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Abstract: Deep neural networks have demonstrated outstanding performances in agriculture produc-
tion. Agriculture production is one of the most important sectors because it has a direct impact on the
economy and social life of any society. Plant disease identification is a big challenge for agriculture
production, for which we need a fast and accurate technique to identify plant disease. With the
recent advancement in deep learning, we can develop a robust and accurate system. This research
investigated the use of deep learning for accurate and fast tomato plant disease identification. In this
research, we have used individual and merged datasets of tomato plants with 10 diseases (including
healthy plants). The main aim of this work is to check the accuracy of the existing convolutional
neural network models such as Visual Geometry Group, Residual Net, and DenseNet on tomato plant
disease detection and then design a custom deep neural network model to give the best accuracy in
case of the tomato plant. We have trained and tested our models with datasets containing over 18,000
and 25,000 images with 10 classes. We achieved over 99% accuracy with our custom model. This high
accuracy was achieved with less training time and lower computational cost compared to other CNNs.
This research demonstrates the potential of deep learning for efficient and accurate tomato plant
disease detection, which can benefit farmers and contribute to improved agricultural production. The
custom model’s efficient performance makes it promising for practical implementation in real-world
agricultural settings.

Keywords: plant disease; tomato; convolutional neural network; machine learning; deep learning

1. Introduction

One of the most significant industries is agriculture production because it directly
affects a society’s economy and social structure [1]. Agriculture production faces a signifi-
cant issue in identifying plant diseases; thus, we need a quick and precise method to do so.
We can create a reliable and accurate system with the most recent advancements in deep
learning convolutional neural networks (CNNs) [2]. In this study, we used two (individual,
combined) datasets of tomato plants with 10 illnesses, including healthy plants as well. The
major objective of this study is to compare several tomato plant diseases utilizing some of
the top convolutional neural network models, including Visual Geometry Group, Residual
Net, and DenseNet. In addition, we have also developed our neural network architecture.
Despite the complexity of datasets exceeding 18,000 and 25,000 images with 10 distinct
classes each, ResNet, DenseNet, and our custom model achieved remarkable accuracy
above 99%.

The quality and amount of a nation’s production determine how much agriculture it
can produce [3]. Any nation’s economic and social structure is directly impacted by the

AgriEngineering 2024, 6, 375–395. https://doi.org/10.3390/agriengineering6010023 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering6010023
https://doi.org/10.3390/agriengineering6010023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0001-5832-1497
https://orcid.org/0000-0002-5403-5482
https://orcid.org/0000-0002-9656-2969
https://orcid.org/0000-0001-6637-6754
https://doi.org/10.3390/agriengineering6010023
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering6010023?type=check_update&version=3


AgriEngineering 2024, 6 376

production of agricultural goods [4]. Agriculture production is essential to the advancement
of society and the economy [5]. This is the reason that diagnosing and treating plant
diseases has drawn so much attention due to the large amount of territory that farms
now cover; finding, assessing, and treating plant diseases is a tremendously difficult
problem for farmers today [6]. Traditional disease detection is a highly difficult and time-
consuming technique. Additionally, there is a high likelihood of errors, which might result
in productivity loss. Additionally, early diagnosis and treatment of plant diseases are
essential because they have a significantly higher rate of success [7].

Because the plant’s leaves are the most apparent and susceptible to disease, they are
used to recognize plant diseases [8]. We require a system that can accurately identify
the condition using images. For diagnosis purposes, plant diseases and their treatments
have been the subject of extensive research, but each has its limitations. Researchers have
employed a variety of methodologies, including deep learning, image processing, and
machine learning. As a result, these studies were fruitful, and the majority of the procedures
produced results that were superior to those of human specialists, especially deep learning.
Although there is still debate over whether neural architecture performs better, in this
study, we compared several leading neural network architectures on tomato plant diseases
using two datasets with over 1800 and 2500 sample images, respectively. Additionally, we
have included our neural network design, which produced test accuracy results of 99.22
and 99.24.

2. Related Works

Current research suggests some effective methods for diagnosing plant diseases. This
study begins with a review of studies on the many types of plant diseases and methods to
accurately identify them to better comprehend the existing literature on their identification.

