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Abstract: Leaf abnormalities pose a significant threat to agricultural productivity, particularly in medicinal
plants such as Centella asiatica (Linn.) Urban (CAU), where they can severely impact both the yield and
the quality of leaf-derived substances. In this study, we focus on the early detection of such leaf diseases
in CAU, a critical intervention for minimizing crop damage and ensuring plant health. We propose a
novel parallel-Variable Neighborhood Strategy Adaptive Search (parallel-VaNSAS) ensemble deep learning
method specifically designed for this purpose. Our approach is distinguished by a two-stage ensemble
model, which combines the strengths of advanced image segmentation and Convolutional Neural Networks
(CNNs) to detect leaf diseases with high accuracy and efficiency. In the first stage, we employ U-net, Mask-
R-CNN, and DeepNetV3++ for the precise image segmentation of leaf abnormalities. This step is crucial
for accurately identifying diseased regions, thereby facilitating a focused and effective analysis in the
subsequent stage. The second stage utilizes ShuffleNetV2, SqueezeNetV2, and MobileNetV3, which are
robust CNN architectures, to classify the segmented images into different categories of leaf diseases. This
two-stage methodology significantly improves the quality of disease detection over traditional methods. By
employing a combination of ensemble segmentation and diverse CNN models, we achieve a comprehensive
and nuanced analysis of leaf diseases. Our model’s efficacy is further enhanced through the integration of
four decision fusion strategies: unweighted average (UWA), differential evolution (DE), particle swarm
optimization (PSO), and Variable Neighborhood Strategy Adaptive Search (VaNSAS). Through extensive
evaluations of the ABL-1 and ABL-2 datasets, which include a total of 14,860 images encompassing eight
types of leaf abnormalities, our model demonstrates its superiority. The ensemble segmentation method
outperforms single-method approaches by 7.34%, and our heterogeneous ensemble model excels by 8.43%
and 14.59% compared to the homogeneous ensemble and single models, respectively. Additionally, image
augmentation contributes to a 5.37% improvement in model performance, and the VaNSAS strategy
enhances solution quality significantly over other decision fusion methods. Overall, our novel parallel-
VaNSAS ensemble deep learning method represents a significant advancement in the detection of leaf
diseases in CAU, promising a more effective approach to maintaining crop health and productivity.

Keywords: leaf abnormality classification; Centella asiatica (Linn.) Urban; Convolutional Neural
Network (CNN); agricultural monitoring; plant disease detection
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1. Introduction

Agriculture is a vital pillar of many economies, facing significant challenges due to
climate change. Among these challenges, crop susceptibility to diseases has profound
implications for growth and yield [1]. Centella asiatica (Linn.) Urban (CAU), commonly
known as Gotu Kola, is of particular interest due to its extensive medicinal properties [2].
However, like other crops, CAU is prone to leaf abnormalities, which can adversely impact
its growth and the quality of its bioactive compounds, especially asiaticoside, a crucial
triterpenoid saponin [3]. Leaf abnormalities have been found to reduce the concentration
of asiaticoside, potentially diminishing its medicinal properties [4]. Therefore, the early
detection and classification of leaf abnormalities is essential to mitigate the impact of these
diseases [5].

Currently, leaf disease detection in plants, including CAU, relies on visual inspection
by human experts such as agricultural professionals and botanists [6]. However, this
subjective approach has limitations, leading to inconsistencies in disease identification due
to varied interpretations of visual symptoms [7]. Additionally, it is time-consuming and
may not effectively identify early-stage or subtle diseases, resulting in increased crop losses
and reduced medicinal properties for CAU [8]. Thus, there is a clear research gap that
necessitates the development of automated and efficient methods for disease detection in
CAU and other crops [9]. Deep learning-based ensemble techniques, such as Convolutional
Neural Networks (CNNs) and feature extraction methods, offer a promising solution,
enabling more precise and timely disease identification and classification.

Recently, a novel double artificial multiple intelligence system (AMIS) was proposed
for skin cancer detection [10]. The AMIS integrated various image segmentation techniques,
including U-net, the threshold method, edge detection, and the clustering method, and
fused CNN architectures, such as ConvNeXtSmall, EfficientNetV2B3, and EfficientNetV2S,
resulting in a superior performance over other state-of-the-art methods. However, pertinent
research gaps remain to be addressed. Recent studies by Triki et al. [11] and Wang et al. [12]
have introduced effective segmentation methods such as Mask-R-CNN and DeepLabV3+
for leaf detection. Zhao and Wang [13], Setiawan et al. [14], and Zhang et al. [15] presented
compact yet powerful CNN architectures, including MobileNetV3-Small, SqueezeNetV2,
and ShuffleNetV2, which have shown outstanding results in image classification tasks,
including crop detection. Moreover, Pitakaso et al. [16] introduced the Variable Neighbor-
hood Strategy Adaptive Search (VaNSAS), offering a promising alternative to AMIS with a
comparable solution quality and reduced computational time.

In this study, we propose a two-stage VaNSAS ensemble deep learning approach,
incorporating novel image segmentation methods and CNN architectures, to enhance the
accuracy and efficiency of leaf disease detection in CAU. The primary research contribution
lies in the development of this two-stage ensemble deep learning model, which effectively
integrates modified CNN architectures with efficient decision fusion strategies. This study
effectively addresses the research gap concerning the automated and efficient detection of
leaf abnormalities in CAU. By implementing this ensemble approach, this research over-
comes the limitations of traditional methods, such as subjective visual inspection, providing
a precise and timely disease identification and classification system tailored for detecting
leaf abnormalities in CAU leaves. This advancement holds promising implications for the
field of plant disease detection, potentially fostering enhanced agricultural practices and
safeguarding crop yields and medicinal properties in CAU.

The organization of this paper is as follows: Section 2 will present the related literature,
while Sections 3 and 4 will illustrate the proposed model and computational results. Finally,
Sections 5 and 6 will provide the discussion and conclusion.

2. Related Literature

This research covers two essential aspects, highlighting its contributions. The first
aspect concerns existing methodologies for detecting leaf diseases or abnormalities in plants,
especially CAU. The second aspect explores the emerging field of deep learning-based
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ensemble techniques, specifically examining relevant studies that employ ensemble models
for early disease identification. This discussion emphasizes the potential advantages of
ensemble approaches compared to conventional methods.

2.1. Contemporary Methods for Detecting Leaf Diseases in CAU: Limitations, Challenges, and
Our Approach

The early and accurate detection of leaf diseases in crops like C. asiatica (CAU) is crucial
for maintaining agricultural productivity and food security. Recent advancements in this
field have primarily centered around deep learning techniques, notably convolutional neu-
ral networks (CNNs), which have shown promising results in identifying and diagnosing
plant leaf diseases with high accuracy [17–19]. These modern approaches, including the
use of transfer learning with pre-trained models and image processing techniques, have
marked a significant shift in disease detection methodologies [20,21].

Deep learning has emerged as a transformative technique in agricultural disease detec-
tion, utilizing various CNN architectures such as AlexNet, GoogLeNet, VGGNet, DenseNet,
SqueezeNet, ResNet, and MobileNet. These models have demonstrated high accuracy
levels, with some achieving rates between 96.58% and 99% [22–25]. Transfer learning,
especially using architectures such as AlexNet and MobileNetV2, has been effective in
feature extraction and disease classification [26,27].

Despite these advancements, the application of such models to specific crops, such
as CAU, presents notable limitations and challenges. The primary challenge lies in the
development of specialized models and datasets that consider the unique characteristics
and disease patterns of individual crops. There is also a need for models that can operate
effectively with limited data, a common scenario in specific crop disease detection. Ad-
ditionally, improving the scalability and accessibility of these methods is crucial for their
practical implementation in diverse agricultural settings.

