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Abstract: Here, we consider an asymmetric δ − δ′ mirror undergoing time-dependent interactions
with a massless scalar field in 1 + 1 dimensions. Using fluctuation-dissipation theory for a mirror in
vacuum, we compute the force on a moving δ − δ′ mirror with time-dependent material properties.
We investigate the first-order forces arising from the two distinct fluctuation sources and calculate the
linear susceptibility in each case. We then plot the resulting forces. At the second order, we also find
the independent contributions to the total force as well as the force that arises from the interference
phenomena between the two fluctuation sources.

Keywords: quantum vacuum; vacuum fluctuation; dynamical Casimir effect; Casimir forces; asymmetry;
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1. Introduction

A mirror subject to time-dependent interactions with the quantum vacuum, in which
its position or boundary (material) properties may fluctuate, will experience the dynamical
Casimir effect (DCE) and produce real particles. This phenomenon has been thoroughly
investigated for numerous theoretical configurations (see [1–3] for several detailed reviews
of this topic) and has also been experimentally verified [4]. There has been recent interest
in understanding the consequences of modifying DCE systems by introducing asymmetric
boundary conditions to a mirror undergoing time-dependent interactions with the quantum
vacuum [5–9]. This asymmetry leads to an asymmetric spectrum of produced particles
in what is now known as the asymmetric dynamical Casimir effect (ADCE). To better
understand the ADCE, it is convenient to investigate the interaction between the quantum
vacuum and a partially transparent mirror in a (1 + 1)D (dimensional) spacetime. This
is achieved by modeling the mirror as δ − δ′ potential [5,6,10–16] (δ′ being the spatial
derivative of the Dirac δ function). Previous literature has explored the ADCE spectrum of
a moving δ − δ′ mirror [5] and a δ − δ′ mirror with time-dependent material properties [6]
as well as when the mirror possesses both of these independent fluctuation sources. In this
latter case, there is an interference effect between the two sources that modifies the total
asymmetric spectrum of produced particles [9].

An asymmetric production of photons on either side of the mirror leads to an un-
balanced force on the mirror due to the imbalance in the number of particles produced
by the two sides of the mirror [6–8,17]. Specifically, in the case of a δ − δ′ mirror with
time-dependent properties, the initially stationary mirror will be perturbed in such a way
that the imbalance in particle production will induce motion upon the mirror [6]. The
quantum vacuum will, in turn, act as a dissipative medium and react to the motion of
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objects moving through it. For a perfectly reflective mirror moving in (1 + 1)D spacetime, a
dissipative reaction force acts on the mirror:

F(t) =
h̄

6πc2
d3

dt3 q(t), (1)

which is proportional to the third time derivative of the mirror’s position, q(t). Here, h̄
is the reduced Planck constant and c is the speed of light. Thus, to fully understand the
forces present in the δ − δ′ system, one must account for both the force from the radiation
pressure generated by the asymmetry in particles and the dissipative effects of the object
moving through the quantum vacuum.

In this paper, we compute the full spectrum of forces for a moving δ − δ′ mirror
with time-dependent boundary conditions using fluctuation–dissipation theory [18–20].
At first-order, we calculate the independent force contributions from both the motion of
the mirror and from its time-dependent material properties by first calculating the linear
susceptibility. By prescribing a specific form to the fluctuation sources, we are able to plot
the mean force on the mirror for different magnitudes of λ0, which controls the degree of
asymmetry in the δ − δ′ mirror. In addition to explicit first-order forces, the second-order
forces are presented after first deriving the second-order correction to the output field. At
second-order, the forces resulting from the two independent fluctuation sources are again
found along with the addition of a third force that results from the interference between
the motion of the mirror and its changing properties.

The remainder of this paper is organized as follows. In Section 2, we review fluctuation–
dissipation theory [18], which is used to calculate the susceptibility and force. Section 3
goes over the scattering formalism, which describes the interaction between the quantum
vacuum and the δ − δ′ mirror. Here, we also derive the necessary second-order corrections
to the output field. The first-order forces are then calculated in Section 4, which also includes
numerically integrated plots of the resulting forces. Section 5 contains the calculations of
the second-order forces, including the additional term arising from the interference of the
two fluctuation sources. We conclude with ending remarks in Section 6.

Unless otherwise stated, it is assumed throughout this paper that h̄ = c = 1. We also
use square brackets on a function f [ω] to denote that this frequency domain function is
the Fourier transform of some function f (t) in the time domain. Additionally, we take
η = diag(1,−1). Throughout the paper we will use primes in two distinct ways. A prime
on a function is understood to mean the spatial derivative of that function, where as primes
on variables are understood to simply index distinct variables.

2. Quantum Fluctuation–Dissipation Theorem

This Section reviews the notation and terminology necessary to understand the
fluctuation–dissipation theorem applied to quantum interactions with the vacuum. Fol-
lowing the conventions in Ref. [18], we decompose a (1 + 1)D scalar field into the sum of
two counter-propagating fields, which are denoted as φ(t − x) and ψ(t + x). We denote
the incoming fields with an “in” subscript and the outgoing fields with an “out” subscript.
In what follows, we adopt a scattering framework, taking our ingoing field as the initial
field which scatters by some interaction and is perturbatively modified into an outgoing
field. We then specialize this to the case of the background quantum vacuum scattering off
partially reflecting mirrors. We make use of the following column matrix notation to write
the field as

Φ(t, x) =
(

φ(t − x)
ψ(t + x)

)
. (2)

In the frequency domain, the field Φ[ω, x] can be expressed in terms of the stationary field
Φ[ω, 0] at x = 0,

Φ[ω, x] =
(

φ[ω]eiωx

ψ[ω]e−iωx

)
= eiηωxΦ[ω, 0], (3)
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with the frequency ω.
Going forward, we employ a shorthand for this stationary field by taking Φ(t, 0) =

Φ(t) and Φ[ω, 0] = Φ[ω]. The two stationary incoming counter-propagating fields can be
related to the standard creation and annihilation operators. Explicitly, these are

φin[ω] = (2|ω|)−1/2[Θ(ω)aL[ω] + Θ(−ω)a†
L[−ω]

]
(4)

and
ψin[ω] = (2|ω|)−1/2[Θ(ω)aR[ω] + Θ(−ω)a†

R[−ω]
]
. (5)