Analytical research published by Punitha, Kartikeyan, Gyanesh, and Shrivastava in
2022. In their research, they have used Deep Learning architectures AlexNet, GoogLeNet,
and DenseNet with different optimizers via the stochastic gradient descent (SGD) algorithm
and root mean square propagation (RMSProp) for tomato plant disease identification
and classification to compare their accuracies. In this research, the best performer is
GoogleLeNet, with an accuracy of 99.56% [9].

Amarjeeth Singh et al. (2022) published research in which they used vegetable crops
to detect diseases like Scab, Early Blight, Leaf scorch, and Bacterial spot. In this research,
deep learning and CNN architecture were used, and they achieved an accuracy of 98.87%.
The accuracy achieved in this research is good, but it can still be improved [10].

Vishakha Kathole Mousami Munot (2022) performed a comparative survey of different
deep learning CNN architectures like the VGG, GoogleLeNet, and AlexNet to detect plant
disease using their leaves. The dataset used in this research has six different diseases and a
healthy class [11].

Khalil Khan, Rehan Ullah Khan, Waleed Albattah, and Ali Mustafa Qamar published
a paper in 2022. In this research, semantic segmentation is used to highlight the foreground
(leaf) and the background (non-leaf) and to look through each pixel for labeling. A CNN-
based model is used on the Plant Village dataset. In this research, they have achieved a
total of 97.6% accuracy [12].

Swati S. Wadadare and H. S. Fadewar (2022) have researched tomato plant diseases
using the latest deep learning technology. In this research, Inception V3 is used for tomato
plant disease detection. The transfer learning technique is used with a training accuracy of
92.19% and a test accuracy of 93.03% [13].

Chen, Hsing-Chung, Agung Mulyo Widodo, et al. (2022) published their research
on plant disease detection in which they used AlexNet. They have used 18, 345 training
data and 4585 test data. In their research, they have achieved an accuracy of 98% using
a releasing rate of 0.0005 and 75 epochs. The accuracy can be justified, but by using new
models, it can be improved further [14].
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In 2022, Khan, Muhammad Attique, et al. published their research on cucumber plant
disease detection. They have used multi-level deep entropy ELM feature selection. They
have used VGG16, ResNet50, ResNet101, and DenseNet201 deep learning CNN models. In
their research, they achieved the best accuracy of 98.4% [15].

In 2022, Xie, Yiting, Darren Plett, and Huajian Liu published research on crown rot
disease in wheat plants. In their research, they used image color and machine learning
techniques. They successfully distinguished between healthy and infected plants 14 days
earlier. In their research, the F1 scores for most datasets were higher than 0.80 [16].

Research by Kaur, Prabhjot, et al. in 2021 shows plant disease detection using a
hybrid convolutional network by applying feature reduction. They have used grape
plants with Leaf blight, Black rot, stable, and Black measles diseases. In this study, the
researchers analyzed the Plant Village dataset and employed logistic regression to reduce
the dimensionality of the extracted features. They have used state-of-the-art classifiers and
achieved an accuracy of 98.7% after 92 epochs [17].

Almadhor, Ahmad, et al. (2021) published their research in which they used machine
learning techniques for guava plant disease detection. In this research, they have used
different color and textual techniques for feature extraction with machine learning classi-
fiers like Fine KNN, Complex Tree, Boosted Tree, Bagged Tree, and Cubic SVM. In their
results, the Bagged Tree Classifier has the highest accuracy of 99% on all four guava plant
diseases [18].

Applalanaidu, Majji V., and G. Kumaravelan (2021) performed review-based research
on machine learning and deep learning for plant disease detection. In this research, they
have a different comparison for both machine learning and deep learning. For machine
learning, the SVM model has the best performance with an accuracy of 97.3%, followed by
the Random Forest classifier with 97% accuracy. For deep learning, Inception V3 has the
best accuracy of 99.76%, followed by VGG with 99.53% accuracy [19].

B. Srinivas, P. Satheesh, P. Rama Santosh Naidu, and U. Neelima (2021) used deep
learning to detect guava plant diseases. In this paper, the researchers have used Flask in
Python, in which they have created their own CNN model. The confusion matrix is used
for obtaining the accuracy, and the accuracy archived was between 65 and 85% [20].

