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Abstract: Radiocesium (r-Cs) and radiostrontium (r-Sr) released from nuclear accidents (e.g., Chornobyl,
Fukushima) and routine operations (reactors, reprocessing) pose environmental and health concerns.
Their primary pathway to humans is through plant uptake and subsequent bioaccumulation within
the food chain. While soil amendments with potassium (K) and calcium (Ca) are known to mitigate r-
Cs and r-Sr uptake, respectively, the impact on plant growth remains unclear. This study investigates
the effects of Cs and Sr on the growth of Holcus lanatus L. seedlings under hydroponic and soil
conditions with varying Cs and Sr concentrations. Stable isotopes of Cs and Sr served as non-
radioactive analogs. Seedling growth was assessed across a range of Cs and Sr concentrations
(≤1 and ≥4 mg L−1). The impact of the addition of K and Ca on Cs/Sr uptake in amended soils was
also evaluated. Additionally, this study examined how Cs and Sr amendments affected the influx rates
of other nutrients in H. lanatus. Higher Cs and Sr concentrations (≥4 mg L−1) significantly inhibited
seedling growth, while lower concentrations had no effect. Notably, H. lanatus exhibited moderate
Cs tolerance and strong Sr tolerance. Furthermore, K and Ca supplementation in Cs/Sr-amended
soils demonstrably reduced plant uptake of these elements. This study also observed alterations in
the uptake rates of other nutrients within H. lanatus due to Cs/Sr addition. This study suggests that
H. lanatus exhibits moderate tolerance to Cs and Sr contamination, potentially making it suitable for
revegetation efforts in contaminated grasslands. Additionally, K and Ca amendments show promise
as a strategy to mitigate plant uptake of these radioisotopes further. These findings contribute to the
development of safer revitalization strategies for areas impacted by nuclear accidents.

Keywords: wild grass; cesium; strontium; tolerance; growth traits; contaminated land reclamation

1. Introduction

Long-lived radioisotopes cesium-137 (137Cs) and strontium-90 (90Sr) pose environ-
mental threats due to their persistence in the biosphere (half-lives > 30 yrs) and potential
food chain entry via plant uptake from contaminated soils and water [1–3]. While natural
levels are innocuous, elevated 137Cs and 90Sr in the soil can significantly alter plant growth
and development [3–5]. Cs and Sr compete with their chemical analogs potassium (K)
and calcium (Ca) for plant uptake through shared transport mechanisms [1,6–9]. While
increased soil K and Ca generally decrease Cs and Sr uptake, respectively [5,10–14], the
relationship is complex, with some studies reporting variable effects of K concentration on
Cs uptake [15,16]. Therefore, Cs and Sr accumulation likely depends on plant species and
environmental conditions [5,17].
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Green plants with tolerance to potentially toxic elements (PTEs) are employed for phy-
toremediation due to their ability to exclude PTEs and maintain low uptake even in highly
contaminated soils [18–21]. Wild grasses possess inherent stress tolerance compared to
domesticated species, allowing them to thrive under challenging environmental conditions,
such as nutrient deficiencies, water scarcity, and so forth [19,22,23]. Their diverse genomes
offer potential advantages for remediation efforts [24,25]. Holcus lanatus L., for example,
exhibits tolerance to various abiotic stresses and several PTEs (As, Cd, Pb, Zn) in contam-
inated soils [21,26–29]. However, its tolerance to radiocesium (r-Cs) and radiostrontium
(r-Sr) remains unknown. While K and Ca application is expected to reduce r-Cs and r-Sr
uptake, respectively, due to their analogous nature and shared transporters, the precise role
of K and Ca in mitigating r-Cs and r-Sr uptake, along with their impact on plant growth,
requires further investigation. Furthermore, limited research exists on how r-Cs and r-Sr
affect plants’ uptake of other nutrients and non-nutrient elements.

This study investigates the potential of H. lanatus, a wild grass species, as a phytoex-
cluder for r-Cs and r-Sr. The efficacy of K and Ca amendments in reducing r-Cs and r-Sr
uptake by H. lanatus grown in contaminated soils has been examined, while their impact
on plant growth characteristics has also been evaluated. Additionally, this study explores
the influence of r-Cs and r-Sr amendments on the mobility and plant availability of nutrient
and non-nutrient elements within the soil. The overall aim is to assess the suitability of
H. lanatus for revegetation of r-Cs- and r-Sr-contaminated areas. Furthermore, we aim to
identify potential r-Cs and r-Sr excluder genes within H. lanatus, which could represent a
novel approach to phytoremediation.