Our study aims to address these limitations by developing a novel parallel-Variable
Neighborhood Strategy Adaptive Search (parallel-VaNSAS) ensemble deep learning method
that is tailored for CAU leaf disease detection. This approach employs a two-stage model
that first uses advanced image segmentation techniques, such as U-net, Mask-R-CNN,
and DeepNetV3++, for the precise identification of diseased regions. The second stage
involves the application of robust CNNs, such as ShuffleNetV2, SqueezeNetV2, and Mo-
bileNetV3, for accurate disease classification. This method not only enhances the accuracy
of disease detection but also overcomes the challenges of limited data and model general-
ization, making it a more viable solution for CAU and rendering it potentially adaptable
for other crops.

2.2. Deep Learning-Based Ensemble Techniques in Leaf Disease Detection: Focused Approaches
and Advancements

The application of ensemble methods in the domain of leaf disease detection rep-
resents a significant advancement, leveraging the combined strengths of multiple deep
learning models to enhance detection accuracy and robustness. These ensemble techniques,
particularly tailored for plant leaf disease detection, offer improved performance through
error reduction and overfitting mitigation, which is crucial for accurate and reliable disease
diagnosis in crops such as C. asiatica (CAU) [28–30].

In the context of leaf disease detection, ensemble deep learning models primarily
focus on integrating various Convolutional Neural Network (CNN) architectures. This
integration allows for a comprehensive analysis of leaf imagery, leveraging diverse perspec-
tives from multiple models to enhance disease classification accuracy [31–34]. Key to this
approach is the use of advanced image segmentation techniques, which enable the precise
identification of diseased areas on leaves. Prominent models such as U-Net, Mask R-CNN,
and DeepLabV3 have been employed for this purpose, demonstrating their efficacy in
accurately segmenting leaf images [35–40].

Further, these ensemble methods often incorporate image augmentation techniques
to expand the dataset and introduce variability, thereby improving the model’s ability
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to generalize and recognize diverse disease patterns. Techniques such as flipping, rota-
tion, scaling, and color adjustments are commonly used to augment the training data,
contributing significantly to the model’s performance [41,42].

An efficient decision fusion strategy forms an integral component of these ensem-
ble models. By optimizing the combination of outputs from various CNN architectures,
these strategies ensure that the final disease classification leverages the strengths of each
constituent model. Recent advancements in this area include metaheuristic approaches,
such as differential evolution (DE) and particle swarm optimization (PSO), which have
been adapted to optimize ensemble model weights for enhanced accuracy in disease
detection [43].

In our research, we aim to capitalize on these advancements by developing a two-stage
ensemble deep learning model specifically for leaf disease detection in CAU. This model
combines diverse segmentation techniques and CNN architectures, employing a novel
decision fusion approach to maximize accuracy. Our approach is expected to address
the unique challenges met in detecting leaf diseases in CAU, setting a new standard in
precision and reliability in this critical agricultural task.

3. Research Methodology

The research methodology for creating a deep learning model to classify leaf abnor-
malities in CAU comprises data collection, preprocessing, feature extraction, and deep
learning model development. Model performance evaluation will employ metrics such as
accuracy, precision, recall, and an F1-score, and testing will be conducted with a new set of
images to assess generalizability. This study seeks to showcase the efficacy of deep learning
techniques in detecting and managing leaf abnormalities in CAU, thereby contributing to
advancements in agricultural management.

3.1. Dataset Preparation

To prepare datasets for various types of leaf abnormalities in CAU, leaf images should
be collected and labeled according to their corresponding abnormality type or health status
in Table 1. The dataset should be balanced and split into training, validation, and testing
sets to ensure the model’s accuracy and generalizability. In addition, preprocessing the
dataset is important to remove any noise, such as background clutter or lighting variations.
Properly preparing the dataset is crucial in training deep learning algorithms to accurately
differentiate between healthy and abnormal leaves and develop an effective classification
model for efficient abnormality detection and management in agricultural practices.

Table 1. Detail of the leaf abnormality types used in this research.

Name of Leaf Abnormality Description Leaf Image Example

Normal Leaf (NL) Plant leaves are spreading, green, no lesions.
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Table 1. Cont.

Name of Leaf Abnormality Description Leaf Image Example

Worm Creep Disease (WCD) The caterpillars will eat young and old leaves
until only the stems and branches remain.
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Nitrogen Deficiency (ND)

The leaves are pale yellow. The tip of the leaf
and the edge of the leaf will gradually dry
and this will spread continuously until the

leaves fall from the tree prematurely.
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Phosphorus deficiency manifests as stunted
growth, dark green or purple pigmentation
in leaves, and underdeveloped root systems

in plants.
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The images of leaf abnormalities in CAU were obtained from a smart farm system
where the plant’s growth is controlled and monitored using hydroponics and lighting
systems. The smart farm can regulate the amount of light and nutrients provided to
the plant, among other factors. To obtain the images of the leaf abnormalities, plants
were grown for 12 weeks under these controlled conditions, and leaves with various
abnormalities were collected and photographed. These images are used to create a dataset
for the development of a machine learning model to classify the different types of leaf
abnormalities. All images have been divided into five classes: (1) normal leaf (NL), (2) red
mite disease (RM), nitrogen deficiency (ND), potassium deficiency (PD), and phosphorus
deficiency (PHD).

In our study, we divided the image data into two groups, namely, ABL-1 and ABL-2,
which contain different numbers of images. ABL-1 was further divided into two subsets,
each comprising a training set (80%) and a testing set (20%). On the other hand, ABL-2
was reserved as an unseen dataset and was used solely for testing the algorithm. Table 2
provides a breakdown of the number of images in each class, which were distributed
across the training and testing datasets. This approach allowed us to train and validate
the algorithm using multiple datasets, ensuring that the results obtained were reliable
and robust.
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Table 2. Number of sets of data in ABL-1 and ABL-2.

ABL-1 ABL-2

NL RM ND PD LI WD WCD PHD NL RM ND PD LI WD WCD PHD

Training set 1000 960 1040 1080 1072 1064 1024 1040 - - - - - - - -

Testing set 250 240 260 270 268 266 256 260 550 550 500 600 550 550 600 580

Total 1250 1200 1300 1350 1340 1330 1280 1300 550 500 600 550 550 600 580 580

Table 2 shows dataset ABL-1, comprising 14,860 images classified into classes NL, RM,
ND, PD, LI, WD, WCD, and PHD, with corresponding image counts of 1250, 1200, 1300,
1350, 1340, 1330, 1280, and 1300, respectively. Furthermore, dataset ABL-2 displays varying
image counts in each class, ranging from 500 to 600 images. The datasets are available at
https://doi.org/10.34740/KAGGLE/DS/3619913 (accessed on 6 October 2023).

In this study, we have strategically divided our dataset into two distinct types, ABL-1
and ABL-2, to comprehensively assess the performance of our proposed model. ABL-1,
constituting a diverse range of leaf images, serves as the training set, enabling the model to
learn and adapt to a wide spectrum of leaf disease manifestations. To validate the model’s
performance during training and prevent overfitting, we employed a cross-validation
approach within ABL-1. This technique allowed us to iteratively use different subsets of
ABL-1 as a validation set, providing us with essential feedback on the model’s adaptability
and generalizability.

ABL-2, an entirely unseen dataset, was reserved exclusively for final testing. This
approach was crucial in evaluating the model’s effectiveness in real-world scenarios where
it would encounter data not present during the training phase. The use of ABL-2 as a sepa-
rate testing set ensures that we assess the model’s generalization capabilities thoroughly.
The combination of rigorous cross-validation within ABL-1 and the subsequent testing
on ABL-2 offers a robust framework for validating our model’s performance, addressing
concerns of overfitting, and ensuring its applicability in practical settings.

3.2. Model Building Classification

The models developed in our study are designed to identify and classify leaf diseases
in plants, specifically focusing on C. asiatica. The input for these models is high-resolution
images of plant leaves, which are subjected to various preprocessing steps to enhance
their features. The output of these models is the classification of leaf conditions, catego-
rizing them into healthy or various disease states. This is clearly illustrated in this paper,
particularly in the sections discussing the methodology and model implementation.

