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Abstract: All-Terrain Vehicles (ATVs) are popular off-road vehicles in the United States, with a
staggering 10.5 million households reported to own at least one ATV. Despite their popularity, ATVs
pose a significant risk of severe injuries, leading to substantial healthcare expenses and raising public
health concerns. As such, gaining insights into the patterns of ATV-related hospitalizations and
accurately predicting these injuries is of paramount importance. This knowledge can guide the
development of effective prevention strategies, ultimately mitigating ATV-related injuries and the
associated healthcare costs. Therefore, we performed an in-depth analysis of ATV-related hospi-
talizations from 2010 to 2021. Furthermore, we developed and assessed the performance of three
forecasting models—Neural Prophet, SARIMA, and LSTM—to predict ATV-related injuries. The
performance of these models was evaluated using the Root Mean Square Error (RMSE) accuracy
metric. As a result, the LSTM model outperformed the others and could be used to provide valuable
insights that can aid in strategic planning and resource allocation within healthcare systems. In
addition, our findings highlight the urgent need for prevention programs that are specifically targeted
toward youth and timed for the summer season.
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1. Introduction

All-Terrain Vehicles (ATVs) are popular off-road vehicles in the United States (U.S.),
with an estimated 10.5 million households owning at least one ATV in 2017 [1]. However,
despite their popularity, ATVs are known to be unstable vehicles due to their high center
of gravity, narrow wheelbase, and track width. Riding them can result in severe injuries
and even death [2]. According to the U.S. Consumer Product Safety Commission report [3],
around 504 deaths occur every year due to ATV incidents. ATV-related injuries are a
significant public health concern, with hospitalizations being a common outcome of ATV
incidents [4]. These hospitalizations not only result in significant morbidity and mortality,
but also impose a significant economic burden on healthcare systems. The cost of ATV-
related hospitalizations is substantial, with estimates suggesting that the average cost
of care for ATV-related injuries is approximately USD 90,000 per patient in the U.S. [5].
As such, understanding the patterns of ATV-related hospitalizations and being able to
accurately predict those injuries is crucial for the development of effective strategies for
preventing ATV-related injuries and reducing healthcare costs.

ATV-related injuries follow a seasonal variation, in which most hospital admissions
happen during the summer season, holidays, and weekends [6–9]. In order to effectively
predict and prevent ATV-related injuries, it is important to incorporate data seasonality into
forecasting models. Some of the most popular forecasting models for time series data with
seasonality are Facebook’s Neural Prophet, Seasonal Auto-Regressive Integrated Moving
Average (SARIMA) and Long Short-Term Memory (LSTM) [10–12]. Those models have
been increasingly used for motor-vehicle-related injury prediction, in which recent studies
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pointed out their effectiveness in predicting injuries and trends over a period of time [13–16];
yet, in the case of ATVs, little has been reported with the use of injury prediction models. An
artificial neural network has been developed to predict the severity of ATV-related injuries.
Its architecture was composed of nine hidden nodes and one hidden layer, resulting in a
correct classification rate of 68.6% [17]. Multiple linear regression models have been used
to predict hospital length of stay and costs based on factors associated with ATV-related
injuries. While length of stay was predicted by four different variables and presented
an adjusted R2 of 0.259, hospital charges were predicted by six different variables and
presented an adjusted R2 of 0.263 [18]. However, to the best of our knowledge, there has
been no study that focuses on ATV-related injury prediction that considers the seasonality
of the data and provides an accurate estimate of the number of injuries throughout the year.

In this study, we aimed to address this gap by developing a forecasting model for
ATV-related injuries that considers seasonal patterns. We conducted a thorough analysis of
hospitalization records related to ATV use and identified key factors such as demographics
and occupational usage to inform injury prevention strategies. Further, we implemented
different forecasting models such as Neural Prophet, SARIMA, and LSTM, followed by
performance evaluation. Our findings provide valuable insights into the patterns of ATV-
related injuries, aid in the development of effective prevention strategies, and help to
reduce the economic burden on healthcare systems and insurance companies.