Here, aj[ω] and a†
j [ω] (j = L, R) are the annihilation and creation operators for the left (L)

and right (R) sides of the mirror, and Θ(ω) is the Heaviside function.
Two important quantities we use below are the energy density, e(t, x), and impulsion

density, p(t, x). One may write these quantities in terms of the counter-propagating fields:

e(t, x) = φ′(t − x)2 + ψ′(t + x)2, p(t, x) = φ′(t − x)2 − ψ′(t + x)2. (6)

We show below that the mean (expectation) value of these terms can be used to directly
calculate the force on the mirror. In order to calculate these quantities, will use two-point
correlation functions, written in terms of the covariance, which are defined as

cov(Φ(t, x), Φ(t′, x′)) ≡ Cx,x′(t, t′) =
〈

Φ(t, x)Φ(t′, x′)T
〉

. (7)

The flux densities are then

⟨e(t, x)⟩ =
{

Tr
[
∂t∂t′Cx,x′(t, t′)

]}
t=t′ , ⟨p(t, x)⟩ =

{
Tr

[
η∂t∂t′Cx,x′(t, t′)

]}
t=t′ , (8)

where “Tr” denotes the trace operation.
Using the following expression for the correlator in the frequency domain,

Cx,x′ [ω, ω′] =
〈

Φx[ω]Φx′ [ω
′]T

〉
= eiηωxC[ω, ω′]eiηω′x′ , (9)

we implicitly define the Fourier transforms of the energy and impulsion densities as,
respectively,

⟨e(t, x)⟩ =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
Cx,x[ω, ω′]

]
(10)

and

⟨p(t, x)⟩ =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
ηCx,x[ω, ω′]

]
. (11)

One can now compute the outgoing field (Φout), and the resulting forces, by expressing
the outgoing field in terms of the ingoing field (Φin). The ingoing state corresponds to a
stationary state, whose covariance matrices depend only upon one parameter, and whose
correlator now becomes

C(t, t′) = c(t − t′), C[ω, ω′] = 2πδ(ω + ω′)c[ω]. (12)

For a vacuum ingoing state, we have

cvac[ω] =
Θ(ω)

2ω
I2, (13)

where I2 is the identity matrix.
We now use this framework to analyze an asymmetric δ − δ′ mirror. This is a partially

transparent mirror whose interaction with the ingoing vacuum state can be linearly related
to its modified outgoing field via

Φout[ω] = S[ω]Φin[ω], (14)
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where S[ω] is the scattering matrix. We see that for partially transparent mirrors, the
outgoing correlator can be related to the ingoing correlator as

Cout[ω, ω′] = S0[ω]Cin[ω, ω′]S0[ω
′]T, (15)

where S0 is the zeroth-order scattering matrix (see Equation (49)).
Some authors make use of an overbar to denote quantities taken to be comoving with

the mirror [18]. We do not make use of this notation, except when introducing the moving
mirror in Sections 3.1 and 3.2, as in all other instances we will be able to explicitly work in
the laboratory frame.

The perturbed, outgoing fields is eventually expressed as the zeroth, first, and second-
order corrections from the scattering matrix for both moving mirrors and stationary mirrors
with time-dependent boundary conditions:

Φout[ω] = S0[ω]Φin[ω] +
∫ dω′

2π
δS[ω, ω′]Φin[ω

′] +
∫ dω′

2π

∫ dω′′

2π
δS[ω, ω′, ω′′]Φin[ω

′′]. (16)

Force on a Mirror

In the (1 + 1)D spacetime considered here, the force on a single, stationary mirror is
given by

F(t) = φ′
in(t)

2 + ψ′
out(t)

2 − φ′
out(t)

2 − ψ′
in(t)

2. (17)

The resulting force can be interpreted as the difference between the impulsion densities of
the ingoing and outgoing fields evaluated at the mirror’s position. The force takes the form

F(t) = pin − pout. (18)

This is also related to the Txx component of the stress-energy tensor (radiation pressure)
obtained by taking the difference between the energy densities of the left and right half of
the mirror

F(t) = eL − eR. (19)

One can freely pull through the time averaging to obtain the mean force relation

⟨F(t)⟩ = ⟨pin⟩ − ⟨pout⟩ = ⟨eL⟩ − ⟨eR⟩. (20)

Using Equations (11) and (15) in Equation (20), one can now express the mean force as

⟨F(t)⟩ =
∫ dω

2π

∫ dω′

2π
eiωt−iω′tiωiω′ Tr

[
F[ω, ω′]Cin[ω, ω′]

]
, (21)

where F[ω, ω′] is the matrix

F[ω, ω′] = η − S0[ω
′]TηS0[ω], (22)

which possesses the symmetry F[ω, ω′]T = F[ω′, ω]. Equation (21) allows us to calculate
the mean force for any ingoing state. For any stationary ingoing state, whose correlators
take the form in Equation (12), the mean force becomes

⟨F⟩ =
∫ dω

2π
ω2 Tr[F[ω,−ω]cin[ω]], (23)

which vanishes in the case of stationary ingoing states [18]. The energy exchange between
the field and the mirror is

⟨G⟩ =
∫ dω

2π
ω2 Tr[G[ω,−ω]cin[ω]], (24)
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where
G[ω, ω′] = I2 − S[ω′]TS[ω]. (25)

The energy exchange for any stationary state is zero due to the unitarity of the scattering
matrix S.

In general, the perturbed field Φout takes the form in Equation (16). Using this, one
can compute the mean force due to the perturbation δS in the laboratory frame:

⟨δF(t)⟩ = −⟨δpout(t)⟩ = −
{

∂t∂t′ Tr
[
ηδCout(t, t′)

]}
t=t′ , (26)

which becomes, to first-order,

⟨δF(t)⟩ =
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδCout[ω, ω′]

]
, (27)

δCout[ω, ω′] =
∫ dω′′

2π

(
δS[ω, ω′′]Cin[ω

′′, ω′]S0[ω
′]T + S0[ω]Cin[ω, ω′′]δS[ω′, ω′′]T

)
. (28)

The force in Equation (27) can be further expressed as

⟨δF(t)⟩ =
∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ[ω, ω′] f [ω + ω′], (29)

where f [ω] is the equation that governs the form of time-dependent fluctuations. We
eventually use this form to write the force as a linear response to the mirror’s perturbation,

⟨δF[ω]⟩ = χ[ω]δf [ω], (30)

expressed in terms of the susceptibility, given by

χ[ω] =
∫ dω′

2π
χ[ω′, ω − ω′]. (31)

3. The Scattering Matrix

The mirror is initially located at x = 0, which allows us to decompose our field as

