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Abstract: This review collects the recent developments in the field of enantioselective scandium-
catalyzed transformations published since the beginning of 2016, illustrating the power of chiral
scandium catalysts to promote all types of reactions.
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1. Introduction

Metal catalysts are still widely employed in asymmetric synthesis in spite of their toxi-
city and high cost [1–17]. In contrast, inexpensive and non-toxic rare earth metals, such as
scandium, have been identified in the last two decades as remarkable environmentally be-
nign Lewis acid catalysts. Especially, chiral complexes derived from Sc(OTf)3 have become
unique promotors of many types of asymmetric transformations since the breakthrough
early work reported by Kobayashi in 1994, dealing with asymmetric scandium-catalyzed
Diels-Alder cycloadditions [18]. This review aims to update the field of enantioselective
scandium-catalyzed reactions since the beginning of 2016, as this area was most recently re-
viewed that year, covering the literature up to 2015 [9]. Other reviews on racemic scandium
or other rare earth catalysis have been previously published [19–27]. Moreover, it must be
noted that two reviews focusing on C−H activation with 3d transition metals have been
recently published by Ackermann but they included none or only one reference ≥2016,
respectively, concerning asymmetric reactions [28,29]. The present review is divided into
eight parts, dealing successively with enantioselective scandium-catalyzed domino and
tandem reactions, cycloadditions, Michael additions, ring-opening reactions, Friedel-Crafts
reactions, ring-expansion reactions, rearrangement reactions, and miscellaneous reactions.

2. Enantioselective Scandium-Catalyzed Domino and Tandem Reactions
2.1. Ring-Opening-Initiated Domino Reactions

A wide number of asymmetric domino reactions have been successfully catalyzed by
many types of chiral metal complexes, allowing the synthesis of very complex molecules [30–45].
In the last few years, different types of chiral ligands, including N,N′-dioxides, pyridine-
2,6-bisoxazolines, bipyridines, phosphine oxides, and phosphoric acids, have been chelated
to scandium to promote a range of unprecedented highly efficient domino reactions. Many
bioactive and natural products include benzimidazole moieties in their skeleton. In 2016,
the first asymmetric synthesis of benzimidazole derivatives was disclosed by Liu and
Feng [45]. The process deals with an enantioselective scandium-catalyzed domino ring-
opening/cyclization/retro-Mannich reaction of cyclopropyl ketones 1 with aryl 1,2-diamines
2 catalyzed in DCE at 35 ◦C by a chiral scandium complex in situ generated from 10 mol%
of ScCl3·6H2O and the same quantity of chiral N,N′-dioxide ligand 6. It afforded the corre-
sponding domino products 5 in moderate to quantitative yields (56–99%) and uniformly
high enantioselectivities (80–97% ee). The reaction evolved through the ring-opening of the
cycloprane substrate 1 by the diamine 2 to give the corresponding ring-opened intermediate
3. The latter then underwent cyclization to form intermediate 4, which was subsequently
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submitted to a retro-Mannich reaction to afford the final benzimidazole 5 bearing a chiral
side chain (Scheme 1).
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Scheme 1. Domino ring-opening/cyclization/retro-Mannich reaction of cyclopropyl ketones with
1,2-diamines [45].

In the same year, Lin and Feng described the first enantioselective [3 + 3] annulation
of aryl cyclopropyl ketones 1,7 with mercaptoacetaldehyde 8 catalyzed by a combination
of 10 mol% of chiral N,N′-dioxide ligand 9 and the same quantity of Sc(OTf)3 [46]. As
illustrated in Scheme 2, the domino reaction evolved through the ring-opening of the cyclo-
propyl ketones by mercaptoacetaldehyde followed by cyclization to give the corresponding
chiral tetrahydrothiopyranols 10 with moderate to high yields (38–80%) and both uniformly
high diastereo- (78 ≥ 90% de) and enantioselectivities (89–99% ee).