Our He-Meta model features an advanced, multi-layered neural network architecture
specifically tailored for plant disease detection. The model commences with preprocessing
layers that normalize and condition the input data, preparing it for deeper analysis. This is
followed by a series of convolutional layers, each intricately designed to extract and refine
features, capturing detailed patterns essential for identifying diseases in plant leaves.

Subsequent pooling layers effectively reduce dimensionality, ensuring computational
efficiency while preserving key information. The architecture culminates with fully con-
nected layers, leading to a final softmax classification layer. This layer outputs a probabilis-
tic distribution across potential disease categories, enabling accurate diagnostics.

The model’s design is visually represented in our manuscript through detailed schemat-
ics, offering an intuitive understanding of its operation. Each layer is clearly defined, eluci-
dating its individual and collective roles in disease detection. The He-Meta model is not
just technically robust but also practically viable for agricultural applications, showcasing
its ability to differentiate effectively between healthy and diseased plant leaves.

The model consists of two stages: image segmentation and classification. In the first
stage, the input image is segmented into regions of interest using multiple segmentation
methods, including Otsu’s thresholding, K-means clustering, and watershed segmentation.

https://doi.org/10.34740/KAGGLE/DS/3619913


AgriEngineering 2024, 6 626

These segmented regions are then used as inputs for the second stage, which involves
classification using an ensemble of three convolutional neural network (CNN) architectures:
ShuffleNetV2, SqueezeNetV2, and MobileNetV3. The outputs of these three CNNs are
combined using a meta-learner to make the final classification decision.

To further improve the performance of the model, geometric image augmentation
techniques are applied to the input images. This involves applying random transformations
to the images, such as rotation, scaling, and flipping, to increase the diversity of the training
data and improve the model’s ability to generalize to new images.

Overall, the proposed model is a heterogeneous ensemble approach that combines
multiple segmentation methods, geometric image augmentation, and an ensemble of CNN
architectures to achieve improved solution quality and classification accuracy. The model’s
performance is evaluated using multiple metrics such as accuracy, AUC, and an F1-score to
ensure a comprehensive evaluation of the model’s performance.

The proposed approach to develop the leaf abnormality classification model in CAU
involves a multi-stage process aimed at enhancing model accuracy and performance. Firstly,
image segmentation techniques will be employed to eliminate extraneous information and
reduce the computational burden by focusing on regions of interest. Secondly, image
augmentation techniques will expand the training dataset, increasing image variety and
complexity for improved generalization and robustness. Finally, an ensemble deep learning
approach will be adopted, combining diverse CNN architectures for a powerful and
accurate classification model. This ensemble strategy ensures reliable predictions of leaf
abnormalities in CAU by capitalizing on the strengths of multiple models while mitigating
their weaknesses.

3.2.1. Image Segmentation

Image segmentation plays a pivotal role in ensuring the accuracy and efficacy of
deep learning-based models for leaf abnormality classification in CAU. By discerning and
distinguishing various leaf regions, including healthy and abnormal ones, segmentation
enables precise diagnosis and classification. To develop the leaf abnormality classification
model in CAU, various image segmentation methods are available, among which the U-net,
Mask R-CNN, and DeepLabV3+ architectures stand out as popular and effective.

The selection of U-net, Mask R-CNN, and DeepLabV3+ as the image segmentation
methods for our ensemble leaf disease classification system is well-founded and justifiable
due to their distinct and complementary strengths. U-net excels in accurately delineating
intricate object boundaries, which is crucial for precise leaf disease localization. Meanwhile,
Mask R-CNN’s capability to perform instance segmentation empowers the system to distin-
guish between multiple overlapping instances of the same disease, enhancing classification
accuracy in crowded leaf images. Moreover, the incorporation of DeepLabV3+ makes
available its exceptional ability to capture multi-scale contextual information, facilitating
the robust segmentation of diverse leaf structures and background elements. By leveraging
the unique advantages of these three state-of-the-art models, our ensemble segmentation
technique aims to combine their complementary strengths, thereby bolstering the accuracy
and efficacy of our leaf disease classification system and instilling confidence in its ability
to yield superior performance compared to using any single segmentation method.

U-net is known for its encoder–decoder architecture, where the encoder captures
the contextual information from the input image, and the decoder recovers the spatial
information by up-sampling the feature maps [44,45]. The skip connections between the
corresponding encoder and decoder layers enable the preservation of fine-grained details
during the up-sampling process. This characteristic makes U-net particularly effective in
tasks where the precise localization of object boundaries is crucial. It excels in medical
image segmentation and in other applications where the objects of interest exhibit intricate
shapes and fine structures.

Mask R-CNN extends the popular Faster R-CNN object detection framework to
perform instance segmentation [11]. It is capable of both object detection and pixel-level
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segmentation within the same model. The key advantage of Mask R-CNN is its ability to
generate individual object masks, allowing it to differentiate between instances of the same
object class. This makes Mask R-CNN well-suited for scenarios with multiple overlapping
objects, where distinguishing between instances is critical. Applications include computer
vision tasks involving crowded scenes, object counting, and interactive image segmentation.

DeepLabV3+ is a state-of-the-art semantic image segmentation model that utilizes
dilated convolutions to capture multi-scale contextual information effectively [12]. This
helps in preserving both local and global information within the segmented regions. Ad-
ditionally, DeepLabV3+ incorporates an Atrous Spatial Pyramid Pooling (ASPP) module,
which further enhances the model’s ability to handle objects of various sizes. Its remarkable
performance on large-scale datasets and complex scenes with diverse objects makes it
particularly advantageous for semantic segmentation tasks in areas such as autonomous
driving, urban scene comprehension, and satellite imagery analysis.

All methods will be used in the same model as the heterogeneous image segmentation
methods. The solutions yielded by different techniques will be combined using the meta-
learner, which will be used as the decision fusion strategy (explained in a later section).
The heterogeneous image segmentation framework is depicted in Figure 1.
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Figure 1 illustrates the process whereby the CAU undergoes segmentation using
three distinct image segmentation techniques, each generating its own respective solutions.
Subsequently, a meta-learning approach is employed to fuse these individual solutions
into a unified segmentation result. This methodology increases the likelihood of selecting
the most appropriate segmentation method for specific image types, in contrast to relying
solely on a single segmentation technique. The resultant solution is further augmented by
optimal weights adjusted through the meta-learning process, thereby yielding the most
optimal image-segmented outcomes.

3.2.2. Image Augmentation

Image augmentation constitutes a fundamental and indispensable technique for en-
hancing model performance and accuracy. It involves artificially expanding the training
dataset by applying diverse transformations to the images, encompassing rotations flips,
zooms, and color jittering. This process fosters an increased image variety and complexity,
thereby facilitating superior model generalization and robustness. In the context of CAU,
the integration of image augmentation aids the model in recognizing a broader spectrum
of leaf abnormalities and variations.

Various image augmentation techniques have been proposed and effectively employed
in prior research [46,47]. These include random cropping, random rotation, random scaling,
and random flipping. These techniques have demonstrated significant improvements in
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model performance and generalization. Random cropping generates additional training
images by randomly selecting sub-regions from the original image, while random rotation
and scaling simulate variations in leaf orientation and size, respectively. Incorporating these
augmentation methods bolsters the model’s capability to accurately detect and classify leaf
abnormalities, contributing to more comprehensive and reliable agricultural management
and disease prevention. Figure 2 shows an example of the image augmentation used in
this research.
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3.2.3. CNN Architectures

Our proposed ensemble deep learning-based model for classifying leaf abnormalities in
CAU comprises three selected CNN architectures: MobileNetV3-Small [13], SqueezeNetV2 [14],
and ShuffleNetV2 [15]. These CNN architectures were chosen due to their small size, high
accuracy, and efficiency in various computer vision tasks, particularly on mobile and embedded
devices. Their sizes range from 0.5 to 5 MB, and they have a demonstrated accuracy exceeding
90% in diverse applications [44,48,49].

