin ω1t e0 cos ω1t − f0 sin ω2t f0 cos ω2t





d0
d0−c0

1
c0−d0

0 0

0 0 a
ω1

+ aω2
q0ω2

1
− ω2

q0e0ω1

c0
c0−d0

1
d0−c0

0 0

0 0 − a
q0ω1

1
q0e0


,

where
q0 =

f0

e0
− ω2

ω1
. (A21)
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