Other ring-opening-initiated domino reactions have been successfully catalyzed by
chiral scandium complexes. For example, Pan and Mondal described in 2017 scandium-
catalyzed domino ring-opening/Michael reactions of cyclopropane-1,1-esters with
γ-hydroxyenones, leading to functionalized tetrahydropyrans [47]. An asymmetric ver-
sion of this methodology was developed by using chiral Pybox ligand 11 at 20 mol% of
catalyst loading combined with the same quantity of Sc(OTf)3 as precatalyst (Scheme 3).
Under these catalytic conditions, the reaction of γ-hydroxyenone 12 with cyclopropane-
1,1-dimethylester 13 carried out at room temperature in dichloromethane provided func-
tionalized chiral tetrahydropyran 14 as major cis-diastereomer in 40% yield, with moderate
diastereo- (34% de), and enantioselectivities (36–49% ee). In spite of these modest results,
this methodology presented the advantage to allow an easy access to tetrasubstituted
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tetrahydropyrans exhibiting two stereogenic centers, constituting the skeleton of many
natural and biologically active products.
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Later in 2020, Feng and Lin employed 5 mol% of a combination of Sc(OTf)3 with chiral
N,N′-dioxide ligand 9 to catalyze an enantioselective domino ring-opening/cyclization/
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dehydration/thio-Michael reaction between cyclopropanes 1,7 and 2-aminothiophenols
15 (Scheme 4) [48]. Performed at 45 ◦C in TCE as solvent, the process resulted in the
formation of chiral tricyclic products 16 with moderate to high yields (36–89%), low to high
diastereoselectivities (2–88% de), and moderate to excellent enantioselectivities (38–96% ee).
The mechanism of the reaction depicted in Scheme 4 begins with the scandium-promoted
nucleophilic ring-opening of the three-membered substrate by the 2-aminothiophenol.
Then, a cyclization occurred to form a tetrahydropyrrole. The latter was submitted to
dehydration to give a dihydropyrrole intermediate, which further underwent a final thio-
Michael addition, delivering the product.
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The authors proposed the favored transition state, depicted in Scheme 5, to explain
the stereoselectivity of the reaction in which the four oxygen atoms of the ligand and
the two oxygen atoms of the cyclopropane 1a (R1 = R2 = R3 = Ph) coordinated to the
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scandium center to form an octahedral complex [48]. The coordination of (R)-1a with the
catalyst resulted in stronger steric repulsion between the 2,4,6-triisopropylphenyl group
of the ligand and the phenyl group of the cyclopropyl ketone as shown in the disfavored
transition state, making (R)-1a less reactive. In contrast, 2-aminothiophenol 15a (R4 = H)
attacked (S)-1a from less steric hindered face, delivering (R)-configured intermediate A.
Then, the thio-Michael addition occurred from the Si-face of the C = C bond in A to form a
(R)-configured quaternary stereogenic center. The chiral center located on the α-position
of the carbonyl group could be generated through keto–enol tautomerism, delivering the
product with smaller repulsion with the phenyl and benzoyl groups on opposite sides.
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opening/cyclization/dehydration/thio-Michael reaction of cyclopropane derivatives with
2-aminothiophenols [48].

So far, only few methodologies have been developed to synthesize enantiopure
4-hydroxy-chroman-2-ones, which are the skeletons of many biologically important prod-
ucts. To fill this gasp, Liu and Feng disclosed in 2019 a novel method based on an asymmet-
ric domino ring-opening/nucleophilic addition/cyclization reaction occurring between
2-hydroxyacetophenones 17 and cyclobutenones 18 [49]. It required to be promoted at 60 ◦C
in DCE as solvent by a chiral catalyst in situ generated from 10 mol% of Sc(OTf)3 and the
same quantity of chiral N,N′-dioxide ligand 19. As illustrated in Scheme 6, the process began
with the ring-opening of the four-membered substrate into the corresponding vinylketene
intermediate B. Subsequently, a nucleophilic addition of the 2-hydroxyacetophenone to
intermediate B afforded scandium intermediate C, which then underwent cyclization to
deliver the final product as a single diastereomer (>90% de). A wide range of these products
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was synthesized by this methodology with moderate to high yields (51–92%) and low to
excellent enantioselectivities (20–93% ee). In most cases, high enantioselectivities (≥85% ee)
were achieved in the reaction of variously substituted 2-hydroxyacetophenones 17.
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2.2. Michael-Initiated Domino and Tandem Reactions