ϕ(t, x) = Θ(x)ϕ+(t, x) + Θ(−x)ϕ−(t, x), (32)

where ϕ+ (ϕ−) is the field on the right (left) side of the mirror. In general, we will use “+”
(“−”) subscripts to refer to any quantities that pertain to only the right (left) side of the
mirror.Using the fact that both ϕ± obey the Klein–Gordon equation, One may represent
each as the sum of two freely counterpropagating fields. Explicitly, these are

ϕ+(t, x) =
∫ dω√

2π

[
ϕout[ω]eiωx + ψin[ω]e−iωx

]
e−iωt (33)

and
ϕ−(t, x) =

∫ dω√
2π

[
ϕin[ω]eiωx + ψout[ω]e−iωx

]
e−iωt, (34)

which depend on the incoming and outgoing fields introduced in Section 2. We assume
here that the ingoing and outgoing fields are linearly related as

Φout[ω] = S[ω]Φin.
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Thus far, we have not specified any properties of our mirror except that it is partially
reflecting. In this case, S[ω] can be taken to be the most general partially reflecting scattering
matrix, which is written explicitly as

S[ω] =

(
s+[ω] r+[ω]
r−[ω] s−[ω]

)
. (35)

Here, r±[ω] and s±[ω] are the reflection and transmission coefficients, respectively.
Going forward, we consider the mirror interaction to be described by the asymmetric,
partially reflected δ − δ′ mirror, whose potential is given as

U(x) = µδ(x) + λδ′(x). (36)

Here, µ is related to the plasma frequency of the mirror and λ is a dimensionless factor.
With this, it is now possible to derive explicit forms of the transmission and reflection
components [5]:

r±[ω] =
−iµ0 ± 2ωλ0

iµ0 + ω(1 + λ2
0)

(37)

and

s±[ω] =
ω(1 − λ2

0)

iµ0 + ω(1 + λ2
0)

. (38)

Here, we introduce the notation µ0 and λ0 to denote the zeroth-order terms. This distinction
is important when considering perturbative effects due to field interactions with the mirror.

3.1. First-Order Corrections

We start by solving for the ADCE corrections for the δ− δ′ mirror with time-dependent
µ(t). For this analysis, we assume that the mirror is held at rest. Here, we require that the
fluctuations in µ(t) take the form of small oscillations about a fixed value µ0. Specifically,

µ(t) = µ0[1 + ϵ f (t)], (39)

where µ0 ≥ 1 is a constant and f (t) is an arbitrary function such that | f (t)| ≤ 1, with
ϵ ≪ 1.

To find the modified outgoing field, we apply the field equation of the system, de-
termined by the potential in Equation (36), to Equations (33) and (34). From here, the
matching conditions can be solved to the first order by following Ref. [5], where the final
form becomes

Φout[ω] = S0[ω]Φin[ω] + ϵ
∫ dω′

2π
δS(1)

µ [ω, ω′]Φin[ω
′]. (40)

The first-order correction to the scattering matrix due to the introduction of f (t) takes the
form

δS(1)
µ [ω, ω′] = −iµ0h(ω) f [ω − ω′]Sµ[ω

′], (41)

where h(ω) = [iµ0 + ω(1 + λ2
0)]

−1 and

Sµ[ω
′] = J2 + S0[ω

′] =
(

s+[ω′] 1 + r+[ω′]
1 + r−[ω′] s−[ω′]

)
. (42)

Here, J2 is the column-reversed identity matrix. This is in agreement with Ref. [6]. Through-
out this paper, we use the superscripts “(1)” and “(2)” to denote the first- and second-order
contributions, respectively. Additionally, the subscript µ represents the contribution from
the time-varying material properties.
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Let us now calculate the first-order corrections due to the δ − δ′ mirror undergoing
mechanical oscillations about x = 0. Scattering is still linear with

Φout[ω] = S[ω]Φin, (43)

in the co-moving frame (denoted by the overbar in this Section only). In this frame, the
mirror is instantaneously at rest. The movement is assumed to be nonrelativistic (|q̇(t)| ≪ 1,
where the dot denotes the time-derivative) and limited by a small amplitude, such that

q(t) = ϵg(t), (44)

with |g(t)| ≤ 1 and ϵ ≪ 1. To solve this in the laboratory frame, we use the relation

Φ(t′, 0) = Φ(t, ϵg(t)) = [1 − ϵg(t)η∂t]Φ(t, 0) +O(ϵ2). (45)

Taking advantage of thefact that dt = dt at the first order, Equation (45) can be rewritten as

Φ(t, 0) = [1 − ϵg(t)η∂t]Φ(t, 0). (46)

One finds that applying this transform to Equation (43) in the frequency domain yields

Φout[ω] = S0[ω]Φin[ω] + ϵ
∫ dω′

2π
δS(1)

q [ω, ω′]Φin[ω
′], (47)

where the subscript q denotes the motion of the mirror. The first-order S-matrix perturba-
tion, δS(1)

q [ω, ω′], takes the form

δS(1)
q [ω, ω′] = iω′g[ω − ω′]S(1)q [ω, ω′], (48)

where
S(1)q [ω, ω′] = S0[ω]η − ηS0[ω

′] (49)

and S0 is the zeroth-order scattering matrix found from Equations (37) and (38). This is in
agreement with Ref. [5].

3.2. Second-Order Corrections

The second-order perturbation due to the time dependence of µ(t) can be found by
carrying through the derivation of the first-order term to second-order in the matching
conditions. With this in mind, one finds that the expression for Φout in Equation (40) to the
second-order term is now

Φout[ω] = S0[ω]Φin[ω] + ϵ
∫ dω′

2π
δS(1)

µ [ω, ω′]Φin[ω
′] + ϵ2

∫ dω′

2π

∫ dω′′

2π
δS(2)

µ [ω, ω′, ω′′]Φin[ω
′′], (50)

with the first-order perturbation term, δS(1)
µ [ω, ω′], given in Equation (41), and the second-

order term,

δS(2)
µ [ω, ω′, ω′′] = −µ2

0h(ω)h(ω′) f [ω − ω′] f [ω′ − ω′′]Sµ[ω
′′], (51)

which agrees with Ref. [6].
The second-order correction due to the motion of the mirror is more complicated.

