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Abstract: Standard time-series modeling requires the stability of model parameters over time. The
instability of model parameters is often caused by structural breaks, leading to the formation of
nonlinear models. A state-dependent model (SDM) is a more general and flexible scheme in nonlinear
modeling. On the other hand, time-series data often exhibit multiple frequency components, such as
trends, seasonality, cycles, and noise. These frequency components can be optimized in forecasting
using Singular Spectrum Analysis (SSA). Furthermore, the two most widely used approaches in SSA
are Linear Recurrent Formula (SSAR) and Vector (SSAV). SSAV has better accuracy and robustness
than SSAR, especially in handling structural breaks. Therefore, this research proposes modeling the
SSAV coefficient with an SDM approach to take structural breaks called SDM-SSAV. SDM recursively
updates the SSAV coefficient to adapt over time and between states using an Extended Kalman Filter
(EKF). Empirical results with Indonesian Export data and simulation studies show that the accuracy
of SDM-SSAV outperforms SSAR, SSAV, SDM-SSAR, hybrid ARIMA-LSTM, and VARI.

Keywords: singular spectrum analysis vector; structural breaks; state-dependent model; Indonesian
export

1. Introduction

Over the years, Indonesian economic conditions have experienced various uncertain
turmoils, which are associated with the monetary crisis in Indonesia in 1997–1998. Others
include the financial crisis of America in 2008–2009, which was triggered by the bankruptcy
of Lehman Brothers [1,2], the economic slowdown of America and China in 2015–2016 [3],
the outbreak of COVID-19 in early 2020 [4], and the Russian invasion of Ukraine in early
2022 [5]. These occurrences led to uncontrollable fluctuations in time-series patterns,
including financial data and economic indicators, making them challenging to predict and
often showing nonlinear behavior. Indonesian export is one of the economic indicators
indicated to be affected by some of these phenomena, so the pattern becomes erratic
fluctuations that tend to form nonlinear patterns.

Reference [6] stated that there are three methods for analyzing data with a nonlinear
pattern, namely bilinear [7,8], threshold autoregressive [9,10], and exponential autoregres-
sive models [11,12]. Each model class has a different procedure for determining the type of
nonlinearity. Still, in practice, it may be challenging to decide which kind of nonlinearity
best fits the characteristics of the dataset. This led to the proposal of the state-dependent
model (SDM), which is more flexible and a general nonlinear model class [6]. SDM is the
state space model that jumps from one segment of the state space to another. Meanwhile,
nonlinear patterns are generally divided into two types, including structural breaks and
time-varying. Several methods are used to model structural breaks, each offering unique
advantages. These include Markov Switching, the threshold model, adaptive group lasso,
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time-varying parameters, and a combination of Realised Volatility and Heterogeneous
Autoregressive methods, as implemented by [13–19].

However, this study focused on structural breaks characterized by breakpoints associ-
ated with the pattern of change over a certain period to ensure that the overall time-series
data are divided into segments. Structural breaks refer to points at which a sudden shift in a
time-series pattern or behavior occurs. A structural break implies that the parameters of the
statistical model generating the time-series data change at specific points in time. The insta-
bility of model parameters is often caused by structural breaks, leading to the formation of
nonlinear models [20–22]. The parameters of the model before and after the change point
of the structural break are different, such that a single model cannot represent the whole
data. Furthermore, a single model cannot describe the entire data if the change point occurs
more than once. Various factors, including policy changes, economic crises, technological
innovations, natural disasters, or market conditions, can cause structural breaks.

The concept of structural breaks was popularized by [23], who stated that the instability
of model parameters often leads to forecasting failures due to a shock to a time-series
dataset. According to [24], structural breaks are time-series data that fluctuate between
the equilibrium and recovery state after a disturbance. This process is also defined as the
result of a limited natural cycle in the economic system. Structural breaks in the economic
system can cause model specifications to become nonlinear, posing a risk of producing
less accurate predictions when modeled with standard linear time-series methods [25].
Therefore, using a method that accommodates this behavior of the data becomes crucial for
obtaining more accurate results.

The other problem that must be considered in the time-series data analysis is the
frequency element, comprising trends, seasonality, cycles, and noise, due to its significant
influence on the investigation conclusion. Singular Spectrum Analysis (SSA) [26] presents
a solution for optimizing the presence of the frequency element in time-series data. SSA is
a nonparametric time-series method that does not rely on parametric assumptions, such
as linearity, normality, and stationarity [27,28]. SSA has been implemented for various
purposes besides reducing noise and forecasting. These include smoothing, handling miss-
ing data, identifying trends, decomposing seasonal components and periodicity, detecting
structural changes, etc. SSA has also been used in various fields, such as geophysics and
climate [29–32], engineering [33,34], medicine [35,36], and economics [37–39]. One method
that can handle structural breaks and optimize the presence of frequency components in
the data is SSA. A preliminary study has been carried out on the use of structural-break
modeling with SSA by [37,38,40–43]. The results showed that in modeling structural breaks,
the linear recurrent formulae (LRF) form recurrent equations in the SSA framework, lead-
ing to a biased conclusion. Therefore, to address this limitation, the LRF-form recurrent
equation was modified to be an adaptive recurrent equation using SDM-SSAR [43].

Furthermore, structural break modeling with SDM is intended to handle the param-
eter shift observed in time-series data as it transitions from one segment to another due
to a shock. Reference [43] utilized SDM in a recurrent SSA method, more specifically,
using the Extended Kalman Filter (EKF) for state vector estimation. The EKF represents
a nonlinear version of the Kalman filter, using the concept that nonlinear models can be
approximated through local linearization. The EKF’s filtering process is based on a Taylor
series approximation as a transition function between states, rendering it well-suited for
nonlinear modeling [44].