2. Materials and Methods

Data on ATV-related injuries that led to hospitalizations were used to develop machine
learning forecast models. The study aimed to develop forecasting models for ATV-related
injuries that accounted for the data’s seasonality using different algorithms, such as Neural
Prophet, SARIMA, and LSTM. The performance of these models was evaluated by using
the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE) accuracy metrics. Figure 1 illustrates the study’s framework.
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2.1. Data Source and Treatment

This study utilized data from the National Electronic Injury Surveillance System
(NEISS) online database for the period of January 2010 to December 2021. The NEISS
database is maintained by the U.S. Consumer Product Safety Commission (CPSC) and
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provides information on injury events related to consumer products [19]. Data on injury
events were extracted from the NEISS database for all ATV-related incidents and were
compounded by several descriptors such as age, race, gender, diagnosis, body part injured,
disposition, location of the incident, and a brief descriptive narrative of the incident [20].
Currently, recommendations for ATV use among youths follow different criteria, including
engine size. It is recommended that engine sizes between 70 and 90 cc should be used by
youths of 12 years old or older, and engine sizes larger than 90 cc should be used only by
youths of 16 years old or older [21]. For this study, we adopted this criterion for sorting the
age range for the analysis.

Data obtained from the NEISS database were treated using an algorithm written in
Python programming language. First, the data were cleaned and preprocessed to ensure
that they were accurate and consistent. This included removing any duplicate data and
ensuring that the data were in the correct format (e.g., date of the incident should be
in date format). The data were then searched for references to ATV-related injuries, by
using keywords such as “ATV”, “All-Terrain Vehicle”, “Four-Wheeler”, “Quad bike”, and
variations derived from those names (e.g., “quadbike” and “4-wheeler”). We used the field
“emergency department (ED) disposition” as a way to measure the severity of injuries since
the NEISS database did not have any specifications in this regard. We created the category
“Hospitalization”, which is a binary variable (yes/no). Data entries that presented ED dis-
position codes 2 (treated and transferred), 4 (treated and admitted/hospitalized), 5 (held for
observation), and 8 (died in the emergency room) were assigned to Hospitalization = yes.
Conversely, all data entries with ED disposition codes different from 2, 4, or 5 were assigned
to Hospitalization = no.

The next step consisted of grouping the data by month instead of day (original dataset).
The column “Monthly Hospitalizations” was created to account for the total reported cases
per month. After all of these steps, the filtered and sorted data were saved in an Excel
worksheet. Lastly, the obtained data were split into testing and training datasets. The
testing dataset consisted of all ATV-related hospitalizations for the year 2021, accounting
for a total of 633 cases. The training dataset included a total of 4688 cases of hospitalizations
from the period of 2010 to 2020.

2.2. Neural Prophet Model

Neural Prophet is a combination of a neural network and the Prophet model, which
is a decomposable time-series model, developed by Meta Platforms, Inc. The model is
compounded by different modules, each of which adds a specific component to the forecast.
Some of these components can also be adjusted to be influenced by the trend, resulting in a
multiplied effect on the forecast. The model components can be described as follows [22]:

yt = T(t) + S(t) + E(t) + F(t) + A(t) + L(t), (1)

where
T(t) = Trend at time t;
S(t) = Seasonal effect at time t;
E(t) = Event and holiday effects at time t;
F(t) = Regression effects at time t for future-known exogenous data;
A(t) = Auto-regression effects at time t based on past observations;
L(t) = Regression effects at time t for lagged observations of exogenous data.
The Neural Prophet model uses a neural network to model non-linear relationships

in the data and the Prophet to model seasonality. This combination allows the model to
capture both the data’s complex patterns and seasonality in their predictions [12,23]. The
model is effective at identifying and dealing with outliers, and it proved to be robust in
handling missing data and changes in the trend [24].