Let us start by evaluating the fields at the time-dependent position of the mirror. This is
the frame in which the mirror is instantaneously at rest whereby the field and its Fourier
transform can be written as, respectively

Φ(τ) = Φqt(t) =
{

e−xη∂t Φ(t)
}

x=qt
, Φ(τ) =

∫ dω

2π
Φ′[ω]e−iωτ , (52)
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where τ is the mirror’s proper time and qt ≡ q(t). The proper time and laboratory time are
related by

dτ =
√

1 − q̇t
2 dt. (53)

The first- and second-order expansions in qt of the mirror’s trajectory around q = 0, or
Φ(τ, 0) = Φ(τ, ϵq(t)), lead to

Φ(τ) = Φ(t)− qtη∂tΦ(t) +
1
2

q2
t ∂2

t Φ(t). (54)

Now, unlike in the first-order expansion when the mirror’s proper time and laboratory
time coincide, dτ is no longer equal to dt. One can see for the second-order time correction,
in the nonrelativistic limit (|q̇(t)| ≪ 1):

dτ ≈
(

1 − 1
2

δq̇t
2
)

dt. (55)

Therefore,

τ = t − 1
2

∫
dt δq̇t

2. (56)

Using Equation (44), we obtain the explicit result:

Φ(τ, 0) =
[

1 − ϵg(t)η∂t +
1
2

ϵ2g(t)2∂2
t

]
Φ(t, 0) +O(ϵ3) (57)

and
τ = t − 1

2
ϵ2

∫
dt ġ(t)2 +O(ϵ3). (58)

To find the field in the frequency domain, we substitute the new form of τ in Equation (58)
into the field’s Fourier transform from Equation (52). We find its second-order approxima-
tion to be

Φ(τ) =
∫ dω

2π
Φ′[ω]e−iωτ ≈

∫ dω

2π

[
1 +

iωϵ2

2

∫
dt ġ(t)2

]
Φ′[ω]e−iωt. (59)

We can equate this quantity to the Fourier transform of the right-hand side of Equation (54),
where we now arrive at the following relationship

[
1 +

iωϵ2

2

∫
dt ġ(t)2

]
Φ′[ω] = Φ[ω] + iϵη

∫ dω′

2π
ω′g[ω − ω′]Φ[ω′]− ϵ2

2

∫ dω′

2π

∫ dω′′

2π
ω′′ 2g[ω − ω′]g[ω′ − ω′′]Φ[ω′′]. (60)

Solving for Φ[ω] in Equation (60), and using (1 + x)−1 ≈ 1 − x, leads to the second-order
correction to the field in the laboratory frame,

Φ(2)[ω] = − iωϵ2

2

∫
dt ġ(t)2Φ[ω]− ϵ2

2

∫ dω′

2π

∫ dω′′

2π
ω′′ 2g[ω − ω′]g[ω′ − ω′′]Φ[ω′′]. (61)

With Equation (61), which describes the relationship between the field in the instanta-
neous frame of mirror with the field in the laboratory frame for the second order, one can
now calculate the output field as a function of the input field using Equation (43). The full
first- and second-order corrections to the outgoing field due to the motion of the mirror are

Φout[ω] = S0[ω]Φin[ω] + ϵ
∫ dω′

2π
δS(1)

q [ω, ω′]Φin[ω
′] + ϵ2

∫ dω′

2π

∫ dω′′

2π
δS(2)

q [ω, ω′, ω′′]Φin[ω
′′], (62)

with the definition of δS(1)
q from Equation (48) and

δS(2)
q [ω, ω′, ω′′] =

1
2

ω′′ 2g[ω − ω′]g[ω′ − ω′′]S(2)q [ω, ω′′], (63)
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where
S(2)q [ω, ω′′] = S0[ω

′′]− S0[ω]. (64)

4. First-Order Forces

The first-order (in ϵ) contribution to the mean force due to the modification of δS(1) is
(see Equations (27) and (28))〈

δF(1)(t)
〉
=

∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(1)

out[ω, ω′]
]
,

δC(1)
out[ω, ω′] =

∫ dω′′

2π

(
δS(1)[ω, ω′′]Cin[ω

′′, ω′]S0[ω
′]T + S0[ω]Cin[ω, ω′′]δS(1)[ω′, ω′′]T

)
.

With a stationary ingoing state (see Equations (12) and (13)), δC(1)
out reads

δC(1)
out[ω, ω′] = δS(1)[ω,−ω′]cin[−ω′]S0[ω

′]T + S0[ω]cin[ω]δS(1)[ω′,−ω]T. (65)

Recall that the force appears as a linear response to the mirror’s perturbation,

⟨δF[ω]⟩ = χ[ω]δf [ω],

which is expressed in terms of the susceptibility,

χ[ω] =
∫ dω′

2π
χ[ω′, ω − ω′].

4.1. Moving Mirror

Here, we calculate the force on a moving δ − δ′ mirror whose position q(t) fluctuates
about x = 0 with a small amplitude ϵg(t). Using the first-order correction to the scattering
matrix δS(1)

q from Equation (48) into Equation (65), δC(1)
q becomes

δC(1)
q [ω, ω′] =− iω′g[ω + ω′](S0[ω]η − ηS0[−ω′])cin[−ω′]S0[ω

′]T

− iωg[ω + ω′]S0[ω]cin[ω](ηS0[ω
′]T − S0[−ω]Tη).

(66)

Applying the properties of the trace, Equation (66) can be used to find

Tr
[
ηδC(1)

q [ω, ω′]
]
= g[ω + ω′]Tr

[
F[ω, ω′](iωcin[ω]η + iω′ηcin[−ω′])

]
, (67)

with the matrix F[ω, ω′] from Equation (22). Under a double integral over the full domain of
ω and ω′, one may freely swap these variables. This allows us to modify certain quantities
in a way that enables simplification of the integrand without changing the result of the
integral. Explicitly, we perform the following swap:

g[ω + ω′]Tr
[
F[ω, ω′]iωcin[ω]η

]
=⇒ g[ω′ + ω]Tr

[
F[ω′, ω]iω′cin[ω

′]η
]
, (68)

Then, one may use the argument swapping symmetry on F and the definition of cin
(where cin = cvac from Equation (13)) to re-express Equation (67) as

Tr
[
ηδC(1)

q [ω, ω′]
]

=⇒ i
2

sgn(ω′)g[ω + ω′]Tr
[
F[ω, ω′]η

]
. (69)

In Equations (68) and (69), we use the arrow instead of the equation sign to indicate
that, while these expressions are not equivalent, they lead to the same final result when
integrating. Additionally, when simplifying Equation (69), we used the following definition
for the sign function:

sgn(ω) = Θ(ω)− Θ(−ω). (70)



Physics 2024, 6 769

With Equation (69), we write the first-order motional force in terms of χ[ω, ω′] in the
following manner:〈

δF(1)
q (t)

〉
=

∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ

(1)
q [ω, ω′]g[ω + ω′], (71)

χ
(1)
q [ω, ω′] =

iωω′

2
sgn(ω′)Tr

[
F[ω, ω′]η

]
, (72)

where Equation (72) can be rewritten as

χ
(1)
q [ω, ω′] = sgn(ω′)ωω′h(ω)h(ω′)

[
−2iµ2

0 + 8iλ2
0ωω′ − µ0(1 + λ2

0)(ω + ω′)
]
. (73)

The susceptibility is then

χ
(1)
q [ω] =

∫ dω′

2π
χ[ω′, ω − ω′]

=
i
2

∫ dω′

2π
sgn(ω − ω′)ω′(ω − ω′)Tr

[
F[ω′, ω − ω′]η

]
.