By effectively fusing the strengths of these models and minimizing their weaknesses,
our proposed model significantly enhances the accuracy and effectiveness of leaf abnormal-
ity detection and diagnosis in CAU. This provides farmers with a reliable and efficient tool
to manage and prevent plant diseases, leading to improved crop yields and enhanced farm
profitability.

MobileNetV3-Small was selected for its efficiency and suitability for mobile and
embedded applications. It achieves high accuracy in image classification while requiring
fewer computational resources. This CNN was trained on a substantial dataset of healthy
and abnormal CAU leaves, and its output was combined with other integrated CNNs to
enhance the classification system’s accuracy.

SqueezeNetV2 was chosen for its compact size and low computational complexity, yet
it maintains high accuracy in image classification. The ensemble was trained on a dataset
of healthy and abnormal CAU leaves, and its output was combined with other CNNs using
model stacking.

ShuffleNetV2 was selected for its high accuracy and low computational cost, which
are achieved through channel shuffle operations. It was trained on a large dataset of labeled
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images of CAU leaves with different types of abnormalities. In the ensemble model, its
output was combined with other CNNs using a weighted average approach.

The utilization of an ensemble deep learning model, combining multiple CNN outputs,
results in improved accuracy and robustness in the CAU leaf abnormality classification
system. Each CNN’s unique characteristics in the ensemble model enable the more accurate
and efficient identification of diseased leaves, ultimately enhancing the overall productivity
and quality of CAU leaf production.

3.2.4. Optimizing of the Decision Fusion Strategy

In our research, we have embraced a tailored variant of the Variable Neighborhood
Strategy Adaptive Search (VaNSAS) as the preferred decision fusion approach, which has
been effectively employed in both image segmentation and CNN architecture integration.
Originally introduced by Pitakaso et al. [16], VaNSAS successfully addresses a specialized
case of the vehicle routing problem (VRP), showcasing exceptional efficacy in solving
network-based challenges. In light of the integration of diverse segmentation techniques
and CNN architectures, akin to a network flow problem, the determination of optimal
weights for solutions derived from distinct sectors significantly impacts the accuracy of
our model’s predictions. It is with a sense of confidence that we have chosen VaNSAS as
the most suitable decision fusion strategy, enabling us to effectively ascertain these crucial
optimal weights, thus bolstering the overall prediction accuracy in our proposed model.

The Variable Neighborhood Strategy Adaptive Search (VaNSAS) technique will be
employed to determine the optimal weight for fusing diverse solution types obtained from
various architectures. This approach will be compared with other decision fusion strate-
gies, namely, the unweighted average model (UWM), the differential evolution algorithm
(DE) [50], and particle swarm optimization (PSO) [51].

The unweighted average model (UAM) assigns equal weight to each prediction value
(Yij), where i denotes the CNN label, and j indicates the prediction class (also applicable to
segmented image classes, represented as 0 or 1). For fusion processes, the UAM employs
Equation (1), while VaNSAS, DE, and PSO adopt Equation (2) to compute the final weight.
Here, Yij represents the predicted value of CNN i for class j before applying both equations.
Subsequently, following the fusion of multiple CNN results, Vj is utilized for categorizing
class j, with CNN i assigned weight Wi, considering I as the number of CNNs/segmentation
methods and J as the number of classes.

Vj =
∑I

i=1 Yij

I
(1)

Vj = ∑I
i=1 WiYij (2)

VaNSAS, DE, and PSO were employed to determine the optimal value of Wi for the
given scenario. The unweighted average decision fusion strategy (UWA) offers a straightfor-
ward and computationally efficient approach for ensemble deep learning model integration.
UWA assigns equal weights to each CNN, ensuring ease of implementation and interpreta-
tion. However, UWA’s lack of optimization capabilities restricts its ability to finely tune
ensemble performance. In contrast, differential evolution (DE) exhibits robust global search
capabilities, making it suitable for intricate optimization problems, particularly in noisy
landscapes. DE adapts well to multimodal search spaces but may converge slower and
require more memory due to its population-based approach. On the other hand, particle
swarm optimization (PSO) strikes a balance between exploration and exploitation, enabling
faster convergence. Nonetheless, PSO’s performance may be sensitive to parameter settings,
and it may encounter challenges in highly complex landscapes.

VaNSAS, in essence, comprises four integral steps: (1) the generation of a set of
initial tracks or solutions; (2) the track touring process facilitated by black box operators
(improvement box: IB); (3) the regular updating of heuristics information; and (4) the
iterative repetition of steps (2) and (3) until a predetermined termination criterion is met.
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3.3. The Initial Tracks Generation

This section involves the generation of NT (number of tracks) random tracks. Each
track possesses dimensions of 1 × D, where D denotes the number of image segmentation
methods or the CNN’s architectures. The initial track utilized in this study is a real number,
uniformly and randomly generated between 0 and 1, following Equation (3):

Xki1 = U(0, 1) (3)

In this context, Xki1 represents the value in track k at position i during the first
iteration. Here, i denotes the number of available CNN/segmented methods, and k
signifies the predefined number of tracks. Additionally, two additional sets of tracks,
namely, the best tracks (BT) and random tracks (RT), were also randomly generated during
the initial iteration.

Bki1 = U(0, 1) (4)

Rki1 = U(0, 1) (5)

In the given context, Bkit represents the set of best solutions obtained from iteration one
to iteration t, while Rkit is randomly selected using a specific formula. For the first iteration,
the initial Bkit and Rkit are randomly generated using Equations (4) and (5), respectively.
Subsequently, Equation (6) is utilized to update Xkit, where the value of Xki in iteration t + 1
corresponds to the value of Xki in iteration t, considering a selected improvement box (IB)
operator. An example of the track that has D = 5 is as follows: {0.45, 0.03, 0.45, 0.14, 0.54}.
The value of the track will be re-calculated to obtain the value of Wi.

Pki =
Xki

∑i
i=1 Xki

(6)

Equation (7) is modified to deal with k number of tracts. Ckj is utilized for categorizing
class j using track k, and Pki is the weight of CNN/segmentation method i using track
k values.

Ckj = ∑I
i=1 PkiYij (7)

3.4. Track Touring Process

The tracks iteratively tour by improving the solution using the improvement box (IB).
In this context, 4 IBs will be used to improve the solution. These methods are differential
evolution-inspired (DEI), random crossover (RC), single-bit mutation-inspired (SMI), and
scaling factors (SF). These methods use Equations (8), (9), (10), and (11), respectively.

Xkit = ρXrit−1 + F1
(

Bgbest
i − Xrit−1

)
+ F2(Xmit−1 − Xrit−1) (8)

Xkit =

{
Xkit−1 i f Rki ≤ CR
Rkit−1 otherwise

(9)

Xkit =

{
Xklt−1 i f Rki ≤ CR
Xnlt−1 otherwise

(10)

Xkit =

{
Xkit−1 i f Rki ≤ CR
RkiXkit−1 otherwise

(11)

In this context, ρ denotes the evaporation rate, set to 0.05, while F1 and F2 represent
the enhancing factors, set to 3 and 5, respectively. Xkit represents a random number lying
within the range of 0 to 1 for track k, position i, iteration t, and Rki corresponds to the
random number for track k at position i. CR is the crossover rate, set to 0.6, and r, n, and m
are random tracks distinct from track k.