The implementation of the Neural Prophet model for this study was conducted using
Python 3.9 and the “neuralprophet” library. We used automatic selection for change points
and added the influence of yearly seasonality and U.S. holidays in the model development.
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Further, we set the number of hidden layers as four, the learning rate as 0.005, and the
model’s growth as linear.

2.3. SARIMA Model

SARIMA is a stochastic model designed to analyze and forecast time series data, with
a particular focus on data that exhibit strong seasonal variation. The model is composed of
autoregression (AR), difference (I), and moving average (MA) components, with an added
seasonal component (S) to account for seasonality, as outlined by previous research [13,25].
The model is summarized in Equation (2) [13].
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“SARIMAX” package from the “statsmodels” library. Before training the model, several
steps were taken to ensure that the data were modeled accurately. The dataset’s stationarity
was analyzed through an Augmented Dickey–Fuller (ADF) test (α = 0.05), which confirmed
that the data were non-stationary (p = 0.994). After submitting the data to first-order differ-
encing, the ADF test indicated the stationarity of the data (p < 0.05). In addition, as the data
were showing an annual seasonality, we performed seasonal differencing at lag 12 (yearly).
Once we were able to identify the trend (d) and seasonal (D) differencing order components
(d, D = 1), and lag (equal to 12), we used the Auto and Partial Correlation Functions to iden-
tify the other components (p, d and q). To check whether or not the choice of the model’s
components was the best, we used a grid search to explore a range of possible values for
our estimated parameters. Then, we selected the model with the lowest Akaike Information
Criterion (AIC) score, which is a quality measure for comparing models. The chosen model,
which obtained an AIC equal to 689.60, was the SARIMA (2, 1, 2) × (2, 1, 2)12.

2.4. LSTM Model

The LSTM model is a type of recurrent neural network that excels at analyzing complex
time series data with intricate patterns and seasonality. Its ability to learn from past
observations enables it to make accurate predictions. What sets this model apart is its series
of memory cells, which can capture intricate correlation features in the data over short and
long time periods. This improvement over traditional recurrent neural networks has been
highlighted in a previous study [26].

The model was implemented by using Python 3.9 and the “LSTM” package from the
“tensorflow” library. Before fitting data to the model, the field “Monthly Hospitalizations”
from the dataset was normalized on a scale from zero to one, as this model can be sensitive
to the scale of the input data [27]. Finally, an optimal set of hyperparameters was selected
based on the best RMSE value obtained by the model and the minimum input and output’s
loss functions. A summary of the parameters used in the model is shown in Table 1.

The model’s training and validation performance were analyzed through the loss
values obtained during both training and validation steps (Figure 2). To avoid overfitting,
we implemented an early stopping function with patience equal to 50. The obtained model
was trained with a total of 198 epochs and presented loss values equal to 0.006 for both
training and validation (Figure 2).



Forecasting 2024, 6 270

Table 1. Summary of hyperparameters used for tuning the LSTM model.

Parameters Value

Number of layers 3
Dropout 0.1

Activation function Linear
Optimizer Adam
Batch size 6

Maximum epochs 400
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2.5. Accuracy Assessment of the Models

The forecasting models’ accuracy was assessed through several accuracy metrics, such
as MAE, MAPE, and RMSE. These metrics provide an indication of the difference between
the predicted and actual values, allowing us to evaluate the overall performance of the
models. MAE measures the average absolute difference between the predicted and actual
values, while MAPE measures the average percentage difference. RMSE, on the other hand,
measures the average of the squared differences between the predicted and actual values,
providing the error in terms of the actual value’s unit. Those metrics can be described
as follows:

MAE =
∑n

i=1|xi − x̂i|
n

, (3)

MAPE =
∑n

i=1
|xi−x̂i|

xi · 100
n

, (4)

RMSE =

√
∑n

i=1(xi − x̂i)2

n
(5)

where
xi = Actual value;
x̂i = Predicted value;
n = Number of observations.
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3. Results and Discussion
3.1. Demographic Characteristics and Overall Trends in Hospitalization