(74)

Taking β = (1 + λ2
0)/µ0, we can determine various expansions when the term βω is

assumed to be large or small. The real and imaginary parts of the susceptibility in Equation (74)
are,

Re χ
(1)
q [ω] =

1
2πβ3(1 + λ2

0)
2

2A(ω) arctan(βω)− CR(ω)−B(ω) log
(
1 + (βω)2)

(4 + (βω)2)
, (75)

Im χ
(1)
q [ω] =

1
2πβ3(1 + λ2

0)
2

2B(ω) arctan(βω) + CI(ω) +A(ω) log
(
1 + (βω)2)

(4 + (βω)2)
, (76)

where

A(ω) = βω
[
4
(

1 − 4λ2
0 + λ4

0

)
+ (βω)2

(
1 − 6λ2

0 + λ4
0

)]
,

B(ω) = 4
(

λ2
0 − 1

)2
+ (βω)2

(
1 + λ2

0

)2
,

CR(ω) = (βω)2
(

4 + (βω)2
)[

1 − 6λ2
0 + λ4

0

]
,

CI(ω) =
2
3

βω
(

4 + (βω)2
)[

2(βω)2λ2
0 − 3

(
λ2

0 − 1
)2

]
.

(77)

For βω ≪ 1:

Re χ
(1)
q [ω] =− 1

2πβ3(1 + λ2
0)

2

[
(βω)4(1 + λ2

0)
2

6
− (βω)6(1 + 6λ2

0 + λ4
0)

15
+O

[
(βω)8

]]
,

Im χ
(1)
q [ω] =

1
6πβ3(1 + λ2

0)
2

[
(βω)3(1 + λ2

0)
2 − (βω)5(3 + 14λ2

0 + 3λ5
0)

10
+O

[
(βω)7

]]
,

(78)

and for βω ≫ 1:
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Re χ
(1)
q [ω] = − 1

2πβ3(1 + λ2
0)

2

[
(βω)2(1 − 6λ2

0 + λ4
0) + βωπ(−1 + 6λ2

0 − λ4
0) + 2(1 − 6λ2

0 + λ4
0)

+ 2 log(βω)(1 + λ2
0)

2 − 8πλ2
0

βω
+

1 + 66λ2
0 + λ4

0 − 96λ2
0 log(βω)

3(βω)2 +O
[
(βω)−3

]]
,

Im χ
(1)
q [ω] =

1
6πβ3(1 + λ2

0)
2

[
4(βω)3λ3

0 − 6βω(1 − 2λ2
0 + λ4

0 − log(βω)(−1 + 6λ2
0 + λ4

0))

+ 3π(1 + λ2
0)

2 − 3(1 + 10λ2
0 − λ4

0 + 16λ2
0 log(βω))

βω
− 48πλ2

0
(βω)2 +O

[
(βω)−3

]]
.

(79)

The limits in Equations (78) and (79) correspond to the low- and high-frequency limits
of the susceptibility, respectively. One should exercise caution though, as using these
to produce time-domain quantities can lead to misleading results as the inverse Fourier
transform requires an integral over the entire frequency domain.

When λ0 = 1, which corresponds to the spectrum of a perfectly reflective δ − δ′

mirror, the relationship β = 2/µ0 holds, where β is now the Robin parameter. In the limits
from Equations (78) and (79), which contain the corrections to the Dirichlet (β → 0) and
Neumann (β → ∞) limits of a moving Robin mirror, respectively, we find that the correct
leading order linear susceptibility,

χ[ω] = i
ω3

6π
, (80)

is recovered, which leads to the dissipative force in Equation (1).
Notice that when λ0 = 0, which corresponds to a perfectly reflective δ mirror with no

asymmetry in particle production (the spectrum is identical for both sides of the mirror),
the susceptibility does not completely vanish. This is due to the fact that there is still a
reaction force from the vacuum onto the mirror originating from the motion of the mirror
itself. This is not the case, as one sees in Section 4.2 below, for the stationary mirror with
time-dependent µ(t).

The expression in Equation (71) can be directly computed when an appropriate form
of the motion, g(t), is introduced. Here, we use

g(t) = cos(ω0t) exp(−|t|/T ), (81)

where ω0 is the characteristic frequency of the oscillation and T is the effective time of the
oscillation. Integrals of the type present in Equation (71) do not have analytic solutions to
the best of our knowledge. Thus, we numerically integrate this expression; see Figure 1,
where we plot with different values of λ0 and compare these results to the force on a
moving Dirichlet mirror using Equation (80). One sees that as the asymmetry between
the two sides of the δ − δ′ mirror grows larger (λ0 → ∞), the magnitude of the force on
the mirror grows along with it. Along with this increase in magnitude, the force becomes
more sharply peaked. The increase in force arises from the increase in the magnitude
of the asymmetric dynamical Casimir effect; the larger imbalance of generated particles
leads to an increase in the force on the mirror due to increasingly asymmetric radiation
reaction forces.
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Figure 1. The force (see Equation (71)) on a moving δ − δ′ mirror (indicated as δδ′) as a function
of time, presented in natural units, for some values of λ0, where µ0 = ω0 = T = 1. The force on
a moving Dirichlet mirror is presented for comparison. Inset: the behavior of the moving δ − δ′

mirror’s forces near zero. See text for details.

Compared to the dissipative Dirichlet mirror, the signature of the asymmetry present
in the force is apparent. Instead of a positive dissipative force acting on the mirror as it
begins to move, there is an initially negative force that corresponds to non-zero dynamical
Casimir effect forces that arise due to the asymmetry in particle production. This behavior
becomes more obvious when we consider the force on the moving δ − δ′ mirror for λ0 = 0.
The force plot now resembles that of the Dirichlet mirror, where the force is once again
positive near zero, albeit greater.