2. Materials and Methods
2.1. Seed

Mature, healthy H. lanatus L. seeds were obtained from the Fukushima University
Campus, Japan, following stringent selection criteria to exclude diseased or damaged
individuals. Before experimentation, the seeds were cleaned, followed by drying and
storage in airtight polyethylene bags. Finally, the seeds were de-husked.

2.2. Soil

This study utilizes Kuroboku, a Japanese Andosol soil characterized by its dark grayish
color (Munsell soil color code: 5YR/4/1) and high organic matter content. Prevalent on
terraces, hillsides, and gentle slopes throughout Japan, Kuroboku is a popular choice
for gardening applications. To ensure consistency across the experiment, commercially
available Kuroboku soil was obtained from the Koujiya Co. (Hitachinaka, Japan), with the
specific source unspecified.

Soil pH was measured in a 1:2.5 (w/v) ultrapure water solution using a calibrated
LAQUA pH meter F-71 (HORIBA Scientific, Kyoto, Japan). Total organic carbon (TOC)
content was determined using a TOC-L analyzer coupled with an SSM-5000A solid sam-
ple combustion unit (Shimadzu, Kyoto, Japan). Particle size distribution was analyzed
using laser light diffraction on a Malvern Mastersizer 3000E system (Malvern Instruments,
Worcestershire, UK). Metal ion extraction from soil followed the EPA method 3052 [30,31]
utilizing microwave-assisted wet digestion with a Multiwave 3000 microwave reaction
system (Anton Paar GmbH, Graz, Austria). The total concentration of monovalent (M+)
and divalent/trivalent (M2+/M3+) cations was determined by either NexION 300S induc-
tively coupled plasma mass spectrometry (ICP-MS) equipped with an S10 autosampler
(PerkinElmer, Waltham, MA, USA) or MP-AES 4100 microwave plasma atomic emission
spectroscopy (MP-AES) with an ASX-500 autosampler (Agilent Technologies, Santa Clara,
CA, USA). Working standard solutions (mg L−1 to µg L−1) were prepared by diluting
1000 mg L−1 single-element standard solutions of stable elements (Kanto Chemical, Tokyo,
Japan). Table 1 shows the physical and chemical properties of the soil.
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Table 1. Soil properties.

Properties Mean SD

Texture Sand (%) 64.4 0.34
Silt (%) 33.4 0.31
Clay (%) 2.2 0.12

pH 7.15 0.02
Organic matter (%) 30.69 0.33
Element content (mg kg−1) Al 53945 3502

As 3.618 0.074
Ca 20670 1189
Cd 0.228 0.013
Co 1.58 0.017
Cr 7.37 1.304
Cs 0.52 0.033
Cu 79.5 4.716
Fe 11089 491.8
K 9232 136.8
Mg 5318 363.5
Mn 538.2 32.03
Mo 1.04 0.521
Na 3620 88.53
Ni 6.55 0.457
P 4035 46.56
Pb 9.514 0.642
Sr 119.5 6.062
Zn 244.8 8.758

2.3. Experimental Design and Treatment Combinations for Hydroponic Experiment

H. lanatus seeds were germinated in Petri dishes lined with two moistened filter
papers. Ultrapure water was used to maintain constant filter paper moisture throughout
germination. Following germination, seedlings were carefully transferred to polystyrene
cups containing a floating plastic net base for support. A randomized complete block design
with six treatments and three replicates per treatment was employed. Treatments included
control (0 mg L−1) and increasing concentrations of Cs or Sr (0.5, 1, 2, 4, and 8 mg L−1).
Stable Cs and Sr isotopes served as analogs for r-Cs and r-Sr, respectively. Cs and Sr
solutions were prepared from CsCl (Nacalai Tesque, Kyoto, Japan) and Sr(NO3)2 (Merck
KGaA, Darmstadt, Germany) salts, equilibrated for 24 h before use. Working solutions
were prepared by dilution with ultrapure water (resistivity > 18.2 MΩ·cm) obtained from a
Milli-Q water purification system (Merck KGaA, Darmstadt, Germany). Each cup contained
25 germinated seeds. All cups were maintained at room temperature and humidity under
natural light, supplemented with LED lighting as needed.

2.4. Data Recording of Seedling Growth

Seedlings were co-cultivated for two months. Following this period, three repre-
sentative seedlings were randomly selected from each treatment for growth parameter
measurements. Physical growth parameters were assessed at harvest. Additionally, the
shoot-to-root ratio was calculated.