From January 2010 to December 2021, there were 5321 ED visits in the U.S. due to
ATV-related incidents. Males accounted for the majority of hospitalizations, with a ratio
of approximately 3:1 compared to females, as shown in Table 2. The age group with the
highest hospitalization rate was youths between 12 and 15 years old, representing 16% of
all hospitalizations. Among female patients, this trend was even more pronounced, with
19% of hospitalizations occurring in the 12–15 age group. In contrast, among male patients,
the highest incidence of ED visits occurred in the 12 years or younger age group (15.79%),
followed closely by the 30–39 age group (15.26%) and the 12–15 age group (15.21%). The
high rate of ATV-related incidents among individuals younger than 16 is consistent with
previous studies [28–31].

Table 2. Demographic and location characteristics of ATV-related hospitalizations by gender in the
U.S. from January 2010 to December 2021.

Variable

Gender

Combined Male Female

Number Percentage Number Percentage Number Percentage

Total 5321 100.00% 3945 74.14% 1377 25.88%
Age
<12 771 14.49% 623 15.79% 148 10.75%

12–15 862 16.20% 600 15.21% 262 19.03%
16–18 425 7.99% 282 7.15% 143 10.38%
18–22 531 9.98% 384 9.73% 147 10.68%
23–29 651 12.23% 504 12.78% 147 10.68%
30–39 777 14.60% 602 15.26% 175 12.71%
40–49 604 11.35% 469 11.89% 135 9.80%
50–59 450 8.46% 347 8.80% 103 7.48%
60> 354 6.65% 310 7.86% 44 3.20%

Location
Not recorded 2642 49.65% 1929 48.90% 713 51.78%

Place of recreation or sports 939 17.65% 712 18.05% 227 16.49%
Home 600 11.28% 428 10.85% 172 12.49%

Other public property 586 11.01% 433 10.98% 153 11.11%
Street or highway 515 9.68% 413 10.47% 102 7.41%

Farm/ranch 38 0.71% 30 0.76% 8 0.58%
School/daycare 1 0.02% 0 0.00% 1 0.07%

Among the reported locations, recreational or sports areas were the leading cause of
incidents, accounting for 35% of the reported locations and 17.6% of all the hospitalizations,
including the incidents without a recorded location (Table 2). The high number of incidents
in these locations may be attributed to several factors. In the U.S., ATVs are mainly used for
recreational purposes such as off-road adventures and sports events, making these areas a
prime location for incidents to occur. According to the U.S. Government Accountability
Office, 79% of all ATV riders were using their vehicles for recreational purposes by 2008 [32].
Furthermore, recreational and sports areas are often open spaces with rough terrain, which
can increase the risk of incidents [33], especially for inexperienced riders. Riders engaging
in ATV sports and recreation may take more risks and be less cautious, which can also
increase the likelihood of incidents. Lastly, the lack of proper training, safety measures
and enforcement of safety guidelines in these areas can contribute to the high number of
injuries [34,35].

It was reported that 9.7% of all the hospitalizations were caused by riding ATVs on
streets or highways (Table 2). This statistic highlights the risks of using ATVs, which are
designed for off-road activities, on paved surfaces [8,29]. These vehicles are equipped
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with low-pressure tires that are designed to offer traction on rough and slippery surfaces.
However, when ridden on smooth surfaces, such as pavements, the tires have higher
friction and adhesion with the road, which can cause the vehicle to shift laterally and
increase the risk of rollover, especially when making turns at high speeds [29].

The number of hospitalization cases associated with riding ATVs on farms and ranches
was among the lowest, accounting for 0.7% of all the reported cases (Table 2). Nevertheless,
the agricultural setting is particularly dangerous for riders, as it may present several
factors that contribute to the loss of the vehicle’s control [36,37]. As a result, the fatality
rate for ATV-related incidents in the agriculture/forestry/fishing/hunting industry was
reported to be 100 times greater compared to all other industries in the U.S. [38]. Thus, it is
noteworthy that data on farm and ranch incidents in this study may not be complete and
fail to describe the full picture. According to the Occupational Safety and Health Act of
1970 [39], agricultural properties with ten or fewer employees are exempt from reporting
working incidents, which could lead to data underrepresentation [40].