The track can select an IB in the current iteration regardless of the selection made in
the last or previous iterations, but the chances to select each IB can be reduced or increased
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depending on the solution quality generated using that IB. The probability function of
selecting an IB b in iteration t is shown in Equation (12). When F is set to 0.2, Abt−1 is the
average solution quality of all tracks that have selected IB b so far, and Nbt−1 is the number
of tracks that have been selected (IB p) up to the current iterations. Ibt−1 will be increased by
1 if the IB contains Bgbest

i , and increase by zero otherwise; K is set to 20 (constant number).
All predefined parameters have been set according to the preliminary test of this research.

Pbt =
FNbt−1 + (1 − F)Abt−1 + KIbt−1 + ρ

∣∣∣Abt−1 − Abest
t−1

∣∣∣
∑B

b=1 FNbt−1 + (1 − F)Abt−1 + KIbt−1Ibt−1 + ρ
∣∣∣Abt−1 − Abest

t−1

∣∣∣ (12)

3.5. Probability Update for the IB

For every iteration, the values of the following parameters need to be updated accord-
ing to the current situation. These factors are Rki, XkitNbt, Abt, Bgbest

i , and Ibt−1. Then, the
steps in Sections 3.2 and 3.3 need to be iteratively executed until the termination condition
is met (limited computational time or number of iterations).

3.6. The Comparison Methods

In this study, we compared the proposed methods using the differential evolution
algorithm (DE) and particle swarm optimization (PSO), which is adaptive, allowing it to fit
to our method [52,53]. Figure 3 shows the framework of the proposed model, which we
have developed to classify the types of leaf abnormalities seen in C. asiatica (Linn.) Urban.
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Figure 3 shows image segmentation for the training dataset using three distinct meth-
ods. After this, the segmented results are subjected to one of four decision fusion strategies:
unweighted average (UWA), differential evolution algorithm (DE), particle swarm optimiza-
tion (PSO), and Variable Neighborhood Strategy Adaptive Search (VaNSAS). Subsequently,
the segmented images are processed through image augmentation before being fed into a
heterogeneous ensemble of MobileNetV3, SqueezeNetV2, and ShuffleNetV2 CNN models.
Similar to the segmentation step, the CNNs are fused using the same decision fusion
strategies. Finally, the classification is predicted. On the other hand, the testing dataset
follows the same procedure but omits image augmentation.

3.7. Evaluation of Performance Metrics

The assessment of performance across a varied collection of models, encompassing
both cutting-edge and previously established models tailored to analogous datasets, will be
undertaken utilizing the ensuing metrics: (1) accuracy, (2) F1-score, and (3) AUC (Area Un-
der the Curve). The computation of accuracy and the F1-score are delineated through
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Equations (13) and (14), respectively. Furthermore, an elaborate exposition of the AUC is
provided in the subsequent sections for comprehensive understanding.

Accuracy =
nTP + nTN

nTP + nPN + nFP + nFN
(13)

F1 − score =
2nTP

2nTP + nFP + nFN
(14)

where nTP denotes the number of true positives, nTN corresponds to the number of true
negatives, nFP signifies the number of false positives, and nFN represents the number of
false negatives. Beyond accuracy, the Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC) emerges as a pivotal metric for evaluating performance, particularly
within the realm of binary classification endeavors. The ROC curve delineates the equilib-
rium between the true positive rate and the false positive rate, with the AUC quantifying
the extent of this curve. Elevated AUC values signify enhanced model efficacy, rendering it
an indispensable instrument for the comparative analysis of diverse models. Collectively,
these metrics furnish a holistic appraisal of the deep learning model’s capabilities and
limitations, which is imperative for informed model selection and optimization processes.
The algorithm employed to compute the AUC in our study is accessible via the Scikit-learn
documentation at ‘https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
roc_auc_score.html.(accessed on 2 October 2023)’.

4. Computational Framework and Result

In this study, we utilized two computing resources to develop and evaluate our
algorithm. For the training phase, we used Google Collaboratory’s resources, including
an NVIDIA Tesla V100 with 16 GB of RAM, for efficient model training. To evaluate our
model’s performance, simulations were conducted on a separate system with two Intel
Xeon-2.30 GHz CPUs, 52 GB of RAM, and a Tesla K80 GPU with 16 GB of GPU RAM,
capable of handling computational demands and providing reliable results. All methods
proposed and evaluated in this study were developed in Python 3.10.8 and executed on the
hardware configuration previously described. To achieve the best results, we divided the
computational work into three phases. Firstly, we tested various combinations of entities
to identify the optimal configuration for our proposed model. Secondly, we compared
the effectiveness of our optimized model with state-of-the-art methods from the literature.
Lastly, the model was tested with an unseen dataset using the leaf abnormality dataset
collected in-house. This two-part approach ensures that our proposed model is both
optimized and effective compared to existing approaches.

4.1. Optimizing the Model Entities

The entities of the proposed model are the exiting of image segmentation, image
augmentation, and the use of meta-learning or the simple unweighted average (UWA) as
the decision fusion strategy. The CAU leaf abnormality classification deep learning model
should be evaluated using multiple metrics, such as “accuracy”, “AUC”, and “F1-score”, to
ensure a comprehensive understanding of the model’s performance. These metrics take
into account the various aspects of the classification task, such as true positive rate, false
positive rate, and precision. Using these metrics can help researchers accurately evaluate
the model’s performance and compare it to other models proposed in the literature. The
computational results for the accuracy, AUC, and F1-score of each experimental treatment
using different inputs of the model entities are shown in Table 3. The average accuracy
values using different types of entities are shown in Figure 4.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
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Table 3. Experimental results reveal the optimal combination of model entities.

No.

Segmentation Augmentation Decision Fusion Strategy
Accuracy AUC

F1-
ScoreNo

Segment
With

Segment
No

Augment
With

Augment UWA DE PSO VaNSAS

1 - - - - - 85.65 86.06 86.74
2 - - - - - 83.81 84.17 85.09
3 - - - - - 84.02 84.23 85.11
4 - - - - - 84.59 85.94 86.32
5 - - - - - 86.71 86.82 87.03
6 - - - - - 88.28 88.40 89.55
7 - - - - - 89.85 90.03 91.28
8 - - - - - 90.48 90.85 92.47
9 - - - - - 89.63 90.58 91.38

10 - - - - - 90.41 90.96 91.57
11 - - - - - 92.19 93.17 93.26
12 - - - - - 93.46 93.63 94.02
13 - - - - - 92.82 94.01 94.23
14 - - - - - 94.39 94.48 94.75
15 - - - - - 94.54 95.01 95.34
16 - - - - - 96.31 96.47 96.69
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Based on the computational results presented in Table 3 and Figure 4, it is evident
that image segmentation plays a crucial role in improving the accuracy of the classification
model, with an increase of 7.26% compared to the model that does not use it. The use
of image augmentation also leads to significant improvement, with a 4.21% increase in
accuracy compared to the model that does not use it. Moreover, using VaNSAS as the
decision fusion strategy further enhances the solution quality by 2.83%, 2.23%, and 1.18%
compared to using UWA, DE, and PSO, respectively. Therefore, it can be concluded that
incorporating image segmentation, image augmentation, and VaNSAS as a decision fusion
strategy are effective techniques for improving the accuracy of the CAU leaf abnormality
classification deep learning model.

4.2. Comparison of Optimal Proposed Model with the State-of-Art Methods (ABL-1)

In this research, we compare our proposed model with state-of-the-art methods listed
in Table 4. To ensure a fair comparison, all compared methods were reprogrammed for
testing and training with our dataset. Initially, we compared the homogenous ensemble of
selected architectures, which included MobileNetV2, SqueezeNetV2, and ShuffleNetV2.
Subsequently, we selected single state-of-the-art methods with sizes less than 56 MB to
compare with the proposed model while ensuring that the model’s size was no more than
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1.6 times that of our proposed model. The computational results of all compared methods
are presented in Table 5, and we also include the results of 3- and 5-fold cross-validations
in Table 6 [26,27].

Table 4. Detail of the compared methods.