Presented in Figure 2, the force as a function of time is plotted for two different values
of ω0. As the frequency of oscillation increases, the number of peaks increases along with it.
Compared to the analogous plot for the δ − δ′ mirror with time-dependent properties, there
is a larger increase in the magnitude of the force for the moving mirror. This is expected,
as the asymmetry in particle production for the moving δ − δ′ mirror scales as ω2

0 when
compared to that of the δ − δ′ mirror with time-dependent material properties [7,8]. Thus,
there is an accompanying increase in net force on the moving mirror as the frequency of
oscillation increases.
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Figure 2. The force (see Equation (71)) on a moving δ − δ′ mirror as a function of time, presented in
natural units, for two values of ω0, where µ0 = λ0 = T = 1. See text for details.

4.2. Mirror with Time-Dependent Properties

To find the first-order force on a stationary δ − δ′ mirror with time-dependent µ(t) (see
Equation (39)), let us start by using δS(1)

µ [ω, ω′] from Equation (41) in Equation (65) to find

δC(1)
µ [ω, ω′] = −iµ0 f [ω + ω′]

(
h(ω)Sµ[−ω′]cin[−ω′]S0[ω

′]T + h(ω′)S0[ω]cin[ω]Sµ[−ω]T
)

. (82)

Again using the definition of cin[ω] from Equation (13), and implementing a change of
variables in the second term as done in Equation (68), δC(1)

µ becomes

δC(1)
µ [ω, ω′] =− iµ0

2ω′ h(ω) f [ω + ω′]
(

Θ(ω′)S0[ω
′]Sµ[−ω′]T − Θ(−ω′)Sµ[−ω′]S0[ω

′]T
)

, (83)

which yields

Tr
[
ηδC(1)

µ [ω, ω′]
]
= − iµ0

2ω′ sgn(ω′)h(ω) f [ω + ω′]Tr
[
ηS0[ω

′]Sµ[−ω′]T
]
. (84)

Performing the direct calculation

Tr
[
ηS0[ω

′]Sµ[−ω′]T
]
= 4λ0ω′h(ω′), (85)

one sees that

Tr
[
ηδC(1)

µ [ω, ω′]
]
= −2iλ0µ0sgn(ω′)h(ω)h(ω′) f [ω + ω′]. (86)

From Equation (86), we write the motional force in terms of χ[ω, ω′] in the following
manner 〈

δF(1)
µ (t)

〉
=

∫ dω

2π

∫ dω′

2π
e−iωt−iω′tχ

(1)
µ [ω, ω′] f [ω + ω′], (87)

χ
(1)
µ [ω, ω′] = −2iλ0µ0sgn(ω′)ωω′h(ω)h(ω′). (88)
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Plugging in Equation (88) into Equation (31) gives the explicit first-order susceptibility for
the time-dependent δ − δ′ mirror,

χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
2 + (βω)2 − 2iβω

4 + (βω)2

[
2i arctan (βω)− log

(
1 + β2ω2

)]
− iβω

]
, (89)

which is in agreement with Ref. [6], up to discrepancy of a factor of 2 on the entire term.
Unlike in the motional case presented in Equation (74), when the asymmetry is no longer
present (λ0 = 0), the susceptibility in Equation (89) completely vanishes. This is expected,
as there are no longer any time-dependent interactions occurring between the mirror and
the vacuum, and thus there is no force present.

The susceptibility’s real and imaginary components are

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
2βω arctan(βω)− (2 + β2ω2) log

(
1 + β2ω2)

4 + β2ω2

]
, (90)

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−4βω − β3ω3 + (2 + β2ω2)2 arctan(βω) + βω log

(
1 + β2ω2)

4 + β2ω2

]
. (91)

For βω ≪ 1:

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
− (βω)4

6
+

(βω)6

10
+O

[
(βω)8

]]
,

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
(βω)3

6
− 2(βω)5

15
+O

[
(βω)7

]]
.

(92)

For βω ≫ 1:

Re χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−2 log(βω) +

π

βω
+

−3 + 4 log(βω)

(βω)2 − 4π

(βω)3 +O
[
(βω−4)

]]
,

Im χ
(1)
µ [ω] =

λ0

πβ2(1 + λ2
0)

[
−βω + π − 2(1 − log(βω))

βω
− 2π

(βω)2 +
17 − 24 log(βω)

3(βω)3 +O
[
(βω)−4

]]
.

(93)

Similar to the moving mirror case of Section 4.1, the limits in Equations (92) and (93)
correspond to the low- and high-frequency limits of the susceptibility, respectively. One
should still exercise caution, as again, using these to produce time-domain quantities can
lead to misleading results as the inverse Fourier transform requires an integral over the
entire frequency domain.

As in the first-order motional case, we again plot the force that arises from the time-
dependent perturbation, now due to µ(t), in Figure 3. The behavior is similar to that of the
moving mirror; the magnitude of the force increases as the asymmetry grows. Compared to
the moving mirror, the positive force peaks have been shifted toward zero slightly but still
dies off just as quickly. While the positive force peaks due to the time-dependent material
properties are of the same order as the force from the motion of the mirror, the initial
negative force is approximately an order of magnitude lower. In Figure 4, the behavior
of the δ − δ′ mirror with time-dependent material properties is plotted. As in the moving
mirror case there is an increase in the number of peaks and the magnitude of the peaks,
although the increase is not as dramatic as the moving case.
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Figure 3. The force (see Equation (87)) on a δ − δ′ mirror with time-dependent µ(t) as function of
time, presented in natural units, for some values of λ0, where µ0 = ω0 = T = 1. The force on a
moving Dirichlet mirror is presented for comparison. Inset: the behavior of the time-dependent δ − δ′

mirror’s forces near zero. See text for details.
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Figure 4. The force (see Equation (87)) on a δ− δ′ mirror with time-dependent µ(t) (see Equation (39))
as a function of time, presented in natural units, for two values of ω0, where µ0 = λ0 = T = 1. See
text for details.
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5. Second-Order Forces

The second-order contribution (of order ϵ2) to the non-vanishing mean force that arises
due to the terms δS(1) and δS(2) (see Equations (41) and (51), respectively) is〈

δF(2)(t)
〉
=

∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(2)

out[ω, ω′]
]
, (94)

where

δC(2)
out[ω, ω′] =

∫ dω′′

2π

∫ dω′′′

2π

(
δS(1)[ω, ω′′]Cin[ω

′′, ω′′′]δS(1)[ω′, ω′′′]T

+ S0[ω]Cin[ω, ω′′′]δS(2)[ω′, ω′′, ω′′′]T + δS(2)[ω, ω′′, ω′′′]Cin[ω
′′′, ω′]S0[ω

′]T
)

.
(95)

With a stationary ingoing state (see Equations (12) and (13)), this becomes

δC(2)
out[ω, ω′] =

∫ dω′′

2π

(
δS(1)[ω, ω′′]cin[ω

′′]δS(1)[ω′,−ω′′]T

+ S0[ω]cin[ω]δS(2)[ω′, ω′′,−ω]T + δS(2)[ω, ω′′,−ω′]cin[−ω′]S0[ω
′]T

)
.