The overall trend in ATV-related hospitalizations pointed to an increase in the number
of cases over the years, as illustrated in Figure 3. The analysis also revealed that the highest
numbers of monthly hospital admissions for ATV-related injuries occurred during 2020 and
2021, with a peak of 91 hospitalizations in May 2020. This trend is consistent with reports
from a previous study that pointed out an increase of 78% in injuries involving ATVs after
the onset of shutdown measures due to the COVID-19 pandemic [41].

Forecasting 2024, 6, FOR PEER REVIEW  7 
 

making these areas a prime location for incidents to occur. According to the U.S. Govern-
ment Accountability Office, 79% of all ATV riders were using their vehicles for recreational 
purposes by 2008 [32]. Furthermore, recreational and sports areas are often open spaces 
with rough terrain, which can increase the risk of incidents [33], especially for inexperi-
enced riders. Riders engaging in ATV sports and recreation may take more risks and be 
less cautious, which can also increase the likelihood of incidents. Lastly, the lack of proper 
training, safety measures and enforcement of safety guidelines in these areas can contrib-
ute to the high number of injuries [34,35]. 

It was reported that 9.7% of all the hospitalizations were caused by riding ATVs on 
streets or highways (Table 2). This statistic highlights the risks of using ATVs, which are 
designed for off-road activities, on paved surfaces [8,29]. These vehicles are equipped with 
low-pressure tires that are designed to offer traction on rough and slippery surfaces. How-
ever, when ridden on smooth surfaces, such as pavements, the tires have higher friction 
and adhesion with the road, which can cause the vehicle to shift laterally and increase the 
risk of rollover, especially when making turns at high speeds [29]. 

The number of hospitalization cases associated with riding ATVs on farms and 
ranches was among the lowest, accounting for 0.7% of all the reported cases (Table 2). 
Nevertheless, the agricultural setting is particularly dangerous for riders, as it may present 
several factors that contribute to the loss of the vehicle’s control [36,37]. As a result, the 
fatality rate for ATV-related incidents in the agriculture/forestry/fishing/hunting industry 
was reported to be 100 times greater compared to all other industries in the U.S. [38]. Thus, 
it is noteworthy that data on farm and ranch incidents in this study may not be complete 
and fail to describe the full picture. According to the Occupational Safety and Health Act 
of 1970 [39], agricultural properties with ten or fewer employees are exempt from report-
ing working incidents, which could lead to data underrepresentation [40]. 

The overall trend in ATV-related hospitalizations pointed to an increase in the num-
ber of cases over the years, as illustrated in Figure 3. The analysis also revealed that the 
highest numbers of monthly hospital admissions for ATV-related injuries occurred during 
2020 and 2021, with a peak of 91 hospitalizations in May 2020. This trend is consistent 
with reports from a previous study that pointed out an increase of 78% in injuries involv-
ing ATVs after the onset of shutdown measures due to the COVID-19 pandemic [41]. 

 
Figure 3. Number of ATV-related hospitalizations for the period from January 2010 to December 
2021. 

Data seasonality analysis pointed out that the highest number of hospitalizations 
happened during the summer months (June, July, and August), accounting for 35% of all 
ATV-related injury cases (Figure 4). This finding aligns with both results from Table 2 and 
the previously reported seasonality patterns of ATV incidents [6–9], suggesting that ATV-

Figure 3. Number of ATV-related hospitalizations for the period from January 2010 to December 2021.