2.5. Experimental Design, Treatment Combinations, and Data Recording for Soil Experiment

H. lanatus seedlings were cultivated in pots containing soil and allowed to grow for
one year. Established seedlings were then subjected to the following treatments, applied
sequentially: T0 (control), T1 (Cs, 15 mg kg−1), T2 (Sr, 15 mg kg−1), T3 (Cs, 15 mg kg−1 + K,
200 mg kg−1), and T4 (Sr, 15 mg kg−1 + Ca, 200 mg kg−1). Following treatment applica-
tion, the seedlings were allowed to grow for an additional month. Regular weeding and
watering were performed throughout the cultivation period. At harvest, shoot biomass
was measured.
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2.6. Analysis of Plant Samples

Following cleaning and drying, plant materials from the soil experiment were sub-
jected to acid digestion using a DigiPREP block digestion system (SCP Science, Quebec,
Canada). Accurately weighed 0.1 g subsamples were transferred to digestion tubes, fol-
lowed by the addition of 5 mL HNO3 (Nacalai Tesque, Kyoto, Japan) per tube. Samples
were left to stand overnight. Subsequently, 1.25 mL H2O2 (Kanto Chemical, Tokyo, Japan)
was added to each tube, followed by 2 h of digestion at 120 ◦C. Digested samples were
then cooled and diluted with ultrapure water to a final volume of 20 mL. Analysis of stable
elements (Cs, Sr, K, Ca, P, Mg, Na, Fe, Mn, Mo, Zn, As, Co, and Ni) was performed using
either ICP-MS or MP-AES.

2.7. Statistical Analysis

Univariate and multivariate general linear models (GLMs) were employed to assess
potential significant differences between treatment groups. Following a one-way analysis
of variance (ANOVA) with a significance level of α = 0.05, Duncan’s multiple range test
(DMRT) was used for pairwise mean comparisons. Significant main effects identified by
ANOVA were further evaluated using a post hoc DMRT test to determine specific treatment
contrasts with statistically significant differences.

3. Results

Increasing Cs and Sr concentrations (≥4 mg L−1) significantly hampered H. lanatus
seedling growth, evidenced by reductions in root length, root biomass, and shoot biomass.
Conversely, lower concentrations (≤1 mg L−1) stimulated growth compared to the control.
Root length peaked at 25 and 22 cm with 0.5 mg L−1 Cs and Sr, respectively, but dropped
significantly to 12.7 and 13.6 cm at 8 mg L−1 (Cs, p < 0.001; Sr, p = 0.001). Similarly, root
biomass peaked at 11.4 and 8.7 mg with 1 mg L−1 Cs and Sr, respectively, and decreased to
3.9 and 4.4 mg at 8 mg L−1 (Cs, p < 0.001; Sr, p = 0.001). Shoot biomass also displayed a
concentration-dependent response, reaching maxima of 19.4 and 17.4 mg with 1 mg L−1

Cs (p < 0.001) and 0.5 mg L−1 Sr (p < 0.001), respectively. Notably, lower Cs and Sr
concentrations (≤ 1 mg L−1) appeared to favor root development over shoot growth, as
indicated by a lower shoot-to-root ratio (Figures 1 and 2; Supplementary Tables S1 and S2).
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Figure 2. Effect of Sr concentrations (CSr, 0.5–8 mg L−1) on the growth of Holcus lanatus seedlings
in hydroponic conditions. Statistically significant differences (p ≤ 0.05) are denoted by different
lowercase letters.

Soil amendment with Cs led to a decrease in H. lanatus shoot biomass production
but a significant increase (p ≤ 0.05) in Cs influx. However, the co-application of K with
Cs mitigated this effect, enhancing shoot biomass and reducing Cs influx. The transfer
factor (TF) of Cs in Cs-amended soil (0.39) was less than 1, indicating Cs exclusion by this
Cs-tolerant plant. Notably, K addition further reduced Cs influx by 5.1%. Interestingly, K
application in Cs-amended soil also significantly decreased (p ≤ 0.05) K influx in H. lanatus
(Figure 3; Supplementary Table S3).
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Figure 3. Effect of K-application on Cs-amended soil (CCs, 0.5–8 mg L−1) on shoot biomass production,
shoot Cs influx, Cs transfer factor, and K influx in Holcus lanatus seedlings. Statistically significant
differences (p ≤ 0.05) are denoted by different lowercase letters.