In 2023, Murat Tasyurek and Recep Sinan Arslan published a study on a new CNN
model called Real Time-Droid (RT-Droid). RT-Droid is based on YOLO V5 and can detect
malware very quickly and accurately. To create RT-Droid, the authors first extracted features
from Android manifest files and converted them into RGB images similar to QR codes.
Leveraging transfer learning, the researchers trained VGGNet, Faster R-CNN, YOLO V4,
and YOLO V5 models on these images. Notably, the YOLO V5 model achieved exceptional
object detection accuracy in real time, surpassing the efficiency of other CNN models used
in the study. The authors also compared the results of RT-Droid with VGG Net, Faster
R-CNN, and YOLO V4 and found that it yielded better results [21].

Existing studies have made valuable contributions to tomato plant disease detection
with deep learning, typically focusing on individual datasets. Our work builds on past
research by incorporating merged datasets and developing a high-performing custom
model, potentially paving the way for more robust and efficient tomato plant disease
detection systems. After analyzing the performance of established CNN architectures
like VGG, ResNet, and DenseNet, we designed a custom model. This model achieved
high accuracy, as discussed in the results section, while also offering benefits like reduced
training time and computational cost.

3. Methods and Data Collection

In this section, an in-depth methodology for tomato plant disease recognition is
discussed. The methodology comprises four steps, as shown in Figure 1 below.
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Figure 1. Methodology.

3.1. Data Collection

Data collection might seem like the simple act of gathering information, but the path
can be riddled with obstacles. From biases to inconsistencies, let us dive into some of the
common challenges that can trip up even the most seasoned data gatherers.

Inaccurate data: The collected data may not address the key variables or information
needed to answer the intended research question.

Missing data: Gaps in the collected data, including empty fields and missing images
for specific predictions, can negatively impact model performance.

Data imbalance: Unequal distribution of samples across categories can bias the model,
hampering its performance for under-represented groups.

Data bias: Hidden within the data itself, even the most well-intentioned model
can inherit and amplify biases based on factors like gender, political affiliation, age, or
geographical origin. These biases, often subtle and difficult to detect, can lead to unfair and
inaccurate predictions.

Several techniques can be applied to address those problems:
Freely available and pre-cleaned datasets. Pre-cleaned free data can be obtained from

websites or vendors. They provide almost all sorts of data, and sources like Kaggle can
offer pre-processed and clean data.

Leveraging web crawling and scraping techniques, automated tools such as bots and
headless browsers can efficiently extract data from websites, providing valuable resources
for training machine learning models.

Private data: In cases where publicly available data is scarce or insufficient, ML
engineers can resort to generating their own synthetic data. This approach is particularly
advantageous for models requiring smaller datasets to achieve optimal performance.

Custom data: Agencies can create or crowdsource the data for a fee.
In this research, we have collected our data from Kaggle for disease recognition. We

have collected different types of image samples from Kaggle with the range from 10,000 to
40,000 images. The models are trained and tested using different data, and the performance
is closely examined to make sure the collected data is correct.
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3.2. Data Preprocessing

Data preprocessing is very important for machine learning and deep learning because
the performance and accuracy of ML/DL models directly depend upon the quality of the
data. Before the model is trained, we need to do preprocessing on the data and make sure
the data is clean, relevant, and enough.

3.3. Data Cleaning

The data used in this research is different preprocessed image data taken from Kaggle;
however, the data is pre-cleaned, but different data gave different results. This is why we
trained and tested models using different data with different sizes, quality, and conditions,
and images were captured. The different results were then compared to specify the most
suitable dataset. The model was first trained with less data from 8000 samples with good
results but not satisfactory results. The model trained and tested with 20,000–38,000 looks
to be the best-suited numbers for deep learning. The dataset created was cleaned of any
irregularities and irrelevant data.

3.4. Data Splitting

The data were split into three groups: Training, Validation, and Testing data. The
training data is used to train the model. The model uses the training data to identify
patterns and improve the accuracy. The validation data is used during the training process
to validate the model. The validation data is entered in batches and works as test data
during each step in the training process. The test data is used to test the model, and this
is data that the model has never seen before. This data is used to find the accuracy of the
model on new data. The training data is 70%. The validation data is 20%. The testing data
is 10%.