SSA comprises three forecasting schemes, namely SSA-Recurrent (SSAR), SSA-Vector
(SSAV), and SSA-Simultaneous [45]. However, SSAR [46] and SSAV [47] are the most
widely used, where studies by [42,45,48] found that SSAV is more robust and has better
accuracy than SSAR, particularly in handling structural breaks. Therefore, this study
proposed using novel methods to obtain a robust model in the presence of a structural
break through the development of a modified SSAV coefficient with SDM, called SDM-
SSAV. By proposing this method, adequate knowledge about the business processes needed
to model structural breaks that are more robust than the existing method, such as SDM-
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SSAR, is provided. Furthermore, this study has practical implications for business and
government, particularly in predicting Indonesian exports.

2. Materials and Methods
2.1. Dataset

The empirical and simulation studies were used to implement the proposed method.
The empirical study examined the data collected by Indonesia’s Central Bureau of Statistics
(BPS), such as the monthly export value from 1993 to 2022, recorded in millions of US dollars.
In addition, this study used export data because they significantly influence Indonesia’s
economic performance. According to an analysis by [49], exports statistically positively
affect economic growth. Moreover, preliminary studies by [50] and [51] reported that
exports could impact the increase in investment, production, and overall economic growth.
Considering Indonesian export data as an essential indicator in the economy, several
researchers have modeled Indonesian export data, such as [52], who used the hybrid
ARIMA-Long Short Term Memory (LSTM), and [53], who used the Vector Autoregressive
Integrated (VARI) method.

The Monte Carlo simulation generated time-series data with structural breaks, trends,
seasonality, noise, and a nonlinear pattern. The following equation generates the data:

Yt = τ + ρ exp{βt}+ η sin
(

2π

12
t
)
+ υ cos

(
2π

8
t
)
+ εt (1)

with εt ∼ N(0, 0.2) and t = 1, . . ., n. The τ is vertical movement or shifts that affect the
mean level of the signal, ρ ∈ R is a constant, β ∈ R is the growth rate of the signal used
to illustrate the trend element, η ∈ R and υ ∈ R are the amplitude, and

( 2π
12
) ( 2π

8
)

are the
angular frequency utilized to describe the seasonal elements. The data generated in the
simulation study were divided into two groups, namely small (n ≤ 300) and large samples
(n > 300) [42].

2.2. Singular Spectrum Analysis (SSA)

The SSA process starts by assuming the presence of time-series data Yt = y1, y2, . . . , yn,
where n > 2, with no zero or missing observation, a fixed integer called the window
length (L) in the range (2 ≤ L ≤ n − 1), and K = n − L + 1 [45]. SSA comprises two main
stages, namely decomposition and reconstruction. Decomposition starts with embedding
compiling time-series data into a trajectory matrix measuring L × K. Suppose the trajectory
matrix is denoted as Z, then the formula is obtained as follows:

Z =


y1 y2 · · · yK
y2 y3 · · · yK+1
...

...
. . .

...
yL yL+1 · · · yn

 = [z1 : z2 : . . . : zK]

=


y1 = z1,1 y2 = z1,2 · · · yK = z1,K
y2 = z2,1 y3 = z2,2 · · · yK+1 = z2,K
...

...
. . .

...
yL = zL,1 yL+1 = zL+1,2 · · · yn = zn,K

 =


z1,1 z1,2 · · · z1,K
z2,1 z2,2 · · · z2,K
...

...
. . .

...
zL,1 zL+1,2 · · · zn,K


=
(
zi,j
)L,K

i,j=1

(2)

The Singular Value Decomposition (SVD) is the next step in the decomposition process.
This step begins with the construction of a matrix S = ZZT to calculate three components,
known as eigentriples: the eigenvalue, eigenvector, and principal component. The eigen-
values (λ1, λ2, . . ., λL) are obtained in descending order (λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0) using
the equation ∥S − λI∥ = 0, where I is an identity matrix. The eigenvector (U) is calculated
with the equation (S − λI)U = 0. The eigenvector matrix consists of vectors (u1, u2, . . .,
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uL), which form an orthonormal system of the eigenvectors of matrix S corresponding
to the eigenvalues. The principal components

(~
v1,

~
v2, . . . ,

~
vL

)
, are calculated using the

following formula:
~
vi =

GTui√
λi

; (i = 1, . . . d). (3)

The G matrix is the sum of the Gi matrix, where Gi =
√

λiui
~
v

T
i , d = L* with L* = min

{L, K}. The SVD of the G trajectory matrix is formulated as follows:

G = G1 + G2 + . . . + Gd (4)

The SVD of the complete trajectory matrix can be described using Equation (5):

G = G1 + G2 + . . . + Gd

=
√

λ1u1
~
vi

T
1 +

√
λ2u2

~
vi

T
2 + . . . +

√
λdud

~
vi

T
d

=
d
∑

i=1

√
λiui

~
vi

T
i

(5)

The matrix G has a rank denoted by d = max{i, where λi > 0}, hence, when d = L,
then the matrix G = Z. The second stage is reconstruction, which starts with grouping
eigentriples according to patterns or frequency characteristics, such as trends, seasonality,
cyclicality, and noise. This process partitions the Gi matrix into m subsets of disjoints I1, I2,
. . ., Im, and Equation (4) can be written as follows:

G = GI1 + GI2 + . . . + GIm (6)

Grouping is used to construct a Gi matrix in (4); suppose m = 2, then I1 = I = {i1, . . .,
ir} and I2 = {1, . . ., d}\I, where 1 ≤ i1, . . ., ir ≤ d. The next step in the reconstruction is to
diagonal average each GIm matrix into new time-series data of n denoted as follows:

G = GI1 + GI2 + . . . + GIm

=


z
˜ 1,1

z
˜ 1,2

· · · z
˜ 1,K

z
˜ 2,1

z
˜ 2,2

· · · z
˜ 2,K

...
...