Similar to Cs, Sr introduction to the soil negatively impacted H. lanatus shoot biomass
production while significantly increasing Sr influx (p ≤ 0.05). However, Ca co-application
with Sr mitigated this effect, enhancing shoot biomass and significantly reducing Sr influx
(p ≤ 0.05). The TF of Sr in Sr-amended soil (0.12) was less than 1, suggesting Sr exclusion
by this Sr-tolerant plant. Notably, the addition of Ca further decreased Sr influx by 28%.
Interestingly, Ca application in Sr-amended soil also significantly reduced (p ≤ 0.05) Ca
influx in H. lanatus (Figure 4; Supplementary Table S4).

Soil amendment with Cs significantly increased (p ≤ 0.05) the influx of several elements
in H. lanatus, including the nutrients P, Ca, Mg, and Mn, and the non-nutrients Sr and Ni.
Conversely, Cs decreased the influx of nutrients Mo and Zn, along with the non-nutrients
As and Co. Similarly, Sr amendment significantly increased (p ≤ 0.05) the influx of the
nutrients Al, Ca, Mn, Mo, and Na, as well as the non-nutrient Ni. However, Sr decreased
the influx of the nutrients P, Fe, Mg, and Zn in H. lanatus. These findings suggest that Cs
and Sr accumulation influence the plant’s uptake of various elements, potentially impacting
plant health (Figures 5 and 6; Supplementary Tables S3 and S4).
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4. Discussion

This study explored the response of H. lanatus to varying Cs and Sr concentrations
and the influence of co-occurring K and Ca on tolerance in Cs- and Sr-contaminated soils.
Hydroponic experiments revealed that higher Cs and Sr concentrations (≥4 mg L−1) signif-
icantly inhibited seedling growth, primarily affecting root length and biomass production.
Conversely, lower concentrations (≤1 mg L−1) stimulated seedling growth compared to the
control. Notably, at lower Cs and Sr levels, the shoot-to-root ratio suggested preferential
allocation of biomass towards root development.

The soil experiments corroborated findings from the hydroponic experiments, demon-
strating decreased shoot biomass and increased Cs/Sr uptake with soil contamination.
However, co-application of K and Ca with Cs/Sr mitigated these negative effects, enhanc-
ing shoot biomass and reducing Cs/Sr uptake. This aligns with established knowledge on
plant nutrient uptake, as reported by Rinaldi et al. [13] and Burger and Lichtscheidl [32],
who documented efficient Cs/Sr absorption from the soil. While natural soil and water
harbor low Cs/Sr levels, posing no visible toxicity threats, elevated concentrations become
detrimental to plant growth [3–5]. The primary mechanism for this growth inhibition
likely involves competitive exclusion. Chemically similar to K and Ca, respectively, Cs and
Sr compete with these essential nutrients for uptake, hindering their acquisition by the
plant [33]. Supporting this notion, Mohamed et al. [34] observed internal Cs inhibiting root
elongation in rice.
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This study observed that lower Cs and Sr concentrations resulted in a greater biomass
allocation to roots than shoots in H. lanatus. This aligns with findings by Hill et al. [35],
who reported increased root biomass production in pasture species under nutrient-scarce
conditions. Such a response is often accompanied by modifications in root architecture,
including enhanced root surface area through root hair development, and upregulation of
nutrient transporter expression [36–41]. Moreover, Gojon et al. [42] and Lynch [43] suggest
that nutrient limitations can also induce alterations in root growth patterns.

The influence of radionuclide concentration on plant root biomass is mediated by a
complex interplay of factors. These factors include characteristics of the soil environment,
bioaccumulation processes within the plant, and the differential distribution of radionu-
clides across various plant tissues [44–47]. The observed root morphological changes may
be linked to K and Ca uptake optimization. Co-application of K and Ca with Cs/Sr in
contaminated soil reduces the influx of both Cs/Sr and their respective counterparts. This
competitive uptake likely stems from the chemical resemblance between Cs/K and Sr/Ca,
potentially leading to the suppression of high-affinity transporters for these elements within
the plant [1,4,5,8]. Such suppression could induce K and Ca deficiency, contributing to
Cs and Sr tolerance development. While the specific transporters involved in Cs and Sr
uptake can vary based on plant species and cultivation conditions [32,48], existing trans-
port mechanisms generally demonstrate effectiveness even under low or high K and Ca
concentrations. Furthermore, increased root biomass at lower Cs/Sr concentrations might
be a strategy to enhance the uptake of alternative nutrients. Under Cs stress, H. lanatus may
prioritize P, Ca, Mg, and Mn uptake, while Sr stress may trigger increased Ca, Mg, and Mo
uptake [49]. This could be a compensatory mechanism to address K and Ca deficiency. It is
important to note that plant tolerance to Cs and Sr varies. Low levels of some non-essential
elements, like As, can even stimulate plant growth, including root development [50–52].
The existing literature, including Smith et al. [53] and references cited therein, suggest that
PTEs in contaminated soil generally do not decrease root length percentages.