Method Description Number of
CNN

Total Size
(MB)

Training Time
(min)

Testing Time
(min/image)

Ho-Mo [13] Homogenous Ensemble
Mobile NetV3 7 35.0 65.38 0.62

Ho-SQ [14] Homogenous Ensemble
Squeeze NetV2 8 38.4 67.09 0.64

Ho-Sh [15] Homogenous Ensemble
Shuffle NetV2 5 37 66.27 0.64

EfficientNet-B2 [54] Single Model 1 41 70.50 0.68
EfficientNet-B3 [54] Single Model 1 44 73.94 0.70

ResNet-50 [55] Single Model 1 44 74.11 0.72
DenseNet121 [56] Single Model 1 33 58.43 0.56

Inception-ResNet-v2 [57] Single Model 1 56 78.08 0.84

He-Meta (proposed model)
Heterogeneous Ensemble

ShuffleNetV2, Squeeze
NetV2 and Mobile NetV3

6 34.4 60.41 0.61

Table 5. KPIs of the tested dataset using various methods.

Method AUC F1-Score Accuracy

Ho-Mo [13] 96.09 95.78 94.70
Ho-SQ [14] 95.42 95.01 94.81
Ho-Sh [15] 94.27 94.13 93.38

EfficientNet-B2 [54] 95.07 94.19 93.86
EfficientNet-B3 [54] 94.51 94.40 93.92

ResNet-50 [55] 93.46 93.07 92.75
DenseNet121 [56] 93.26 92.11 91.08

Inception-ResNet-v2 [57] 97.69 97.74 97.38
He-Meta (proposed model) 98.95 98.82 98.51

Table 6. Cross-validation metrics.

Method
3-cv 5-cv

AUC F1-Score Accuracy AUC F1-Score Accuracy

Ho-Mo [13] 96.11 ± 0.07 95.81 ± 1.81 94.71 ± 0.64 96.14 ± 0.35 95.83 ± 0.27 94.70 ± 0.37
Ho-SQ [14] 95.46 ± 0.76 95.05 ± 1.87 94.83 ± 0.47 95.43 ± 0.65 95.03 ± 0.29 94.83 ± 0.53
Ho-Sh [15] 94.32 ± 0.58 94.18 ± 0.98 93.41 ± 0.72 94.31 ± 0.86 94.13 ± 0.36 93.38 ± 0.41

EfficientNet-B2 [54] 95.10 ± 0.76 94.23 ± 0.85 93.88 ± 0.86 95.10 ± 0.29 94.21 ± 0.85 93.89 ± 0.25
EfficientNet-B3 [54] 94.54 ± 0.48 94.41 ± 0.78 93.93 ± 1.82 94.51 ± 0.67 94.43 ± 0.52 93.97 ± 0.31

ResNet-50 [55] 93.51 ± 0.94 93.08 ± 0.67 92.76 ± 0.98 93.46 ± 0.73 93.11 ± 0.58 92.77 ± 0.26
DenseNet121 [56] 93.28 ± 0.32 92.13 ± 0.56 91.12 ± 0.45 93.29 ± 0.27 92.16 ± 0.97 91.10 ± 0.12

Inception-ResNet-v2 [57] 97.72 ± 0.43 97.76 ± 0.42 97.39 ± 0.37 97.70 ± 0.47 97.74 ± 0.12 97.41 ± 0.04
He-Meta (proposed model) 98.97 ± 0.19 98.86 ± 0.32 98.55 ± 0.29 98.99 ± 0.27 98.83 ± 0.07 98.55 ± 0.08

After conducting a thorough analysis of the results presented in Tables 5 and 6, it is
evident that the proposed method (He-Meta) outperforms other methods proposed in the
literature by an average of 4.85%. Specifically, the He-Meta model provides significantly
better accuracy when compared to other models, such as Ho-Mo [19], Ho-SQ [17], and
Ho-Sh [18], which are homogenous ensemble models, as well as single models, including
EfficientNet-B2 [21], EfficientNet-B3 [21], ResNet-50 [22], DenseNet121 [58], and Inception-
ResNet-v2 [21]. The He-Meta model yielded a 4.02%, 3.90%, 5.49%, 4.95%, 4.89%, 6.21%,
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8.16%, and 1.16% higher accuracy than the aforementioned models, respectively. When
categorized into three groups based on model type, the He-Meta model showed a 4.47%
improvement over homogenous ensemble models and a 5.07% improvement over single
models with similar or larger sizes. It is important to note that the proposed model achieves
these results while maintaining a relatively small model size, making it an efficient and
effective solution for image classification tasks.

4.3. Comparison with the Unseen Dataset (ABL-2)

The unseen dataset is an important aspect when evaluating the performance of a machine
learning model. This dataset consists of new data that have not been seen by the model during
training or validation. Testing the model on the unseen dataset provides a more accurate
assessment of how well the model will perform on new and unseen data in the real world. This
helps to ensure that the model is not overfitting or memorizing the training data but rather
generalizing and learning patterns that can be applied to new data. Therefore, evaluating the
model’s performance on both the training and testing datasets, as well as the unseen dataset,
is important to ensure the model’s effectiveness and generalizability. The computational result
of the testing of ABL-2 is shown in Tables 7 and 8.

Table 7. KPIs of the tested dataset using various methods of ABL-2.

Method AUC F1-Score Accuracy

Ho-Mo [13] 96.05 95.73 94.67
Ho-SQ [14] 95.39 94.97 94.74
Ho-Sh [15] 94.25 94.05 93.35

EfficientNet-B2 [54] 95.06 94.12 93.78
EfficientNet-B3 [54] 94.48 94.32 93.87

ResNet-50 [55] 93.44 93.03 92.71
DenseNet121 [56] 93.18 92.08 91.04

Inception-ResNet-v2 [57] 97.68 97.71 97.35
He-Meta (proposed model) 98.93 98.75 98.45

Table 8. Cross-validation metrics of ABL-2.

Method
3-cv 5-cv

AUC F1-Score Accuracy AUC F1-Score Accuracy

Ho-Mo [13] 96.13 ± 2.48 95.72 ± 2.03 94.64 ± 1.48 96.14 ± 1.57 95.73 ± 2.02 94.65 ± 2.13
Ho-SQ [14] 95.43 ± 0.81 95.05 ± 0.54 94.77 ± 1.51 95.45 ± 1.86 95.05 ± 2.81 94.78 ± 2.56
Ho-Sh [15] 94.22 ± 0.86 94.16 ± 0.68 93.34 ± 0.74 94.23 ± 1.47 94.18 ± 1.04 93.34 ± 0.85

EfficientNet-B2 [54] 95.07 ± 1.48 94.15 ± 1.67 93.88 ± 1.74 95.08 ± 2.15 94.15 ± 1.51 93.89 ± 1.07
EfficientNet-B3 [54] 94.50 ± 1.85 94.36 ± 1.74 93.89 ± 0.96 94.52 ± 1.16 94.38 ± 1.05 93.91 ± 0.86

ResNet-50 [55] 93.44 ± 0.89 93.08 ± 0.85 92.75 ± 1.47 93.44 ± 1.26 93.08 ± 1.74 92.76 ± 0.94
DenseNet121 [56] 93.26 ± 0.58 92.07 ± 0.53 91.10 ± 0.47 93.28 ± 0.38 92.08 ± 0.31 91.12 ± 0.68

Inception-ResNet-v2 [57] 97.68 ± 0.19 97.72 ± 0.24 97.41 ± 0.27 97.69 ± 0.34 97.74 ± 0.19 97.41 ± 0.48
He-Meta (proposed model) 98.98 ± 0.09 98.84 ± 0.11 98.46 ± 0.18 98.98 ± 0.15 98.85 ± 0.13 98.47 ± 0.07

Based on the computational results presented in Tables 7 and 8, we can observe that
our proposed model, He-Meta, outperforms other methods by an average of 4.83% higher
accuracy. Specifically, He-Meta achieved 3.99%, 3.91%, 5.46%, 4.97%, 4.87%, 6.19%, 8.14%,
and 1.12% higher accuracy than EfficientNet-B2, EfficientNet-B3, ResNet-50, DenseNet121,
and Inception-ResNet-v2, respectively. Comparing the three groups of methods, we found
that the single model performed worse than the other two types of methods, with 4.45%
and 6.05% lower accuracy than the homogenous and heterogeneous ensemble models,
respectively.
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It is important to note that using ABL-2 as the unseen dataset yielded results consistent
with using ABL-1 as the test and train dataset. These findings provide strong evidence
supporting the effectiveness and reliability of our proposed method.