(96)

It is helpful to simplify δC(2)
out here using the definition cin[ω] from Equation (13). This

becomes

δC(2)
out[ω, ω′] =

∫ dω′′

2π

(
Θ(ω′′)

2ω′′ δS(1)[ω, ω′′]δS(1)[ω′,−ω′′]T

+
Θ(ω)

2ω
S0[ω]δS(2)[ω′, ω′′,−ω]T − Θ(−ω′)

2ω′ δS(2)[ω, ω′′,−ω′]S0[ω
′]T

)
.

(97)

Again, as in Section 4.2, using the fact that exchanging ω and ω′ under the double integral
does not change the result of the integral, we may modify the expression (97) to

Tr
[
ηδC(2)

out[ω, ω′]
]

=⇒
∫ dω′′

2π

(
Θ(ω′′)

2ω′′ Tr
[
ηδS(1)[ω, ω′′]δS(1)[ω′,−ω′′]T

]
+

sgn(ω′)
2ω′ Tr

[
ηS0[ω

′]δS(2)[ω, ω′′,−ω′]T
])

.
(98)

5.1. Moving Mirror

Now, using the definition of the first-order perturbation from Equation (48) and the
second-order perturbation from Equation (63) for a moving δ − δ′ mirror one sees that
Equation (98) becomes

Tr
[
ηδC(2)

q [ω, ω′]
]
=

∫ dω′′

2π

(
Θ(ω′′)

2
ω′′g[ω − ω′′]g[ω′ + ω′′]Tr

[
ηS(1)q [ω, ω′′]S(1)q [ω′,−ω′′]T

]
+

sgn(ω′)
4

ω′g[ω − ω′′]g[ω′ + ω′′]Tr
[
ηS0[ω

′]S(2)q [ω, ω′′,−ω′]T
])

.
(99)

We find

Tr
[
ηS(1)q [ω, ω′′]S(1)q [ω′,−ω′′]T

]
= 8iλ0µ3

0Q[ω, ω′, ω′′]h(ω)h(ω′)h(ω′′)h(−ω′′), (100)

Tr
[
ηS0[ω

′]S(2)q [ω, ω′′,−ω′]T
]
= 4iλ0µ0(ω + ω′)h(ω)h(ω′), (101)

where
Q[ω, ω′, ω′′] =

[
1 + (βω′′)2

]
(ω + ω′)− iβ(ω − ω′′)(ω′ + ω′′). (102)
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Let us now express the second-order force from Equation (94) in terms of χ
(2)
q :

〈
δF(2)

q (t)
〉
=

∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
q [ω, ω′, ω′′]g[ω − ω′′]g[ω′ + ω′′], (103)

where

χ
(2)
q [ω, ω′, ω′′] = iωω′λ0µ0h(ω)h(ω′)

×
[
4µ2

0Θ(ω′′)ω′′Q[ω, ω′, ω′′]h(ω′′)h(−ω′′) + sgn(ω′)ω′(ω + ω′)
]
,

(104)

and thus〈
δF(2)

q [ω]
〉
=

∫ dω′

2π

∫ dω′′

2π
χ
(2)
q [ω′, ω − ω′, ω′′]g[ω′ − ω′′]g[ω − ω′ + ω′′]. (105)

5.2. Mirror with Time-Dependent Properties

Now, using the definition of the first-order perturbation from Equation (41) and the
second-order perturbation from Equation (51) for a δ − δ′ mirror with time dependent
material properties Equation (98) becomes

Tr
[
ηδC(2)

µ [ω, ω′]
]
=−

∫ dω′′

2π

Θ(ω′′)
2ω′′ µ2

0h(ω)h(ω′) f [ω − ω′′] f [ω′ + ω′′]Tr
[
ηSµ[ω

′′]Sµ[−ω′′]T
]

−
∫ dω′′

2π

sgn(ω′)
2ω′ µ2

0h(ω)h(ω′′) f [ω − ω′′] f [ω′ + ω′′]Tr
[
ηS0[ω

′]Sµ[−ω′]T
] (106)

We find:

Tr
[
ηSµ[ω

′′]Sµ[−ω′′]T
]
=

8λ0(1 + λ2
0)ω

′′ 2

µ2
0 + ω′′ 2(1 + λ2

0)
= −8λ0(1 + λ2

0)ω
′′ 2h(ω′′)h(−ω′′), (107)

Tr
[
ηS0[ω

′]Sµ[−ω′]T
]
=

4λ0ω′

iµ0 + ω′(1 + λ2
0)

2
= 4ω′λ0h(ω′), (108)

Expressing the second-order force in terms of χ
(2)
µ :

〈
δF(2)

µ (t)
〉
=

∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
µ [ω, ω′, ω′′] f [ω − ω′′] f [ω′ + ω′′], (109)

where

χ
(2)
µ [ω, ω′, ω′′] = 2ωω′λ0µ2

0h(ω)h(ω′)h(ω′′)
[
2(1 + λ2

0)Θ(ω′′)ω′′h(−ω′′)− sgn(ω′)
]
, (110)

leads to〈
δF(2)

µ [ω]
〉
=

∫ dω′

2π

∫ dω′′

2π
χ
(2)
µ [ω′, ω − ω′, ω′′] f [ω′ − ω′′] f [ω − ω′ + ω′′]. (111)

While the first-order force calculation (see Equation (71)) agrees with that from Ref. [6],
the corresponding second-order force calculation (see Equation (111)) does not. The suscep-
tibility in Equation (110) differs substantially and includes an additional term dependant on
(1 + λ2

0). We believe our derivation of the second-order force term is correct and indicates
an issue in the corresponding calculation in Ref. [6].