3.5. Data Augmentation

The data augmentation is used to generate new data for the model; this technique
works best for images in deep learning. Rotation, High contrast, Bright light, Low light,
and image invert augmentation are used for the models that use augmented data.

Resize and Rescale

In this step, we resize the image to our desired size. We do resize to avoid the problem
of images with different sizes because it can greatly affect the model’s overall performance.
By rescaling, we change the values of the image, e.g., we can convert the image into
grayscale. We do this process for performance gain because it limits the image colors from
0 to 1.

Data Prefetch

In this step, we fetch the data into the short-term memory and fill the buffer. This is
performed so that the data stays in the memory and the model can easily retrieve the data
when required.

Label Encoding

Label encoding is used to convert text data into a format that the model can understand.
We use label encoding to change the text data into arrays. These arrays are used to create
machine learning models for text analysis and predictions.

Term Frequency Inverse Document Frequency

The term frequency inverse document frequency is used to filter out useless data. This
technique is used to take all the important information in text data for better model performance.

3.6. Model Training

In this step, we train the model using training data. The model is a combination of
statistical formulas that become optimized using numerical values. The training data is
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passed through to the model, and the model uses different functions such as Sigmoid,
RMSE, TANH, and RELU for convergence. The model goes to global minima for the best
accuracy. The model starts from low accuracy and high loss and slowly converges to the
global minima to improve the accuracy and decrease the loss, as shown in Figure 2. Most
of the time, the model becomes stuck at local minima because of some noise in the given
data. To overcome the problem of local minima, we clean the data so it will converge to a
more global minima. In this research, we have built different deep learning models and
compared the accuracies to obtain the most suitable model.
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3.7. Model Testing

In this step, we test the model using new data that the model has not seen before. We
used test data to evaluate the model’s performance. In this step, we test all the models
and performances to select 31 of the most suitable models. We give the model test data to
make predictions and compare it with the existing results to evaluate the actual accuracy
and performance.

3.8. Model Selection

In this step, we have to select the best model amongst the VGG, ResNet 50, DenseNet
121, DenseNet169, DenseNet201, and custom model. After we train the models and test
them, we can demonstrate the performance of all the models.

We will have some models that will perform better than others. Here, we will evaluate
the models’ performances and choose the best-performing machine learning and deep
learning model.
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3.9. Implementation and Experimental Setup

Optimizing for both ease of development and performance, Python was chosen as
the programming language for building the deep learning architectures. Leveraging the
powerful combination of Keras, TensorFlow backend, and the CuDNN library, we achieved
efficient training on an NVIDIA Quadro K2200 GPU (HP, Italy) with its 4 GB memory,
640 CUDA cores, and high bandwidth.

3.10. Deep Learning Architecture

Seeking to enhance plant disease classification accuracy, researchers explored improve-
ments and modifications to existing deep learning architectures, demonstrating superior
performance in identifying plant species ailments. Among them, we have considered VGG
16 [19], AlexNet [20], ResNet [21], and DenseNet 121 [21].

3.11. Visual Geometry Group (VGG)

The VGG16 architecture is a deep convolutional neural network (CNN) that was
originally developed for image classification. It has been shown to be very effective for
a variety of image classification tasks, including plant disease detection. The VGG16
architecture consists of 16 layers, as shown in Figure 3, each of which is a convolutional
layer or a max pooling layer. The convolutional layers extract features from the input image,
and the max pooling layers downsample the features to reduce the size of the model. The
fully connected layers at the end of the network classify the features into different classes.
The VGG16 architecture has been shown to be very effective for plant disease detection.
In a study published in 2018, the VGG16 architecture achieved an accuracy of 93.5% on a
dataset of tomato and potato plant images.

AgriEngineering 2024, 6, FOR PEER REVIEW  7 
 

 

powerful combination of Keras, TensorFlow backend, and the CuDNN library, we 
achieved efficient training on an NVIDIA Quadro K2200 GPU (HP, Italy) with its 4 GB 
memory, 640 CUDA cores, and high bandwidth. 