Furthermore, our proposed model employs a heterogeneous ensemble approach,
which combines different architectures to improve the model’s overall performance. This
strategy has been demonstrated to be effective, as our model outperforms existing methods
that use single architectures or homogenous ensembles. Figure 5 shows the confusion
matrix of the proposed model while it classifies images that have been labeled.
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When employing the dataset shown in Figure 5a,b, encompassing the confusion
matrices pertaining to datasets ABL-1 and ABL-2, a discernible pattern emerged; the classes
NL, RM, ND, PD, LI, and WD exhibited a diminished frequency of misclassifications
in comparison to classes WCD and PHD. This phenomenon can be attributed to the
intrinsic nature of WCD and PHD, wherein significant visual congruities occurred with
the aforementioned classes. For instance, WCD showcased residual verdant portions
akin to those characterizing NL, albeit with certain sections subjected to insect-induced
damage. This nuanced variation, despite being minimal, engenders ambiguity within the
classification process.

Equally, PHD, distinguished by its discrete brown blemishes, showed similarities to
the PM, ND, PD, and LI categories. The differentiation lay in the precise location and extent
of the brown spotting, thereby engendering confounding similarities across these classes.
This equivocal presentation poses challenges to accurate classification.

Notwithstanding these instances of misclassification, it is noteworthy that the cumula-
tive accuracy rate of the model remained notably robust at 98.77%. Ergo, the system, despite
its occasional errors, stands as an efficacious tool for the classification of leaf abnormalities.

The outcomes gleaned from these analyses underscore the model’s commendable
accuracy; nonetheless, it is patently apparent that targeted enhancements are imperative
to surmount such specific and nuanced challenges. In this context, Figure 6 expounds
upon the visual manifestations of these classification decisions, leveraging heat maps
to delineate the regions of paramount significance within the leaf structure that exert a
dominant influence upon the model’s classifications.

The heatmap in Figure 6 provides valuable insights into the model’s classification
process for leaf abnormality. It is evident that the model primarily utilizes the visual
appearance of the leaf to determine the type of abnormality. The parts of the leaf that are
visibly different from the norm are the most influential in determining the classification, as
the model searches for patterns that distinguish one type of abnormality from another. This
information is critical in understanding how the model operates and can provide guidance
in making future improvements to the classification process.
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5. Discussion and Implications

Section 5 will analyze the research findings, which are divided into two main parts.
Firstly, it will address the utilization of an automated leaf disease classification system for
CAU. Secondly, it will assess the effectiveness of the proposed model in comparison to
existing methods.

5.1. Enhancing Leaf Abnormality Detection in C. asiatica: An Ensemble Deep Learning Approach

This study presents the development of two novel datasets for leaf abnormalities
and diseases, encompassing seven types of leaf anomalies in CAU plants, including yel-
low leaf, insect bite, brown leaf, black leaf, white leaf, worn leaf, mixed-color leaf, and
green leaf. The datasets were collected both from the field and laboratory settings. To
evaluate the effectiveness of existing leaf disease detection methods for different crops, we
employed DenseNet121 [56], ResNet50 [55], MobileNetV2 [22,26,27], EfficientNet-B2 [54],
EfficientNet-B3 [54], and Inception-ResNet-v2 [57] architectures. However, our proposed
ensemble deep learning model, which combines ShuffleNetV2, SqueezeNetV2, and Mo-
bileNetV3 as the CNN architectures, along with U-net, geometric, and meta-learner for
image segmentation, augmentation, and decision fusion, outperformed these methods with
an accuracy improvement ranging from 1.16% to 8.61% for CAU leaf abnormality detection.

Remarkably, the proposed model demonstrated remarkable robustness, as its accuracy
on an unseen dataset (ABL-2) was only slightly lower compared to the test and train
datasets (ABL-1), with a minimal percent difference of 0.020%. This observation suggests
the model’s ability to handle variations in datasets and its adaptability to different data
distributions. In contrast, when adapting existing methods from the literature, e.g., [17–19],
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to our dataset, their performance was notably lower than the original reports (around
92.28%), underscoring the efficacy of our proposed model in overcoming the challenges
associated with new datasets. As a result, our proposed model not only demonstrates
effective classification of leaf abnormalities but also exhibits robustness across various types
of datasets, setting it apart from other approaches proposed in the literature.

This study contributes significantly to the advancement of leaf abnormality detection
in agriculture. Through the introduction of new datasets and an extensive evaluation
of various CNN architectures [43,59–61], our research expands the scope of leaf disease
research, particularly for C. asiatica leaves. The proposed ensemble deep learning model,
coupled with innovative image segmentation and decision fusion strategies, presents a
novel and effective approach to address the complexities of leaf abnormality classification.

The superior performance of our proposed model, surpassing existing methods by a
substantial margin, highlights its accuracy in detecting leaf abnormalities in CAU plants.
Furthermore, the model’s robustness in handling unseen datasets emphasizes its gener-
alizability and adaptability to diverse data distributions, reinforcing its practicality for
real-world agricultural applications.

The findings of this research hold significant implications for precision agriculture
and sustainable crop management. Leveraging the high accuracy and robustness of the
proposed model can enable the early detection and precise classification of leaf abnormali-
ties in CAU, empowering farmers to make informed decisions for targeted interventions,
minimizing crop losses, and optimizing resource utilization. Implementing this technology
in agricultural practices holds promise for enhancing crop productivity and promoting
more efficient and environmentally friendly farming practices.

5.2. Advancing Leaf Disease Classification in CAU: A Meta-Learner Guided Ensemble Deep
Learning Model

This research introduces a novel ensemble deep learning model specifically designed
for the classification of leaf diseases in CAU. The model leverages three distinct image
segmentation methods, namely, U-net, Mask R-CNN, and DeepLabV3+, integrated through
a meta-learner, resulting in a unified segmentation output. The integration of these tech-
niques leads to a noteworthy improvement of 5.86% in solution quality compared to
individual segmentation approaches. Notably, this represents the first instance wherein
image segmentation has been shown to significantly enhance the accuracy of the proposed
model, aligning with previous works [62–66], which also affirm the efficacy of image
segmentation in enhancing model accuracy across various applications.

To enhance the robustness and generalization capabilities of the model, geometric
image augmentation has been implemented. This augmentation technique effectively ex-
pands the training dataset and contributes to an 8.57% increase in classification accuracy. By
incorporating this augmentation strategy, the model becomes more adaptable to variations
in leaf disease patterns, leading to more reliable and accurate predictions. The merits of this
finding are consistent with the results of Akhyar Ahmed Kathawala et al. [41], Bharati Devi
and Amarendra [42], Narayanapur et al. [67], Pandian et al. [46], and Venkatesh et al. [54],
wherein image augmentation was successfully applied across diverse problem domains. It
is evident that the inclusion of image augmentation in the proposed model for leaf disease
classification represents a valuable enhancement.

The proposed ensemble deep learning model for leaf disease classification in CAU
combines multiple image segmentation methods and geometric image augmentation to
achieve improved solution quality and classification accuracy. This study’s findings high-
light the importance of image segmentation and augmentation techniques in enhancing
the overall performance of the model and are in agreement with existing literature that
recognizes the value of such approaches in diverse applications.