In 2019, Feng et al. reported a novel route to chiral spirocyclohexene pyrazolones
involving an asymmetric scandium-catalyzed domino Michael/aldol reaction [50]. It
evolved in a mixture of dichloromethane and water as solvent in the presence of a combi-
nation of 10.5 mol% of chiral N,N′-dioxide ligand 21 and 10 mol% of Sc(OTf)3 as precat-
alyst (Scheme 7). In this context, α-arylidene pyrazolinones 23 reacted at 35 ◦C with β,
γ-unsaturated α-ketoesters 24 to afford densely functionalized chiral spiro-bicyclic prod-
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ucts 22 with both moderate to excellent yields (60–99%) and enantioselectivities (58–94% ee)
as mixtures of diastereomers with variable diastereoselectivities (18–72% de).
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Scheme 7. Domino Michael/aldol reaction of pyrazolinone derivatives with unsaturated α-ketoesters [50].

On the basis of the biological importance of oxindoles, Feng and Liu investigated in
2023 the regio- and enantioselective Michael addition of 3-substituted oxindoles to different
types of β-nitro α, β-unsaturated carbonyl compounds in order to synthesize a variety of
enantiopure functionalized 3-alkenyl disubstituted oxindoles after subsequent elimination
of the nitro group [51]. It was found that in the presence of a chiral catalyst formed from
10 mol% of Sc(OTf)3 and the same quantity of chiral N,N′-dioxide ligand 25 and TEA as
base, the reaction of 3-substituted oxindoles 26 with β-nitroenones 27 occurred through a
β-regioselective conjugate addition, in which the benzoyl group of the Michael acceptor
acted as a stronger directing group. Consequently, the reaction performed in chloroform at
30 ◦C afforded, after subsequent nitro-elimination mediated by TEA, the corresponding
chiral 3-alkenyl disubstituted oxindoles 28 with moderate to quantitative yields (30–98%)
and good to excellent enantioselectivities (74–99% ee), as illustrated in Scheme 8. On the
other hand, the reaction of 3-substituted oxindoles 26 with β-nitroacrylates 29 performed
in the presence of 10 mol% of Sc(OTf)3 combined with 10 mol% of chiral N,N′-dioxide
ligand 30 occurred through an α-regioselective Michael addition in which the nitro-group
acted as the activated group. The non-isolated Michael adducts were directly submitted to
elimination by treatment with DBU as base in THF at 30 ◦C to afford the corresponding
chiral exo-methylene oxindoles 31 with good yields (73–85%) and high enantioselectivities
(86–91% ee).
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Scheme 8. Domino Michael/elimination reaction of 3-substituted oxindoles with β-nitroenones and
tandem Michael/elimination reaction of 3-substituted oxindoles with β-nitroacrylates [51].

To explain the different regioselectivities of the precedent Michael additions of oxin-
doles 26 to β-nitroenones 27 and β-nitroacrylate 29, the authors proposed the two respective
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transition states TS1 and TS2 (Scheme 9). In TS1, β-nitroenone 27 is coordinated to the
scandium center through its benzoyl group, whereas β-nitroacrylate 29 is chelated to the
metal in TS2 through its nitro group. This decreases the LUMO energy of the Michael
acceptors to promote the β-selective Michael addition and α-selective conjugate addition,
respectively [52]. The same facial selectivity for the nucleophilic addition of the oxindole to
the two types of Michael acceptors was confirmed by X-ray analysis of products 28 and 31,
which were found to exhibit the same configuration.
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2.3. Friedel-Crafts-Initiated Domino and Tandem Reactions