Data seasonality analysis pointed out that the highest number of hospitalizations
happened during the summer months (June, July, and August), accounting for 35% of
all ATV-related injury cases (Figure 4). This finding aligns with both results from Table 2
and the previously reported seasonality patterns of ATV incidents [6–9], suggesting that
ATV-related incidents are more likely to happen during warmer months, as most ATVs are
used for recreational purposes (Table 2).
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3.2. Performance Assessment of the Models

It was observed that the LSTM model outperformed the other two models, with an
RMSE of 3.71. The SARIMA and Neural Prophet models had RMSE values of 9.21 and
8.96, respectively (Table 3). Figure 5 shows the predicted values obtained by the models
compared to the actual values for the validation dataset.

Table 3. Accuracy metrics of the prediction models.

Models
Accuracy Metrics

RMSE MAE MAPE

LSTM 3.71 3.31 7.06%
SARIMA 9.21 6.90 11.59%

Neural Prophet 8.96 6.83 11.74%
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The SARIMA model has been successfully used to predict road traffic incidents [13,42,43],
as it is one of the most effective linear models for forecasting seasonal time series [13]. In
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addition, this model can manage the data’s secular trend, seasonal variation, and autocorre-
lation without the need for complex transformations or additional surrogate variables [42].
However, it may not accurately predict non-linear data [13], such as the number of ATV-
related hospitalizations, which explains its relatively low accuracy (RMSE = 9.21). More-
over, additive models such as SARIMA and Prophet are prone to errors when dealing with
unstable data [13]. Data analysis in this study revealed a sudden increase in the numbers of
monthly hospital admissions for ATV-related injuries from 2020 to 2021 (Figure 3), which
also influenced the performance of the SARIMA and Neural Prophet models.

In contrast to the previous models, LSTM has strong capabilities in processing non-
linear and unstable data [13,44], which explains its superior performance in predicting
ATV-related hospitalizations (RMSE = 3.71). Similar results have been reported in a previous
study. Feng et al. [13] used the LSTM, SARIMA, and Prophet models to predict the number
of road traffic incidents in Northeast China. Due to the non-linear nature of the data and
the presence of disturbance within data, it was observed that the LSTM outperformed the
other models.

3.3. Insights and Recommendations for Developing Effective Safety Guidelines and
Prevention Programs

The findings of this study highlight the need for developing and implementing ef-
fective safety guidelines and prevention programs to reduce the number of ATV-related
hospitalizations, which has a clear seasonal trend. We identified key characteristics of
ATV-related hospitalizations, including demographic characteristics, locations of incidents,
and seasonal trends, which could inform stakeholders (e.g., funding agencies, hospitals,
and insurance companies). According to the data analysis, the majority of the ED visits
occurred during the summer months, with a peak in July. Moreover, a high incidence of
injuries among youth younger than 16 years old was reported, and areas of sports and
recreation were among the leading locations in number of hospitalizations. These findings
suggest that targeted prevention programs should be implemented during the summer
season to reduce the incidence of ATV-related injuries. A hierarchy of controls was used as
a guideline to identify possible solutions for the incident patterns reported in this study [45],
as illustrated in Figure 6.
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To address the concerning trend involving youth riders’ incidents with ATVs, different
approaches could be considered. Awareness programs in schools before summer breaks
could be developed to provide educational materials and presentations to students about
ATV safety. This could include information on proper helmet use and safe riding practice.
Additionally, schools could partner with local ATV dealerships to offer hands-on safety
training courses for students. Schools could also provide resources and information to
parents to ensure that they are aware of the risks associated with ATV use and the steps they
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can take to protect their children. Lastly, youth are particularly vulnerable to ATV-related
incidents due to their physical, cognitive, and emotional immaturity [40,46–48]. To address
this issue, implementing stricter laws and regulations around the use of ATVs by minors
could help mitigate the risk of ATV-related incidents. Age restrictions, helmet laws, and
limitations on when and where minors can operate ATVs are some of the measures that
could be taken.