3.10. Deep Learning Architecture 
Seeking to enhance plant disease classification accuracy, researchers explored im-

provements and modifications to existing deep learning architectures, demonstrating su-
perior performance in identifying plant species ailments. Among them, we have consid-
ered VGG 16 [19], AlexNet [20], ResNet [21], and DenseNet 121 [21]. 

3.11. Visual Geometry Group (VGG) 
The VGG16 architecture is a deep convolutional neural network (CNN) that was orig-

inally developed for image classification. It has been shown to be very effective for a va-
riety of image classification tasks, including plant disease detection. The VGG16 architec-
ture consists of 16 layers, as shown in Figure 3, each of which is a convolutional layer or a 
max pooling layer. The convolutional layers extract features from the input image, and 
the max pooling layers downsample the features to reduce the size of the model. The fully 
connected layers at the end of the network classify the features into different classes. The 
VGG16 architecture has been shown to be very effective for plant disease detection. In a 
study published in 2018, the VGG16 architecture achieved an accuracy of 93.5% on a da-
taset of tomato and potato plant images. 

 
Figure 3. VGG Architecture. 

3.12. Custom Model 
This model is our own created model, as shown in Figure 4. This model has outper-

formed most of the models we have created with performance that is the same as VGG16.  
• The first layer has 16 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The second and third layer has 32 filters and a kernel size of 3 ×3. 
• These layers have an average pooling of 2 × 2. 
• The fourth to sixth layer has 64 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The seventh to tenth layer has 512 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The first Dense layers have units of 256. 
• The second Dense layers have units of 64. 
• The third Dense layers have units of 32. 

With total layers, ten layers, and batch normalization. 

Figure 3. VGG Architecture.

3.12. Custom Model

This model is our own created model, as shown in Figure 4. This model has outper-
formed most of the models we have created with performance that is the same as VGG16.
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• The first layer has 16 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The second and third layer has 32 filters and a kernel size of 3 ×3.
• These layers have an average pooling of 2 × 2.
• The fourth to sixth layer has 64 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The seventh to tenth layer has 512 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The first Dense layers have units of 256.
• The second Dense layers have units of 64.
• The third Dense layers have units of 32.

With total layers, ten layers, and batch normalization.

4. Results

In this research, we have built different deep learning models and compared the
accuracies to obtain the most suitable model.

4.1. Visual Geometry Group 16

The VGG16 model has performed very well. It has a validation accuracy of 99 and a
test accuracy of 98. The model’s performance is very good, but if we compare it to other
models that we have used in this research, then almost all of them have outperformed the
VGG16. The VGG16 has performed very poorly on the merged data set, with an accuracy
of just 92%. Table 1 shows the model is fighting to maintain constant validation accuracy.
The training accuracy and loss are significantly better than the validation accuracy and
loss. However, the validation accuracy on the merged data is just 92.06, which is a very
bad performance.

Table 1. Visual Geometry Group 16 individual and Merged Data.

Visual Geometry Group 16 Individual Data Visual Geometry Group 16 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.96 0.0323 98.77 0.0448 99.41 0.0199 92.29 0.6432
98.76 0.0382 97.88 0.0709 99.80 0.0094 92.24 0.6590
98.90 0.0380 99.15 0.0295 99.95 0.0015 91.95 0.6751
99.24 0.0271 97.95 0.0784 99.82 0.0058 92.11 0.6922
99.32 0.0200 98.10 0.0618 99.91 0.0037 92.06 0.6915

Figure 5 shows the convergence of the model. The convergence rate is not that good
because the model looks stuck at the elbow rules, which state that the model should be
stopped from where it starts the elbow shape. In the test result, the model successfully
predicted 90% of the test subjects correctly. Only one prediction out of nine is incorrect, as
shown in Figure 6. The overall confidence that the model has shown is 98 to 100%.
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4.2. Custom Model

This is our custom-built model, and it has performed well. This model has outper-
formed the VGG16 model, but it is still not the best we have used in this research. Other
models have outperformed this model. The positive point of this model is that it has a
very simple network architecture and gives very good results in very little time at less
computation cost. The model has a constant 100 training accuracy, and the validation
accuracy changes, but this model has a more stable performance than VGG16. The model
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validation accuracy is very stable; the only drop occurred at the end. The validation loss
performance is one of the best, as shown in Table 2.