. . .
...

z
˜ L,1

z
˜ L+1,2

· · · z
˜ L,K


= [z

~1
: . . . : z

~K
]

(7)

The process of diagonal averaging of the G matrix uses the following Formula [54]:

ẑk =



1
k

k
∑

m=1
z
˜ m,k−m+1

, for 1 ≤ k < L∗

1
L∗

L∗

∑
m=1

z
˜ m,k−m+1

, for L∗ ≤ k ≤ K∗

1
n−k+1

n−K∗+1
∑

m=k−K∗+1
z
˜ m,k−m+1

, for K∗ ≤ k ≤ n

(8)

where L* = min(L, K), K* = max(L, K), and n = L + K − 1. Meanwhile ẑi,j = z
˜ i,j

when

L < K and ẑi,j = z
˜ j,i

for others, and hence, the reconstruction method used to obtain the

new time-series data is denoted by Ỹ(k) =
(

ỹ(k)1 , . . . , ỹ(k)n

)
. The LRF forecasting process
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utilizes the last (L − 1) observations from new time-series data [ỹ1, . . . , ỹn]
T multiplied

by the LRF parameter coefficient Φ = (ϕ1, . . . , ϕL−1)
T . To obtain the LRF coefficient, U =

[u1:. . .:ur], where ui is a vector that has an element (L − 1) of vector ui, then for i = 1, the
first component of eigenvector u1, i.e., (u1,1, u2,1, . . ., uL-1,1). When ν2 = π2

1 + . . . + π2
r , with

πi is the last component of vector ui with (i = 1, . . . , r), then the LRF parameter coefficients
is formulated as follows.

Φ =
1

1 − ν2

r

∑
i=1

πiu_ i
; i = 1, 2, . . . , r (9)

Meanwhile, the time-series data of the last forecasting result at point L of the new
time-series data [ỹ1, . . . , ỹn]

T is formulated as follows.

ỹn+1 = ϕ1ỹn + . . . + ϕL−1ỹn−L+2 (10)

The new time-series data of the LRF forecasting result for the h-th point Ŷn+h =
(ŷ1, ŷ2, . . . , ŷn+h) is defined as follows.

ŷi =


ỹi for i = 1, . . . , n

L−1
∑

j=1
ϕjŷi−j for i = n + 1, . . . , n + h

(11)

In this study, the LRF coefficient Φ = (ϕ1, . . . , ϕL−1)
T is used to develop structural-

break modeling. The LRF coefficient is important for understanding time-series data
dynamics and enables optimal forecasting at multiple stages (multi-step) [43].

2.3. SSA Parameter Coefficient Mofdeling Using SDM

In the SDM method, the LRF parameter coefficient is used to change the data pattern.
Assuming Yn = {yn−L+2, . . . , yn} are the state vector of the time-series data, then according
to the proposed concept by [6], the propagation of the LRF parameter coefficient is defined
as a function of Yn, and Equation (10) is formulated as follows.

yn+1 = ϕ1(Yn)yn + ϕ2(Yn)yn−1 + . . . + ϕL−1(Yn)yn−L+2 (12)

The SDM method treats the parameter coefficient change according to the dynamics
of state and time. Where {ϕu(Yn)} = {ϕu,n}, with u = 1, 2, . . ., (L − 1) is assumed to be an
analytic function that changes slowly over time and is elaborated on through the expansion
of the Taylor series.

ϕu,n+1 = ϕu,n + ∆yn+1−uγn+1,u u = 1, . . . , (L − 1) (13)

where ∆yn+1−u = yn+1−u − yn+1−(u−d), γn+1,u is the gradient, and d is the length of the
seasonal period of the time-series data. The gradient parameter γn+1,1, . . . , γn+1,L−1 is an
unknown hyperparameter and is assumed to change slowly in the random walk as follows:

ϑn+1 = ϑn + Vn+1 (14)

where ϑn+1 = (γn+1,1, . . . , γn+1,L−1) and Vn+1 are the sequence of random variables valued

at independent matrics, such that Vn+1 ∼ N
(

0, ∑Vn+1

)
. Additionally, Equation (12) is

expressed in state space format, where the state vector is changed from Yn to the state-
dependent coefficient added with the gradient, as follows:

θn+1 = [ϕn,1, . . . , ϕn,L−1, γn+1,1, . . . , γn+1,L−1]
T (15)



Forecasting 2024, 6 157

where θn+1 is a vector that represents the model parameter with functions of Yn. Replace ϕu
in Equation (12) with θn+1 in Equation (15), this produces the state-space model as follows:

yn+1 = H∗
n+1θn+1 + rn+1

θn+1 = A∗
nθn + qn+1

(16)

H∗
n+1 = (yn, . . . , yn−L+2, 0, . . . , 0) is an innate characteristic of the system used to

capture the system’s movement, A∗
n+1 = A∗

n+1(Yn+1) is a transition matrix for the state
shift characterized by the shape of diagonal blocks developed over time. Meanwhile, qn+1
is the measurement noise, and rn+1 is the process noise. The next step is estimating the
vector state using the EKF procedure.