Further, efforts in promoting the use of vehicle safety structures could be considered
to reduce ATV-related hospitalization cases. Several successful programs have been im-
plemented to promote the use of Rollover Protective Structures (ROPS) on agricultural
tractors in different countries. In Sweden, after a decrease in the number of unprotected
tractors (without ROPS) from 24% to 8%, it was observed that the fatality rate (number of
deaths per 100,000 tractors) had fallen to zero. A similar trend was observed in Australia
after the implementation of the ROPS rebate program, where the number of unprotected
tractors decreased from 24% to 7%. As a result, the program prevented approximately two
deaths per year, within which a statistical estimate of 0.9 rollover deaths per year after the
program was observed [49]. In the United States, the success of the ROPS rebate program
in the State of New York resulted in the creation of the ongoing National ROPS Rebate
Program (NRRP). Since the implementation of the program, farmers who participated in
the NRRP have proven its effectiveness. Approximately 99.5% of the participants would
recommend the program to other farmers [50]. Similar to ROPS, Crush Protection Devices
(CPDs) were developed to protect ATV riders in the event of a rollover. In fact, 77% of the
ATV-related rollover deaths could be avoided if the vehicles had a CPD [36]. Despite that,
no ongoing efforts to promote their use in the United States have been reported.

The LSTM model could be used to inform strategic planning and resource allocation
for the public health system. Hospitals could leverage the model’s predictive power to plan
the amount of resources and health practitioners that will be necessary based on the model’s
predictions. For instance, the total estimated cost of ATV-related hospitalizations for the
2021 period based on the reported data is approximately USD 56,970,000.00 compared to
USD 56,128,991.00 obtained from the LSTM model prediction [5]. Moreover, the model
can provide both short- and long-term predictions, and time constraints should not be an
obstacle for stakeholders’ strategic planning.

4. Strengths and Limitations

Strengths of this study include the use of a large sample size (n = 5321) from a national
database to provide a comprehensive assessment of ATV-related hospitalizations in the
U.S. over an 11-year period. We also conducted a thorough analysis of the demographic
characteristics, locations of incidents, and seasonal trends to identify key characteristics
of ATV-related hospitalizations that could inform future injury prevention efforts. Addi-
tionally, the study provides valuable insights to assist in future prevention programs and
changes in safety guidelines. Lastly, it has been proven that the LSTM model is highly
effective for predicting ATV-related injuries. Consequently, it could be used to develop
more effective injury prevention strategies and reduce the economic expenses for healthcare
systems by informing strategic planning.

On the other hand, there are a few limitations to this study. The dataset lacks more
detail and additional variables that could enhance the study analysis. It did not have
any specifications about injury severity other than ED disposition, which can influence
the results. The absence of a detailed description about the occupational use of ATVs
also limits the impact of the results. Moreover, we noticed that data on farm and ranch
incidents may be underrepresented due to reporting exemptions, which could limit the
generalizability of the findings to these settings. Despite these limitations, this paper
provides important information for public health practitioners and policymakers to inform
targeted interventions and reduce the burden of ATV-related injuries.
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5. Conclusions

This study provides valuable insights into the characteristics and trends of ATV-
related hospitalizations in the United States. Our analysis identified a clear seasonal trend,
with most incidents occurring during the summer months, with a peak in July. The high
incidence of injuries among youth riders (<16 years old) and in sports and recreation areas
highlights the need for targeted prevention programs to reduce the number of ATV-related
injuries. The use of the LSTM model proved to be highly effective in predicting ATV-related
injuries, and it outperformed the SARIMA and Neural Prophet models. In addition, the
LSTM model could be utilized in developing more effective prevention strategies. The
implementation of safety guidelines and prevention programs, such as awareness programs
in schools, hands-on safety training courses, and information resources for parents, is a
crucial step in reducing the burden of ATV-related injuries on individuals, families, and
healthcare systems. Policymakers and public health practitioners should work together
to implement effective prevention programs and allocate resources effectively, leveraging
the insights provided by our study to make data-driven decisions. Ultimately, reducing
ATV-related injuries requires a multi-faceted approach that involves education, awareness,
policy, and advocacy efforts to promote safe and responsible ATV use.
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