Table 2. Custom Model Individual and Merged Data.

Custom Model Individual Data Custom Model Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

100 1.7998 × 10−4 98.78 0.0483 95.86 0.1574 70.52 1.4740
100 1.2213 × 10−4 98.78 0.0481 99.72 0.0110 79.61 1.0076
100 9.4443 × 10−5 98.82 0.0486 99.96 0.0032 99.01 0.0328
100 7.4930 × 10−5 98.89 0.0497 100 0.0012 99.11 0.0355
100 6.0184 × 10−5 98.75 0.0487 100 9.1173 × 10−4 99.22 0.0289

These are the performance graphs of the custom model. The graph has converged
fast, but the stability is not that good compared to the other models we have used in this
research. As you can see, the training accuracy and loss are very stable, but the validation
accuracy and loss change rapidly. However, the model performed better on the merged
dataset, as shown in Figure 7.
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The results of nine images that we have taken from the test data are shown below. The
model has successfully predicted all the diseases accurately. The confidence of the model is
averaging almost 99% except for the on-test subject, where the model confidence is very
low at 50%, but the prediction is correct on the individual data while keeping the accuracy
and confidence to almost 100% on the merged data from Figure 8.
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Figure 8. Custom Model Individual and Merged Data Results.

4.3. Residual Net

The best-performing model we have used in this research so far has an accuracy of
more than 99.50%. ResNet is the most stable model we have used. It has the best validation
accuracy of 99.44% and the best test accuracy of 99.78% on individual data. On the merged
dataset, ResNet50 has a very good performance with 99.34% test accuracy and is just behind
Dense20, as shown in Table 3.

Table 3. Residual Net Individual and Merged Data.

ResNet Individual Data ResNet Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

99.99 5.2742 × 10−4 99.44 0.0196 100 1.6210 × 10−4 99.48 0.0282
100 2.0346 × 10−4 99.44 0.0191 100 1.6100 × 10−4 99.43 0.0286
100 1.5636 × 10−4 99.44 0.0191 100 1.5992 × 10−4 99.45 0.0285
100 1.3528 × 10−4 99.44 0.0190 100 1.5885 × 10−4 99.48 0.0285
100 1.2024 × 10−4 99.44 0.0192 100 1.5780 × 10−4 99.45 0.0284

The test and validation accuracy and loss are shown here. Using these graphs, we
can demonstrate the performance of the model, as shown in Figure 9. The model fully
converged at epoch 4, which is extremely fast. The ResNet model has the best accuracy,
as we can see in Figure 10, where the model has successfully identified all the diseases
correctly. Mostly, the confidence of the model in these test cases is 100%, and the average
confidence is more than 99%.
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4.4. DenseNet121

DenseNet121′s performance is also very good. This model has outperformed all the
models we have used in this research; it just falls behind ResNet. The DenseNet model has
a very good accuracy of 99.55% on the individual dataset. The model has not performed as
well on the merged dataset. The model has a very stable validation and training accuracy
and loss performance at each epoch. The model is converging, and the accuracy is better.
We have stopped the models at this point because the convergence rate has dropped very
low; thus, we will obtain a very low-performance gain at a high cost, as shown in Table 4.
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Table 4. DenseNet121 Individual and Merged Data.

DenseNet 121 Individual Data DenseNet121 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.26 0.0547 98.96 0.0319 98.75 0.0420 99.40 0.0207
98.69 0.0439 99.27 0.0277 99.05 0.0328 99.43 0.0219
99.00 0.0348 99.24 0.0225 99.22 0.0274 99.45 0.0207
99.10 0.0300 99.31 0.0211 99.46 0.0213 99.37 0.0218
99.25 0.0272 99.41 0.0203 99.46 0.0193 99.24 0.0209

Figure 11 shows the training validation accuracy and loss graph. The model has a very
stable graph, but the problem is that the convergence drops very quickly on both datasets,
as shown in the figures below.
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The DenseNet 121 model has the second-best accuracy, as we can see in Figure 12,
where the model has successfully identified all the diseases correctly. The confidence of the
model in these test cases gives an average confidence of more than 99%.