The stages of estimating the vector state using EKF are as follows [43]:

^
θn+1 = A∗

nθn + Ќ∗
n+1
(
yn+1 − H∗

n+1A∗
nθn

)
(17)

where A∗
n ∈ R2(L−1)×2(L−1) is formulated as follows:

A∗
n =


IL−1

∆yn 0
∆yn−1

. . .
0 ∆yn−L+2

0 IL−1

 (18)

Ќ∗
n+1 is a Kalman gain matrix formulated as follows:

Ќ∗
n+1 = ωn+1

(
H∗

n+1
)T

σ2
e (19)

where ωn+1 represents the next step forecasting error’s variance–covariance matrix, which
can be expressed as follows:

ωn+1 = E

[(
θn+1 − A∗

n
^
θn

)(
θn+1 − A∗

n
^
θn

)T
]

(20)

σ2
e is a forecasting error variance on one step later yn+1, where the error is formulated

as follows:

en+1 = yn+1 − H∗
n+1A∗

n
^
θn (21)

Cn+1 is a variance–covariance matrix of
(
θn+1 −

^
θn+1

)
, and hence, the order of

values
^
θn+1 can be calculated as follows using the conventional Kalman filter:

ωn+1 = A∗
nCn(A∗

n)
T + ΣW , ΣW =

(
0 0
0 ΣV

)
,

Ќ∗
n+1 = ωn+1

(
H∗

n+1
)T
[
H∗

n+1ωn+1
(
H∗

n+1
)T

+ σ2
ε

]−1
,

Cn+1 = ωn+1 − Ќ∗
n+1

[
H∗

n+1ωn+1
(
H∗

n+1
)T

+ σ2
ε

](
Ќ∗

n+1

)T

The initial values of θn+1, σ2
ε , and Cn+1 are calculated using the bootstrap SSA

algorithm [28,55] and establishing
^
θn+t0−1 =

(
ϕ̂n+t0,1, . . . , ϕ̂n+t0,L−1, 0, . . . , 0

)
, σ2

ε , and
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Cn+t0−1, where Cn+t0−1 =

(
^
Ωϕ1,...,ϕL−1 0

0 0

)
and

^
Ω are a variance–covariance matrix of(

ϕ̂n+t0,1, . . . , ϕ̂n+t0,L−1
)
.

2.4. SSA Vector Parameter Coefficient Modeling Using SDM

In this section, we develop the SSAV coefficient using the SDM method from being
fixed over time to being adaptable to shocks over time. The process of the SDM-SSAV
forecasting algorithm starts by continuing the sequence of vectors z

~1
, . . . , z

~K
in matrix G in

Equation (7) to ensure the forecasting algorithm generates time-series data with h points in
the next period as follows:

1. Form a matrix Π that is a linear operator showing orthogonal projections c RL−1 7→ ζr ,

where ζr = span
(

u
_ 1

, . . . , u
_ r

)
, and

^
θ is a modified LRF parameter coefficient based

on the EKF in Equation (17).

Π = U
_

U
_

T +
(

1 − v2
)^
θ

^
θ

T

(22)

where U
_
=

[
u
_ 1

: . . . : u
_ r

]
, and

^
θ is a vector of parameter coefficients that is a function

of Yn and has a component θ̂n+1, estimated using the EKF.
2. Forming SSAV operator PVEC : RL 7→ ζr , which is formulated as follows:

PVEC =

Π

^
θ

T

 (23)

3. The matrix G∗
h is a combination of matrices G and G

~ h
, where the matrix G

~ h
=

PVECz
~i−1

, for i = K + 1, . . ., K + h + L − 1. The vectors that make up the matrix G∗
h are

denoted as follows:

|z
~i

=

 z
~i

for i = 1, . . . , K

PVECz
~i−1

for i = K + 1, . . . , K + h + L − 1 (24)

The matrix G∗
h has the following structure: G∗

h = [z
~1

: . . . : z
~K

: z
~
∗

K+1
: . . . :

z
~
∗

K+h+L−1
].

4. Applying a diagonal averaging process to the matrix G∗
h to obtain prediction in the 1st

to n-th and the next h-th point prediction, Ŷn+h = {ŷ1, ŷ2, . . . , ŷK+1, . . . , ŷK+h+L−1}.
Therefore, the forecasting results in the next h period are denoted as follows:
{ŷK+1, . . . , ŷK+h+L−1}.

2.5. Accuracy Evaluation

The present study assessed the performance of the proposed forecasting methods with
two commonly used metrics, namely the Root Mean Square Error (RMSE) [56], as stated in
Equation (25).

RMSE =

√
1
m

m

∑
i=1

(ŷn+h,i − yn+h,i)
2 (25)

Where ŷn+h,i is the h-th next step predicted value of out-of-sample data, yn+h,i is the h-th
true value of out-of-sample, and m is the total length of the out-of-sample data. In the
accuracy evaluation, we compare our proposed method, SDM-SSAV, with SSAV, SSAR,
SDM-SSAR, hybrid ARIMA-LSTM, and VARI. Meanwhile, in the simulation study, we
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compare our proposed method with an existing method that considers structural breaks,
namely SDM-SSAR.

3. Results and Discussion

This section is divided into two subsections, namely the analysis of the empirical case
and simulation study, which were obtained using the proposed methods for modeling
structural breaks.

3.1. Modeling Indonesian Export Data Using SSAR, SSAV, SDM-SSAR, SDM-SSAV, Hybrid
ARIMA-LSTM, and VARI

To ensure the appropriateness of the analysis method, it is important to identify
the characteristics of the observed data. The characteristics include measured critical
characteristics, such as the mean, standard deviation, normality, stationarity, nonlinearity,
decomposition, and structural breaks. A visual representation of Indonesia’s monthly
export data from January 1993 to December 2022 is shown in Figure 1.
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Figure 1. Indonesian monthly export value during January 1993–December 2022 (million US$).