In 2017, Lin and Feng described an enantioselective domino Friedel–Crafts alkylation/
hemiketalization reaction between α, β-unsaturated ketoesters 32 and 3,4-dimethoxyphenol
33 (Scheme 10) [52]. Carried out at 30 ◦C in ethyl acetate as solvent in the presence of 10
mol% of Sc(OTf)3 and 12 mol% of chiral N,N′-dioxide ligand 34, the process allowed a
direct approach to chiral 2,3-disubstituted chromans 35 to be achieved with high yields
(75–97%), good diastereoselectivities (72–86% de) and high enantioselectivities (80–95% ee).
In addition to a wide variety of (hetero)aryl-substituted ketoesters, an α, β, γ, δ-unsaturated
ketoester (R = (E)-PhCH = CH) also afforded the corresponding chiral product with 95%
yield and 80% ee. The authors proposed the hexadentate transition state depicted in
Scheme 10, in which the four oxygen atoms of the ligand were coordinated to the scandium
center. The two adding coordinations arose from the hydroxyl group of the phenol and
the carbonyl group of the ketoester. The Re-face of C = C bond of the α, β-unsaturated
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ketoester was sterically hindered by the amide moiety of the ligand, which resulted in the
formation of the (2R,3S)-chroman.
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toesters with an 3,4-dimethoxyphenol [52].

Later in 2021, a novel and simple synthesis of C2-symmetric chiral macrodiolides 36
was developed by Dong and Feng on the basis of an enantioselective scandium-catalyzed
tandem reaction occurring between ortho-quinone methides 37 and C3-substituted indoles
38 (Scheme 11) [53]. The reaction began with an asymmetric Friedel–Crafts alkylation
promoted by 5 mol% of a chiral scandium catalyst in situ generated from Sc(OTf)3 and
chiral N,N′-dioxide ligand 39 performed at 35 ◦C in dichloromethane as solvent to give
intermediate 40. The latter was subsequently submitted to intermolecular macrolactoniza-
tion by adding DIPEA as base to the reaction media, which afforded a range of chiral
macrodiolides 36 with 16, 18 or 20-membered rings. These complex products were obtained
in moderate to good yields (45–75%) with both uniformly excellent enantio- (90–97% ee)
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and diastereoselectivities (82 ≥ 90% de). Different substituents on the phenyl ring of the
indole moiety were tolerated, regardless of their position and electronic nature.
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2.4. Bromination-Initiated Domino Reactions

In 2016, Shi et al. disclosed an enantioselective domino bromination/amination reac-
tion of (E)-cinnamyl carbamates 41 with DBDMH as the bromination agent (Scheme 12) [54].
The process was catalyzed at −50 ◦C by only 2 mol% of a mixture of Sc(OTf)3 and chiral
phosphine oxide ligand 42. Performed in chloroform, it provided highly enantioselectively
(87–99% ee) chiral aryl 5-bromo-1,3-oxazinan-2-ones 43 in good yields (65–96%).

An asymmetric domino bromination/semipinacol rearrangement reaction was described
by Cao and Feng, in 2021 [55]. The reaction occurred between isatin-derived allylic alcohols 44
and NBS at 30 ◦C in DCE in the presence of a combination of 10 mol% of N,N′-dioxide ligand
45 and the same quantity of Sc(OTf)3, thus allowing the synthesis of two families of chiral
products. The first one deals with brominated dihydroquinoline-2,4-diones 46 arisen from an
acyl-migration, while the second one concerns bromo-substituted dihydroquinoline-2,3-diones
47 generated from an aryl-migration (Scheme 13). These two products were generated
through kinetic resolution with moderate yields (37–54% and 29–52%, respectively, for 46
and 47) combined with good enantioselectivities (75–96% ee and 75–98% ee, respectively,
for 46 and 47).
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2.5. Three-Component Domino Reactions