Soil amendments containing radionuclides can influence plant uptake of essential ele-
ments through complex interactions. These interactions involve root exudates, competition
or synergy between essential elements, hydrological conditions within the soil, and inherent
soil properties [54–58]. Soil amendment with Cs resulted in increased plant uptake of P, Ca,
Mg, Mn, Sr, and Ni, while decreasing Mo, Zn, As, and Co uptake in H. lanatus. Similarly,
Sr addition increased Al, Ca, Mn, Mo, and Na uptake, but decreased P, Fe, Mg, and Zn
uptake. These changes likely reflect Cs and Sr influencing element mobilization in the soil,
which can directly and indirectly impact plant health through altered nutrient availability
(uptake). Previous studies have shown that element mobility in soil is influenced by the
presence or absence of specific elements [59–64]. The observed increase in plant uptake
of certain nutrients (P, Ca, Mg, and Mn with Cs; Ca, Mn, and Mo with Sr) might be a
compensatory response to K and Ca deficiency caused by competitive uptake with Cs and
Sr, respectively [49]. This competition arises from the chemical similarity between Cs/K
and Sr/Ca, potentially leading to plant K and Ca deficiency.

Future research efforts should prioritize understanding the mechanisms underlying
plant tolerance to various environmental stressors, such as salinity [65–67], drought [68,69],
and heat [70,71]. These stress responses often involve common pathways that may also
be relevant to radionuclide tolerance. Moreover, visualizing mineral element dynamics
within plants [72] using real-time radioisotope imaging systems [73,74] would help in
studying radionuclide uptake and distribution with high spatial and temporal resolution.
Exploring the role of mycorrhizal fungi in plant tolerance, particularly their stress toler-
ance mechanisms [75], can contribute to enhancing plant resilience against environmental
stressors, including radionuclides. Additionally, research on ontogenetic switches from
plant resistance to tolerance [76] can provide a more comprehensive understanding of
plant responses to stress. To effectively identify radionuclide-tolerant plant species, future
research should embrace interdisciplinary approaches. This necessitates the integration of
molecular biology, plant physiology, and cutting-edge imaging techniques. By leveraging



Soil Syst. 2024, 8, 57 9 of 12

existing knowledge of plant stress responses and adaptation mechanisms, researchers
can elucidate the specific mechanisms underlying plant tolerance to radionuclides. This
deeper understanding will pave the way for the targeted selection and development of
radionuclide-tolerant plant species.

5. Conclusions

This study identifies H. lanatus as a promising candidate for phytoremediation and
bioengineering applications in Cs- and Sr-contaminated environments. The wild grass
exhibits tolerance (exclusion) towards both Cs and Sr, with a moderate Cs transfer factor
(TF = 0.39) and a high Sr transfer factor (TF = 0.12). Furthermore, co-application of K and
Ca with Cs or Sr in contaminated soils significantly reduces Cs and Sr influx in H. lanatus.
These findings suggest two potential applications: (a) H. lanatus could be a suitable choice
for revegetation efforts in r-Cs- and r-Sr-contaminated grassland soils, as it minimizes
the uptake of these elements into animal fodder; and (b) genes responsible for Cs and
Sr exclusion in H. lanatus could potentially be transferred into crop tissues, enabling the
development of crops that produce safe food products even when grown in polluted soils.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/soilsystems8020057/s1, Table S1: GLM output demonstrating
the effects of various Cs-concentrations on the growth parameters of Holcus lanatus; Table S2: GLM
output demonstrating the effects of various Sr-concentrations on the growth parameters of Holcus
lanatus; Table S3: GLM output demonstrating the effects of K-application in Cs-amended soil on
the Holcus lanatus growth and elemental uptake; Table S4: GLM output demonstrating the effects
of Ca-application in Sr-amended soil on the Holcus lanatus growth and elemental uptake; Figure S1:
Growth characteristics of H. lanatus at different Cs-concentrations. From left to right: 0 (Control), 1, 2,
4, and 8 mg Cs L−1; Figure S2: Holcus lanatus seedling growth in soil: Control (right), Sr (middle),
and Sr + Ca (left).
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