The black line in Figure 1 depicts Indonesia’s export data from January 1993 to De-
cember 2022. In the 1990s, exports were generally stable, except from mid-1997 to 1998,
when there was a monetary crisis. Furthermore, in the 2000s, exports continued to increase
steadily, with a temporary decrease from July 2008 to February 2009. This decrease was due
to the global financial crisis, which started on 15 September 2008, when one of the largest
companies in the United States, Lehman Brothers, went bankrupt. Despite this challenge,
the Indonesian economy recovered immediately, as showed by an upward trend until its
peak in August 2011. Export performance remained highly volatile during the subsequent
decade from 2010 to 2022. This volatility was influenced by the economic slowdown of sev-
eral trading partner countries in 2015 and 2016, specifically America and China, in addition
to the outbreak of COVID-19 in early 2020. The development of Indonesian exports during
that period showed a stochastic upward trend despite the numerous turmoils from 1993
to 2022.

Four breakpoints, identified based on the results of the Bai-Perron test, are shown in
Figure 1 as blue lines, marking significant shifts in January 2001, August 2005, February
2010, and June 2018. Meanwhile, the red area in Figure 1 shows the confidence interval
of the estimated breakpoint. In addition, the detailed information about the Bai-Perron
test operation is stated in [57]. These structural breaks show that specific points in time
have experienced substantial shifts in the underlying data-generating process. Such shifts
could be attributed to various factors, including changes in economic conditions, policy
interventions, or external events. Consequently, these structural breaks introduced changes
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in statistical properties, like the mean, effectively illustrating the sensitivity of the data to
external shocks or shifts in trends.

The Teräsvirta test [56] showed a p-value of 0.0342 with a nonlinear pattern because
it is less than the 5% level. Additionally, the nonstationary nature is indicated by the
Zivot-Andrews test [58], with a statistic of −5.5793 exceeding the critical value of −5.08.
The Shapiro-Wilks test [59] further supports non-Gaussian distribution, yielding a p-value
of 1.398 × 10−13, less than the 5% level. The Zivot-Andrew test was selected due to
its consideration of structural changes in time-series data, consistent with the expected
characteristics in Indonesian export data. The test was used to determine the presence of a
unit root. Indonesian export data have considerable variability, evidenced by a substantial
standard deviation of 5627.53 million US$. In addition, it had a reasonably large average
of 9983 million US$. Table 1 shows a comprehensive overview of the characteristics of
Indonesian export data.

Table 1. Statistics descriptive of Indonesian export for the period 1993–2022.

No. Statistics

1. Observations (month) 360
2. Mean (million US$) 9983
3. Standard deviation (million US$) 5627.53

4. Struct. breaks by Bai-Perron test 2000 (January), 2005 (August),
2010 (February), 2018 (June)

5. Linearity by Teräsvirta test p-value = 0.0342 *
8. Normality by Shapiro-Wilk test p-value = 1.398 × 10−13 *

9. Stationarity by Zivot-Andrews test Test statistics = −5.5793 *;
Critical values: 0.05= −5.08

* Statistically significant at α = 0.05.

Figure 2 shows various patterns in the components of Indonesia’s export data, black
line shows the observed data, trends (blue line), seasonality (red line), and noise compo-
nents (purple line). The trend component reflects the long-term direction or pattern of the
data, showing a consistent upward movement in Indonesia’s export values. Meanwhile,
the seasonal component showed recurring patterns or fluctuations at specific intervals, de-
picting a slowdown in exports towards the end of each year. This slowdown was attributed
to extended holidays, commonly known as holiday blues, impacting trade activities during
that period.
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This analysis evaluating the predictive accuracy of the SDM-SSAV method compared
to SSAR, SSAV, SDM-SSAR, hybrid ARIMA-LSTM, and VARI, using Indonesian export
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data. A more detailed operation of hybrid ARIMA-LSTM can be seen in [52], while a more
detailed operation of the VARI method can be seen in [53]. Furthermore, in this comparison,
we group SDM-SSAV, SSAV, SSAR, and SDM-SSAR in the frequency domain method group,
while the hybrid ARIMA-LSTM and VARI methods are in the non-frequency domain group.
Experiments were conducted with the training data concerning this evaluation, exploring
several parameter combinations sensitive to forecasting accuracy. From these experiments,
the optimal parameters are a window length (L) of 12, a grouping effect (r) of one, and a
horizon of 26, representing the testing data’s size. The training data size is the total sample
minus the horizon. Meanwhile, to determine the initial values of θn+1, σ2

ε , and Cn+1 using
Bootstrap SSA, the optimum smoothing factor is 0.05 and 9.0 × 10−6. For effectiveness,
only the experimental results with the optimum parameters that yield the highest accuracy
are shown in Tables 2–6.

Table 2. RMSE of SDM-SSAV and SSAR.

h SDM-SSAV SSAR RRMSE Diebold-Mariano Test
(p-Value)

t 0.1153 0.1354 0.8521 2.20 × 10−16 *
2 0.1223 0.1434 0.8530 3.01 × 10−8 *
3 0.1288 0.1512 0.8518 1.64 × 10−5 *
4 0.1334 0.1588 0.8401 4.97 × 10−5 *
5 0.1370 0.1662 0.8242 4.08 × 10−5 *
6 0.1403 0.1734 0.8090 3.64 × 10−5 *
7 0.1431 0.1804 0.7934 4.48 × 10−5 *
8 0.1465 0.1872 0.7826 0.0001 *
9 0.1504 0.1940 0.7754 0.0004 *

10 0.1552 0.2008 0.7728 0.0012 *
11 0.1605 0.2075 0.7734 0.0036 *
12 0.1659 0.2143 0.7743 0.0097 *

* Statistically significant at α = 0.05 according to the Diebold-Mariano test.