4.5. DenseNet169

We have achieved a test accuracy of 99.78%, the same accuracy as ResNet50. The
DenseNet169 performance was one of the best in this research. We believe that ResNet
has performed a little better than DenseNet169 because the test accuracy is the same for
both models, but the training and validation accuracy of ResNet50 is better, and also the
parameters are fewer in ResNet. As we can see, models are very stale. The model has
been almost fully trained because there are no more significant improvements, as shown in
Table 5 below. The model has fully converged, as shown in Figure 13, and does not need
any more epochs.
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Figure 12. DenseNet121 Individual and Merged Data Results.
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Table 5. DenseNet169 Individual and Merged Data.

Dense Net 169 Individual Data DenseNet169 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.49 0.0470 99.13 0.0331 99.57 0.0184 98.95 0.0346
98.84 0.0371 99.20 0.0280 99.65 0.0161 98.87 0.0388
99.12 0.0296 99.20 0.0283 99.61 0.0141 98.87 0.0374
99.15 0.0266 99.37 0.0246 99.75 0.0112 98.98 0.0368
99.40 0.0205 99.34 0.0273 99.84 0.0092 99.02 0.0358

DenseNet169 has successfully identified all of the nine test subjects correctly. The
confidence in the model is very high, averaging 99%. Only for one subject is the model
confidence at 97%, which is below the average, but the confidence is almost 100% in most
of the other subjects in Figure 14.

4.6. DenseNet201

DenseNet201 is a type of DenseNet model series. In this research, the models have
performed well with 99.78% training accuracy, 99.33% validation accuracy, and 99.67% test
accuracy. There are only two other models that have performed better than DensNet201
in this research. Table 6 shows that the training accuracy and loss are improving at each
epoch, but the main issue is that the validation accuracy and loss are not improving. For
this reason, we have ended the model training.

Figure 14. DenseNet169 Individual and Merged Data Results.

Looking at these accuracy and loss graphs, we can see that the model has stopped the
convergence. By using these graphs, we can understand that the model cannot improve
anymore, and further training can cause overfitting and gradient vanishing, as shown in
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Figure 15. These are some of the results that we have taken from testing the model. The
model has successfully identified all the diseases with almost 100% confidence. There are
no false–true or true–false predictions, but on more testing data, this model does not have
the best accuracy, as shown in Figure 16.
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Table 6. DenseNet201 Individual and Merged Data.

Dense Net 201 Individual Data DenseNet201 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

99.38 0.0240 99.41 0.0201 98.69 0.0418 99.97 0.0050
99.61 0.0171 99.27 0.0235 98.99 0.0322 99.95 0.0036
99.66 0.0148 99.17 0.0233 99.27 0.0250 99.97 0.0021
99.70 0.0131 99.37 0.0191 99.24 0.0229 100 0.0019
99.78 0.0098 99.31 0.0211 99.37 0.0204 99.97 0.0018

5. Comparative Analysis and Discussions

Unlike most prior research using transfer learning on diverse plant data, our study’s
targeted focus on tomatoes enabled the development of a custom model that delivers supe-
rior accuracy while simultaneously minimizing both model complexity and computational
requirements. This research investigated the use of deep learning for accurate and fast
tomato plant disease identification. Existing convolutional neural networks (CNNs) like
VGG, ResNet, and DenseNet were evaluated for their performance, and a custom deep
learning model was developed and tested. The custom model achieved over 99% accuracy
in identifying 10 tomato plant diseases (including healthy plants). This high accuracy was
achieved with less training time and lower computational cost compared to other CNNs.
This research demonstrates the potential of deep learning for efficient and accurate tomato
plant disease detection, which can benefit farmers and contribute to improved agricultural
production. The custom model’s efficient performance makes it promising for practical
implementation in real-world agricultural settings. The research used large datasets of
tomato plant images, which helped achieve high accuracy. Different deep learning and
machine learning models have been developed in this study. This stage involves comparing
all of the models. Here, we have to look at the models that were employed in this study,
ranked by performance from worst to best. Tables 7 and 8 show us the model, no. of layers,
the optimizer, the no. of parameters, the no. of epochs used for training the model, the
training, testing, and validation accuracies and loss for the signal dataset that we have used.