5.3. Force from the Interference Effect

A system that possesses two distinct sources of time-dependent fluctuations experi-
ences an interference effect due to the interaction between these two sources [9,21]. This
interaction occurs as a second-order effect, as there is no first-order mixing term present.
Thus, in addition to the independent force terms that are present at the second order,
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there is a mixing of the first-order perturbation terms, δS(1)
µ [ω, ω′] (see Equation (41)) and

δS(1)
q [ω, ω′] (see Equation (48)):

〈
δF(2)

int (t)
〉
=

∫ dω

2π

∫ dω′

2π
e−iωt−iω′tωω′ Tr

[
ηδC(2)

int [ω, ω′]
]
, (112)

where

δC(2)
int [ω, ω′] =

∫ dω′′

2π

∫ dω′′′

2π

(
δS(1)

µ [ω, ω′′]Cin[ω
′′, ω′′′]δS(1)

q [ω′, ω′′′]T

+ δS(1)
q [ω, ω′′]Cin[ω

′′, ω′′′]δS(1)
µ [ω′, ω′′′]T

)
.

(113)

With Cin[ω, ω′] = 2πδ(ω + ω′)cin[ω], as in Equation (12), this becomes

δC(2)
int [ω, ω′] =

∫ dω′′

2π

(
δS(1)

µ [ω, ω′′]cin[ω
′′]δS(1)

q [ω′,−ω′′]T + δS(1)
q [ω, ω′′]cin[ω

′′]δS(1)
µ [ω′,−ω′′]T

)
, (114)

which can be further simplified with the definition of cin[ω] as in Equation (13) to obtain

δC(2)
int [ω, ω′] =

∫ dω′′

2π

Θ(ω′′)
2ω′′

(
δS(1)

µ [ω, ω′′]δS(1)
q [ω′,−ω′′]T + δS(1)

q [ω, ω′′]δS(1)
µ [ω′,−ω′′]T

)
. (115)

Now, to simplify this expression, we make a change of variables in the second term of
Equation (115). We take ω′′ → −ω′′ and swap ω ↔ ω′ to arrive at

δC(2)
int [ω, ω′] =

∫ dω′′

2π

(
Θ(ω′′)

2ω′′ δS(1)
µ [ω, ω′′]δS(1)

q [ω′,−ω′′]T +
Θ(−ω′′)

2ω′′ δS(1)
q [ω′,−ω′′]δS(1)

µ [ω, ω′′]T
)

(116)

Using the properties of the trace, we find:

Tr
[
ηδC(2)

int [ω, ω′]
]
=

∫ dω′′

2π

1
2ω′′ Tr

[
ηδS(1)

µ [ω, ω′′]δS(1)
q [ω′,−ω′′]T

]
, (117)

where the identity Θ(ω) + Θ(−ω) = 1 is used. Now, using the definition of the two first-
order perturbation terms δS(1)

µ [ω, ω′] (see Equation (41)) and δS(1)
q [ω, ω′] (see Equation (48))

we find:

Tr
[
ηδC(2)

int [ω, ω′]
]
= −

∫ dω′′

2π

µ0

2
h(ω) f [ω − ω′′]g[ω′ + ω′′]Tr

[
ηSµ[ω

′′]S(1)q [ω′,−ω′′]T
]
. (118)

The trace term becomes

Tr
[
ηSµ[ω

′′]S(1)q [ω′,−ω′′]T
]
= 4iω′′h(ω′)h(ω′′)h(−ω′′)I [ω, ω′, ω′′], (119)

where
I [ω, ω′, ω′′] = iµ2

0(1 + λ2
0) + µ0(1 − λ2

0)
2ω′ − 4iλ2

0(1 + λ2
0)ω

′ω′′ (120)

We can now express the second-order force due to the interference of the two sources
(see Equation (112)) in terms of χ

(2)
int :〈

δF(2)
int (t)

〉
=

∫ dω

2π

∫ dω′

2π

∫ dω′′

2π
e−iωt−iω′tχ

(2)
int [ω, ω′, ω′′] f [ω − ω′′]g[ω′ + ω′′], (121)

where
χ
(2)
int [ω, ω′, ω′′] = 2iµ0ωω′ω′′h(ω)h(ω′)h(ω′′)h(−ω′′)I [ω, ω′, ω′′]. (122)

The force for the interference term now reads〈
δF(2)

int [ω]
〉
=

∫ dω′

2π

∫ dω′′

2π
χ
(2)
int [ω

′, ω − ω′, ω′′] f [ω′ − ω′′]g[ω − ω′ + ω′′]. (123)
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6. Conclusions

When a mirror in a vacuum undergoes time-dependent fluctuations, it produces
real particles via the dynamical Casimir effect. In the case when such a mirror possesses
asymmetric boundary properties, its spectrum of particles is also be asymmetric. This
asymmetry in particle production results in a perturbation in the position of the mir-
ror; that is, the imbalance in radiation reaction forces results in induced motion of the
mirror [6–8]. The vacuum, in turn, acts as a dissipative medium and resists the motion
of the mirror, which is described in part by fluctuation–dissipation theory [18]. Here, we
have used fluctuation–dissipation theory to calculate the vacuum-induced response to the
time-dependent fluctuations of an asymmetric δ − δ′ mirror which is both moving and
possesses time-dependent material properties. We find that the resulting forces are both
dissipative and motion inducing, since the asymmetry in particle production generates a
secondary force in addition to the dissipative force of the vacuum, which seeks to suppress
the motion of the mirror.

The linear susceptibility, used to calculate the mean force, is calculated to the first-
and second-order for both the contribution from the motion of the moving mirror and
from the time-dependent boundary conditions. For the first-order, we are able to provide
exact results for the susceptibility as well as expansions in the limits βω ≫ 1 and βω ≪ 1.
We plot the resulting force numerically for different values of λ0 and compare them to
the purely dissipative force of a moving Dirichlet mirror. Additionally, we have also
looked at the resulting changes to the force when the fluctuation oscillation frequency is
increased. The resulting second-order forces are calculated, which also include a mixed
interference term in addition to the second-order contributions from the two separate
fluctuation sources.

Thus far, our numerical analysis has been restricted to first-order forces with only
a single type of oscillation. In the future, we wish to extend these numerical methods
to a higher order in force and study other physically interesting types of fluctuations,
which would cause novel interactions with the vacuum. Additionally, these methods could
be used to analyze work and impulse delivered to the Casimir system, allowing us to
determine optimal system configurations along with parameters for generating motion.
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