Table 3. RMSE of SDM-SSAV and SSAV.

h SDM-SSAV SSAV RRMSE Diebold-Mariano Test
(p-Value)

1 0.1153 0.1153 1.0003 0.9637
2 0.1223 0.1248 0.9802 0.1565
3 0.1288 0.1352 0.9525 0.0179 *
4 0.1334 0.1449 0.9210 0.0024 *
5 0.1370 0.1541 0.8892 0.0003 *
6 0.1403 0.1630 0.8607 7.92 × 10−5 *
7 0.1431 0.1710 0.8368 7.97 × 10−5 *
8 0.1465 0.1791 0.8183 0.0001 *
9 0.1504 0.1865 0.8064 0.0005 *

10 0.1552 0.1939 0.8003 0.0016 *
11 0.1605 0.2008 0.7993 0.0049 *
12 0.1659 0.2076 0.7991 0.0126 *

* Statistically significant at α = 0.05 according to the Diebold-Mariano test.

Table 2 shows a comprehensive assessment of the performance of SDM-SSAV and
SSAR standards across various forecasting points (h = 1 to 12). In addition, RRMSE was
less than one for every forecasting point, showing the superior accuracy of the SDM-SSAV
method in comparison to the SSAR method. The obtained p-values of the Diebold-Mariano
test, which were consistently less than the 5% significance level for all forecasting points,
signified a statistically significant difference in the performance between the SDM-SSAV and
SSAR methods. A detailed operation of the Diebold-Mariano test is reported in the research
provided in [60]. This result suggested that modeling the SSAV coefficient parameters
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with the SDM method statistically significantly impacts the SSAV standard performance,
particularly in handling structural breaks.

Table 4. RMSE of SDM-SSAV and SDM-SSAR.

h SDM-SSAV SDM-SSAR RRMSE Diebold-Mariano Test
(p-Value)

1 0.1153 0.1350 0.8543 2.20 × 10−16 *
2 0.1223 0.1406 0.8698 5.82 × 10−8 *
3 0.1288 0.1454 0.8857 8.59 × 10−5 *
4 0.1334 0.1496 0.8916 0.0006 *
5 0.1370 0.1535 0.8925 0.0013 *
6 0.1403 0.1571 0.8933 0.0021 *
7 0.1431 0.1603 0.8929 0.0026 *
8 0.1465 0.1633 0.8976 0.0054 *
9 0.1504 0.1662 0.9053 0.0161 *

10 0.1552 0.1689 0.9189 0.0556 **
11 0.1605 0.1712 0.9376 0.1886
12 0.1659 0.1734 0.9569 0.4973

* Statistically significant at α = 0.05 according to the Diebold-Mariano test. ** Statistically significant at α = 0.1
according to the Diebold-Mariano test.

Table 5. RMSE of SDM-SSAV and Hybrid ARIMA-LSTM.

h SDM-SSAV Hybrid
ARIMA-LSTM RRMSE Diebold-Mariano Test

(p-Value)

1 0.1153 0.2987 0.3860 2.89 × 10−8 *
2 0.1223 0.3030 0.4036 0.0003 *
3 0.1288 0.3074 0.4190 0.0021 *
4 0.1334 0.3120 0.4276 0.0062 *
5 0.1370 0.3168 0.4324 0.0111 *
6 0.1403 0.3218 0.4360 0.0151 *
7 0.1431 0.3271 0.4375 0.0187 *
8 0.1465 0.3327 0.4403 0.0216 *
9 0.1504 0.3386 0.4442 0.0234 *

10 0.1552 0.3448 0.4501 0.0248 *
11 0.1605 0.3514 0.4567 0.0258 *
12 0.1659 0.3581 0.4633 0.0255 *

* Statistically significant at α = 0.05 according to the Diebold-Mariano test.

Table 6. RMSE of SDM-SSAV and VAR(2,1).

h SDM-SSAV VAR(2,1) RRMSE Diebold-Mariano Test
(p-Value)

1 0.1153 0.2739 0.4210 2.2 × 10−16 *
2 0.1223 0.2777 0.4404 6.29 × 10−10 *
3 0.1288 0.2817 0.4572 1.13 × 10−6 *
4 0.1334 0.2859 0.4666 3.25 × 10−5 *
5 0.1370 0.2885 0.4749 0.0002 *
6 0.1403 0.2867 0.4894 0.0008 *
7 0.1431 0.2891 0.4950 0.0018 *
8 0.1465 0.2936 0.4990 0.0036 *
9 0.1504 0.2978 0.5050 0.0059 *

10 0.1552 0.3029 0.5124 0.0088 *
11 0.1605 0.3086 0.5201 0.0122 *
12 0.1659 0.3147 0.5272 0.0161 *

* Statistically significant at α = 0.05 according to the Diebold-Mariano test.

Table 3 shows that the RRMSE at forecasting points h = 2 to 12 has a value less than
one, while at h = 1, both methods illustrate similar performances. All p-values from the
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Diebold-Mariano test were less than the 5% significance level except at h = 1 and 2. These
results showed that although the SDM-SSAV had smaller RMSE values at all forecasting
points, its statistical superiority in accuracy was explicitly observed at h = 3 to 12.

Table 4 shows that the SDM-SSAV method outperformed the SDM-SSAR regarding
forecasting accuracy, as illustrated by the RRMSE values consistently being less than one
for all forecasting points (h = 1 to 12). This result implied a better performance and accuracy
of the SDM-SSAV method across the forecast horizon. However, the p-value obtained from
the Diebold-Mariano test shows that the forecasting points from h = 1 to 10 are statistically
significant at the 10% level. This result indicates that the SDM-SSAV and SDM-SSAR
forecasting results are statistically different, at least up to the 10-month forecasting point.
Furthermore, it was concluded that the SDM-SSAV method was statistically superior to the
SDM-SSAR in terms of accuracy for the next ten months.