Table 7. Comparison Table with Individual Data.

Model Optimizer Layers Parameters No. of
Epochs

Training
Accuracy Training Loss Validation

Accuracy
Validation

Loss
Test

Accuracy

VGG16 Adamax 16 27,514,698 30 99.32% 0.0200 98.10% 0.0618 98.79%
Custom Adamax 10 8,598,090 30 100% 6.0618 × 105 98.75% 0.0487 99.22%

ResNet 50 SGD 50 6,315,018 10 100% 1.202 × 104 99.44 0.0203 99.78%
DenseNet121 SGD 121 51,914,250 10 99.25% 0.0272 99.41% 0.0203 99.55%
DenseNet169 SGD 169 84,028,170 05 99.15% 0266 99.37% 0.0246 99.78%
DenseNet201 SGD 201 96,873,738 05 99.78% 0098 99.31% 0.0211 99.67%
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Table 8. Comparison Table of Merged Data.

Model Optimizer Layers Parameters Training
Accuracy Training Loss Validation

Accuracy
Validation

Loss
Test

Accuracy

VGG16 Adamax 16 27,514,698 99.91% 0.0037 92.06% 0.6915 92.06%
Custom Adamax 14 8,598,090 100% 9.1173 × 10−4 99.22% 0.0289 99.24%
ResNet

50 SGD 50 6,315,018 100% 1.5780 × 10−4 99.45% 0.0284 99.34%

Dense
Net121 SGD 121 51,914,250 99.46% 0.0193 99.24% 0.0209 98.93%

Dense
Net169 SGD 169 84,028,170 99.84% 0.0092 99.02% 0.0358 98.87%

Dense
Net201 SGD 201 96,873,738 99.37% 0.0204 99.97% 0.0018 100%

5.1. Comparison Table of Individual Data

For each model created using a specific dataset, the accuracy and loss are shown in
Table 7 for training, testing, and validation. ResNet50 and DenseNet169 have the highest
test accuracies, according to the table, but ResNet50 is more effective. The VGG16 also has
the lowest level of accuracy overall.

5.2. Comparison Chart of Individual Data

Here is a graph that shows how the models have performed. The DenseNet201 model
is the best model, followed by ResNet50 in this study, as shown by the graphic. Figure 17
shows that ResNet50 has the highest overall training validation and test accuracy.
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5.3. Comparison Table of Merged Data

For all of the models created using the combined dataset, the training, testing, and
validation accuracy and loss are shown in Table 8. According to the table, DenseNet201
and DenseNet169 have the best test accuracies, but DenseNet201 is superior. Additionally,
the VGG16 once more has the lowest overall accuracy.



AgriEngineering 2024, 6 393

5.4. Comparison Chart of Merged Data

The graph below demonstrates that, except for the VGG16, most models have fared
extremely well. With Dense201, the ResNet50 has performed best, and our model is closely
following, as shown in Figure 18.
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6. Conclusions and Future Work

In this research, we have used different CNN architectures developed using different
datasets. When the results were compared, we concluded that all of the DenseNet models
had performed better, but in comparison to both datasets, DenseNet201 has extraordinary
results, followed by DenseNet169 and ResNet50. However, our own deployed model also
has accuracies of over 99% on both datasets, which is a strong reason that this model can
also be used for plant disease detection. In this research, we have discussed how we can
detect and recognize plant disease using its leaves and treatment for these plant diseases.
We have used the ResNet deep learning model and the decision tree classifier model using a
Python programming language. We have achieved very high accuracy in both models. The
problems we faced related to our system were data gathering and model selection. There is
a lot of data available, but most of it is outdated or false data. There are also a lot of machine
learning and deep learning models, and we had to build and select the best model. Models
like VGG, DenseNet, and ResNet are very computationally expensive and time-consuming
because we have to train on a lot of parameters. This model will be implemented on a drone
device along with the object detection model, which will detect the tomato leaf, and this
model will detect the disease in the tomato leaf. After the disease is detected, the system
will automatically prescribe the specified spray for the detected disease.
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