Additionally, the ensemble model leverages three diverse CNN architectures—ShuffleNetV2,
SqueezeNetV2, and MobileNetV3—integrated through the meta-learner. This integration results
in a notable 2.03% improvement in leaf abnormality classification over the single-model approach.
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The utilization of multiple CNN architectures enhances the model’s capacity to capture complex
and subtle patterns, allowing for a more comprehensive understanding of leaf diseases in CAU.

The computational findings provide compelling evidence of the effectiveness of the
proposed model in addressing the challenges associated with leaf disease classification.
Furthermore, the model’s superior performance over existing single-model and homoge-
neous ensemble models, including DenseNet121, ResNet50, MobileNetV2, EfficientNet-B2,
EfficientNet-B3, and Inception-ResNet-v2, demonstrates its potential to become a new
state-of-the-art solution for this domain; it can be adapted to classify diverse datasets as
mentioned in Bjånes et al. [68], Hirasen et al. [69], Lee et al. [70], Mohammed and Kora [29],
and Wei and Liu [71].

From an academic standpoint, this research contributes to the growing body of litera-
ture on advanced deep learning techniques for agricultural applications. The successful
implementation of ensemble methods, along with the utilization of meta-learners to com-
bine diverse CNN architectures, showcases the potential of ensemble learning in tackling
complex image-based classification tasks. Researchers interested in deep learning method-
ologies can draw valuable insights from this study and potentially apply similar strategies
to other image analysis tasks in various domains.

Moreover, this research has significant policy implications for the agricultural sector.
The high accuracy and generalization capability of the proposed model can aid in the early
detection and effective management of leaf diseases in CAU, contributing to enhanced
crop health and improved agricultural productivity. Policymakers and agricultural stake-
holders should consider integrating this advanced deep learning model into their disease
monitoring and crop management strategies to make informed decisions and optimize
agricultural outcomes.

5.3. In-Depth Analysis of Model Performance and Comparative Evaluation

The computational results of the accuracy, AUC, and F1-score of each experiment
treatment using different combinations of model entities were thoroughly analyzed and
compared. The experimental results revealed the optimal combination of model entities,
showcasing the model’s superior performance in terms of classification accuracy, the area
under the curve (AUC), and the F1-score. These metrics were used to accurately evaluate
the model’s performance and compare it to other models proposed in the literature.

Furthermore, the proposed ensemble deep learning model leverages three diverse
CNN architectures—ShuffleNetV2, SqueezeNetV2, and MobileNetV3—which are inte-
grated through the effective decision fusion strategy. This integration resulted in a notable
8.13% improvement in leaf abnormality classification over the single-model approach.
The utilization of multiple CNN architectures enhanced the model’s capacity to capture
complex and subtle patterns, allowing for a more comprehensive understanding of leaf
diseases in C. asiatica.

The computational findings provide compelling evidence of the effectiveness of the
proposed model in addressing the challenges associated with leaf disease classification.
The model’s superior performance over existing single-model and homogeneous ensemble
models, including DenseNet121, ResNet50, MobileNetV2, EfficientNet-B2, EfficientNet-
B3, and Inception-ResNet-v2, demonstrates its potential to become a new state-of-the-art
solution for leaf disease classification in C. asiatica plants.

The superior performance of the He-Meta model across multiple metrics does not
only showcase its technical excellence but also its practical applicability in the agricultural
sector. The advancement over existing models highlighted by our comprehensive and
comparative analysis indicates the potential of the He-Meta model to revolutionize plant
disease detection methods. Our findings bear significant implications for agricultural
practices, particularly in enhancing early disease detection, which is vital for effective crop
management and yield improvement.

In addressing the critical challenge of accurate disease detection in agricultural fields,
our research introduces a novel two-stage ensemble model that synergistically combines
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segmentation and classification techniques. The first stage employs an ensemble of ad-
vanced segmentation models, including U-net, Mask R-CNN, and DeepLabV3++, to pre-
cisely delineate areas of interest within the imagery. This ensemble approach leverages the
unique strengths of each model to achieve superior segmentation accuracy, which is crucial
for the subsequent classification task.

To mitigate the potential issue of false positives—erroneously identified regions of
interest—which could adversely affect the classification accuracy, we implemented a so-
phisticated post-segmentation analysis. This involved the application of morphological
operations and contextual analysis to refine the segmentation output, ensuring that only the
most relevant features are forwarded for classification. This step was vital for maintaining
the integrity and reliability of the disease detection process.

Following segmentation, the second stage of our model comes into play, focusing
on the classification of the identified regions into disease categories. This stage utilizes a
complementary ensemble of lightweight, efficient classification models, including Shuf-
fleNetV2, SqueezeNetV2, and MobileNetV3. These models are specifically chosen for their
ability to deliver high accuracy with minimal computational overhead, making them ideal
for deployment in resource-constrained environments. The integration of segmentation
and classification models into a cohesive framework allows for a streamlined workflow
that enhances both the accuracy and efficiency of disease detection.

Our approach not only demonstrates the feasibility of combining multiple deep learn-
ing models for agricultural disease detection but also underscores the importance of a
systematic, two-stage process where segmentation and classification tasks are effectively
interconnected. This methodology ensures that the classification stage is primed with the
highest quality inputs, significantly reducing the likelihood of false positives influencing
the final disease identification, thereby paving the way for more reliable and actionable
insights in precision agriculture.

6. Conclusions

In this study, we addressed the limitations of traditional leaf disease detection methods
in CAU by introducing a novel ensemble deep learning approach. Our proposed method
utilizes two-time decision fusion strategies to integrate multiple machine sectors, aiming to
overcome the challenges associated with visual inspection by human experts.

Through ensemble image segmentation, employing U-net, Mask-R-CNN, and Deep-
NetV3++ as segment methods, and the combination of various types of CNNs, such as
ShuffleNetV2, SqueezeNetV2, and MobileNetV3, we achieved significant improvements in
solution quality. The ensemble approach, employing four decision fusion strategies, namely,
unweighted average (UWA), the differential evolution algorithm (DE), particle swarm opti-
mization (PSO), and Variable Neighborhood Strategy Adaptive Search (VaNSAS), further
enhanced the effectiveness of our model.

Our evaluations of the ABL-1 and ABL-2 datasets, comprising 14,860 images with
eight distinct leaf abnormalities, revealed the superiority of our ensemble segmentation
and heterogeneous ensemble CNN methods. The results indicate significant improvements
in solution quality; ensemble segmentation methods led to a 7.34% increase compared to
single segmentation methods, while heterogeneous ensemble segmentation outperformed
homogeneous segmentation by 6.43%. Similarly, the use of heterogeneous ensemble CNN
resulted in an 8.43% enhancement over homogeneous ensemble models and a remarkable
14.59% improvement over single models. Moreover, image augmentation techniques
contributed to a 5.37% increase in solution quality. The employment of VaNSAS as the
decision fusion strategy yielded substantial enhancements of 15.42% compared to UWA,
11.23% compared to DE, and 9.84% compared to PSO. These numerical results firmly
demonstrate the effectiveness of our proposed approach in achieving significantly higher-
quality solutions than traditional methods.

To advance the field, future research could explore advanced image augmentation
techniques and refine decision fusion strategies to achieve an even higher solution quality.
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Investigating transfer learning and fine-tuning approaches on larger and more diverse
datasets could extend the generalizability of our proposed method for various plant species.
Moreover, exploring the integration of multi-modal data sources, such as spectral and
hyperspectral imaging, holds promise in further enhancing the accuracy and robustness of
leaf disease detection systems.

Ultimately, our goal is to create a user-friendly and automated platform that can be
readily utilized by agricultural professionals in the field. By continually advancing research
in this direction, we aim to contribute to the ongoing development and application of
cutting-edge technologies in agriculture, ultimately fostering increased crop yield, reduced
losses, and improved medicinal properties pertaining to CAU.
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