Table 5 shows that the SDM-SSAV method outperformed the Hybrid ARIMA-LSTM,
as illustrated based on the RRMSE values of less than one for all forecasting points (h = 1
to 12). This result implied a better performance and accuracy of the SDM-SSAV method
across the forecast horizon. The p-value obtained from the Diebold-Mariano test showed
that the forecasting points from h = 1 to 12 are statistically significant at the 5% level. This
result indicates that statistically, SDM-SSAV has accuracy differences and outperforms the
Hybrid ARIMA-LSTM for the next one to 12 months.

Table 6 shows that the SDM-SSAV method outperformed the VAR(2,1), as illustrated
based on the RRMSE values of less than one for all forecasting points (h = 1 to 12). This
result implied a better performance and accuracy of the SDM-SSAV method across the
forecast horizon. The p-value obtained from the Diebold-Mariano test showed that the
forecasting points from h = 1 to 12 are statistically significant at the 5% level. Despite the
statistical significance within this range, it was concluded that the SDM-SSAV method
was statistically different and superior to the VAR(2,1) in terms of accuracy for the next
one to 12 months. Based on the RMSE value in Tables 2–6 the closest to the accuracy of
the SDM-SSAV method is SDM-SSAR. This result implies that approaches that consider
structural breaks—sudden variations in time-series data—are typically more accurate than
those that do not.

3.2. Simulation Study

In the simulation study, we generated several data using Monte Carlo simulation
according to Equation (1) and setting parameter values in four scenarios as shown in
Table 7 below.

Table 7. Parameter values in the study simulation.

Scenario Sample Size π ρ β η υ

1
n = 157

n1 = 50 10 2.8 0.009 0.3 0.4
n2 = 57 6 4.2 −0.007 −0.5 −0.3
n3 = 50 12 −1.5 0.002 0.4 0.3

2 n = 207 n1 = 60 12 −1.5 0.002 0.2 0.3
n2 = 77 7 4.2 −0.007 −0.2 −0.3
n3 = 70 10 1.5 0.009 0.3 0.2

3 n = 365 n1 = 120 8 −1.0 0.003 0.2 0.2
n2 = 120 7 0.6 −0.003 −0.3 −0.4
n3 = 125 9 −1.2 0.002 0.2 0.2

4 n = 405 n1 = 140 7 1.3 0.003 0.2 0.3
n2 = 120 7 0.6 −0.004 −0.3 −0.2
n3 = 145 5 2.1 0.004 0.2 0.2

To assess the consistent pattern accuracy of the forecasting models, this simulation
study performed 100 replications in each scenario. The results of data generation from
one of the replications are then examined for several characteristics, such as stationarity,
linearity, and the presence of structural breaks, shown in Table 8 below. Table 8 shows
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that the generated data in all scenarios showed nonstationary based on test statistics of the
Zivot-Andrews test of −5.57, smaller than the critical value of −5.08. Moreover, nonlinear
characteristics are confirmed through the p-value of the Teräsvirta test, which is smaller
than the 5% significance level. This result highlights the complexity of the data; thus,
modeling with a linear model may not be sufficient to capture the underlying pattern.
Therefore, modeling with nonlinear methods might be more appropriate. In addition, the
presence of structural breaks in the data was detected based on the Bai-Perron test. The
existence of structural breaks suggested changes in statistical properties, specifically a
shift in the mean over time due to external shocks. Identifying these breaks is crucial for
accurate modeling and forecasting, as ignoring them could lead to biased or misleading
results, as demonstrated by [43]. These results indicated that the data-generating process
aligned with the proposed method’s specifications, especially in linearity and the presence
of structural breaks.

Table 8. Characteristic identification of generated data.

No Characteristics 1st Scenario 2nd Scenario 3rd Scenario 4th Scenario

1. Sample size 157 207 365 405
2. Stationary (critical value = −5.08) −5.57 * −5.57 * −5.57 * −5.57 *
3. Struct. Breaks (breakpoints t-th) 25, 50, 74, 110 60, 105, 137, 170 66, 120, 240, 306 60, 140, 212, 285, 345
4. Linearity (p-value) 0.01098 * 0.00319 * 0.00189 * 0.00402 *

* Statistically significant at α = 0.05.

In Figure 3, a series of time-series plots was generated using Equation (1) and the
parameters according to Table 7. A dashed black line depicts the breakpoints, and the
red line indicates the confidence interval of the breakpoint estimate. Breakpoints are
significant changes or shifts in a data series that delineate one segment from another, often
indicating a change in trend or behavior in the time series data. Each subfigure in Figure 3
showed distinct characteristics of the generated data. Figure 3a,b, and c show 157, 207,
and 365 time-series data points generated with four breakpoints, thus dividing the data
into five segments. Furthermore, Figure 3d shows 405 time series data points with five
breakpoints, thus dividing the data into six segments.

Figure 3 is a visual representation of the essential data components, namely the
trend, seasonality, and noise, that motivate the use of the SSA method for forecasting. In
Figure 3b,d, an upward trend was observed, while Figure 3a,c showed a downward trend.
Similarly, the four plots in Figure 3 depict different seasonal periods, representing distinct
seasonal elements. This variation in seasonal periods allows for testing the effectiveness of
the forecasting methods in handling data with diverse seasonal patterns. The noise element
was generated through a normal distribution and with a distinct average value in each
subsample (ni), while the parameter π was also set differently for each scenario. However,
the deliberate decision to maintain a constant variance value of 0.2 across all scenarios aims
to generate data with structural breaks solely in the mean, with no consideration given to
those in the variance.

As Table 4 shows, the method with the closest accuracy to SDM-SSAV is SDM-SSAR;
in this simulation study, we focus on comparing the accuracy of only these two methods.
These methods are applied to predict the out-sample data, divided into 12 forecast points
labeled as h = 1 to 12. The accuracy of both methods is then assessed using the RMSE based
on the predicted data. The results of this comparative evaluation are visually presented
through a boxplot. The data simulation process depends on several parameters, such as the
Window Length (L) and Grouping Effect (r), and configuration of the parameters detailed
in Section 2.1. The SDM-SSAR and SDM-SSAV methods were applied with alternative
parameter values, and the optimal ones were selected based on minimizing the RMSE at
each out-sample prediction point (h = 1 to 12). The process was replicated 100 times in each
scenario to determine a consistent accuracy pattern. In addition, the simulation process is
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applied to small sample sizes (n < 300), namely n1 = 157 and n2 = 207, and large sample
sizes (n ≥ 300), such as n3 = 365 and n4 = 405.
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Figure 4 compares the SDM-SSAV and SDM-SSAR models across various scenarios,
considering forecasting points from h = 1 to 12, each with 100 replications. However, the
median RMSE of the SDM-SSAV is consistently less than that of the SDM-SSAR across all
scenarios and forecasting points. These simulation results align with the ones shown in
Table 5, where the accuracy evaluation using Indonesian export data illustrated that the
RMSE of the SDM-SSAV is less than the SDM-SSAR for forecasting points ranging from
h = 1 to 12. The simulations focus on the superior accuracy of the SDM-SSAV across diverse
conditions, including small (n < 300) and large sample sizes (n > 300), non-stationary and
nonlinear data, and scenarios with structural breaks in the data. The result showed that as
the forecasting point moves further into the future, RMSE values increase. Additionally,
the performance of both methods weakens with more structural breaks.

The SDM-SSAV requires a longer simulation time than the SDM-SSAR, irrespective
of its superior accuracy. In the first scenario (Figure 4a), the SDM-SSAV lasts approxi-
mately 41,969.60 s, significantly longer than the SDM-SSAR, which is completed in about
14,885.68 s. The trend continues in the second scenario (Figure 4b), with the SDM-SSAV
requiring approximately 17,477.22 s, while the SDM-SSAR finished in a shorter time of
relatively 6554.68 s. In the third scenario (Figure 4c), the SDM-SSAV and SDM-SSAR lasted
approximately 139,061.73 s and 35,522.88 s, respectively. Finally, in the fourth scenario
(Figure 4d), the SDM-SSAV and SDM-SSAR require a simulation time of 166,869.03 s and
39,348.86 s, respectively.
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Figure 4. (a). Boxplot RMSE of the SDM-SSAV and SDM-SSAR from the data-generating process
n = 157 with L = 12, r = 1, horizon = 29, and smoothing factor = 5.0 × 10−6. (b) Boxplot RMSE of the
SDM-SSAV and SDM-SSAR from the data-generating process n = 207 with L = 12, r = 1, horizon = 24,
and smoothing factor = 2.0 × 10−6. (c) Boxplot RMSE of the SDM-SSAV and SDM-SSAR from the
data-generating process n = 365 with L = 12, r = 1, horizon = 28, and smoothing factor = 5.0 × 10−8.
(d) Boxplot RMSE of the SDM-SSAV and SDM-SSAR from the data-generating process n = 405 with
L = 14, r = 1, horizon = 27, and smoothing factor = 5.0 × 10−8.

3.3. Forecasting Indonesian Export Using SDM-SSAV

This section discusses the results of forecasting Indonesian export data for 12 months
in 2023. Applying the SDM-SSAV method, with the parameters set at L = 12, r = 1, and
a smoothing factor of 0.2 and 1.2 × 10−5. The actual Indonesian export, predictive, and
12-step ahead forecasting data are shown in Figure 5. The plotted forecast showed a
significant decline in early 2023, followed by an improvement in export performance over
the subsequent nine months, albeit with a decrease in the final three months. This decline
was attributed to a seasonal factor, where exports traditionally decrease at the beginning of
each year due to the holiday blues phenomenon. In addition, world geopolitical conditions
have changed due to the Russian invasion of Ukraine in early 2022, which directly affected
the increase in world oil prices. Uncertainty in the global geopolitical conditions has
resulted in lower demand for essential export commodities from major trading partners,
such as China, thereby influencing Indonesian export performance.
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Figure 5. The Indonesian export during January 1993–December 2022, based on predicted data
(January 1993–December 2022), and the next 12-month forecasting data (January–December 2023).

4. Conclusions

In conclusion, the precision of forecasts can be compromised by structural breaks in
time-series data. Therefore, this study addressed these challenges by implementing the
SDM methods to develop the SSAV coefficient. The SDM method played a significant
role in modeling SSAV coefficients, which were initially fixed to be adaptive according
to state and time shifts. This approach allowed for flexible adjustments to the number of
states when implementing the SDM method in SSAV. Additionally, the SSAV coefficients
derived from SDM modeling were used in the SSAV forecasting scheme, leading to the
creation of the SDM-SSAV method. Indonesian export data were used along with the
conducted simulation studies to assess the effectiveness of the SDM-SSAV in consistently
handling structural breaks. Based on the implementation of Indonesian export data and
the simulation studies, the SDM-SSAV outperformed the existing method in frequency and
non-frequency domain methods at all forecast points of h = 1 to 12 points. In addition, the
SDM-SSAV proved to be efficient at handling structural breaks better than its counterpart,
even in the case of data with nonlinear and nonstationary patterns without requiring
transformation, like differencing. However, the SDM-SSAV needed more time for data
processing compared to the SDM-SSAR. A more stable method against outlier data with a
more efficient processing time is required for future investigation.
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