In 2018, Feng et al. introduced a novel synthesis of chiral tetrahydroindolizines,
exhibiting four contiguous stereocenters by the involvement of an asymmetric multicat-
alyzed three-component reaction of alkenyloxindoles 48, diazoacetates 49 and pyridines 50
(Scheme 14) [56]. The process evolved through a relay catalysis involving an achiral iron
catalyst, such as Fe(TPP)Cl (TPP = tetraphenylprophyrin), and a chiral scandium catalyst
in situ formed from 10 mol% of Sc(OTf)3 and the same quantity of chiral N,N′-dioxide
ligand 21. Performed at 0 ◦C in methyl acetate as solvent, the reaction began with the
iron-catalyzed formation of an iron carbene species from the corresponding diazoacetate
49. In the presence of the catalyst, this carbene species was then attacked by pyridine 50 to
give pyridinium ylide intermediate D which subsequently added to alkenyloxindole 48
to provide zwitterionic intermediate E. Then, the latter was submitted to a ring closing to
finally afford chiral functionalized tetrahydroindolizine 51, in most cases, as a single di-
astereomer (>90% de) in good to high yields (55–99%) and enantioselectivities (71–99% ee).
Generally, the best enantioselectivities were obtained in the reaction of alkenyloxindoles
bearing electron-donating substituents (R2–R4) on their phenyl ring, while lower enan-
tioselectivies (71–73% ee) were obtained in the case of electron-withdrawing substituted
substrates. Moreover, lower diastereoselectivities (73–84% de) were observed in the reaction
of pyridines exhibiting electron-withdrawing substituents.
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Later in 2020, a novel asymmetric three-component reaction between ortho-hydroxybenzyl
alcohols 52, ynamides 53 and carboxylic acids 54 was catalyzed by Cao and Feng by a
combination of 10 mol% of Sc(OTf)3 with 10 mol% of related chiral N,N′-dioxide ligand
9 [57]. The process dealt with a domino hydroacyloxylation/Michael reaction performed
at 35 ◦C in TCE. As illustrated in Scheme 15, an hydroacyloxylation of ynamide 53 with
acid 54 produced acyloxyenamide 55, which then underwent a Michael addition to ortho-
quinone methide 56 arisen from dehydration of ortho-hydroxybenzyl alcohol 52. The
reaction resulted in the formation of densely functionalized chiral α-acyloxyenamides 57
with high enantioselectivities (85–99% ee) combined with low to high yields (20–84%).
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2.6. Miscellaneous Domino and Tandem Reactions

In 2016, Zhou et al. developed an enantioselective domino imine formation/intramolecular
amination reaction of aldehydes 58 with 2-aminobenzenesulfonamide 59 (Scheme 16) [58].
The reaction was induced in dichloromethane at −40 ◦C by a chiral scandium catalyst in situ
formed from 10 mol% of Sc(OTf)3 and 20 mol% of chiral Pybox ligand 60, leading to biologi-
cally interesting 3-alkyl- or 3-aryl-substituted chiral 3,4-dihydro-2H-1,2,4-benzothiadiazine-
1,1-dioxides 61 in both moderate to high yields (60–88%) and enantioselectivities (36–93%
ee). The best enantioselectivities (73–92% ee) were generally obtained in the reaction of
aliphatic aldehydes, whereas aromatic aldehydes afforded products with more variable ee
values (36–93% ee). In another area, Hannedouche et al. described in 2016 an asymmetric
tandem hydroamination/Friedel–Crafts reaction between N-tosyl-2-(propylethynyl)aniline
and ethyl 3,3,3-trifluoropyruvate, catalyzed by a chiral scandium complex derived from a
C2-symmetric binaphthylamine featuring a pyridylmethylamine moiety, which resulted in
the formation of the corresponding indole derivative, albeit with a low enantioselectivity
(10–20% ee) [59].
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An asymmetric domino Knoevenagel/[1,5]-hydride transfer/cyclization reaction be-
tween C4-pyrrolidin-substituted isatin 63 and 1,3-indandione 64 was investigated by Li and
Xiao, in 2019 (Scheme 17) [60]. Under catalysis with 10 mol% of Sc(OTf)3 and 20 mol% of
chiral ligand 65, the process carried out at 60 ◦C in DCE afforded complex chiral hexacyclic
product 66 in 50% yield and 35% ee. The mechanism shown in Scheme 17 involves a
Knoevenagel reaction leading to enone intermediate 67. A following [1,5]-hydride transfer
provides intermediate 68, which further undergoes cyclization to provide the final product.
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with 1,3-indandione [60].

A combination of Sc(OTf)3 (11 mol%) with chiral N,N′-dioxide ligand 71 (10 mol%) was
applied by Wu and Feng in 2021 to promote enantioselective homologation of ketones 69
with α-alkyl α-diazo esters 70 [61,62]. Evolving through a domino addition/rearrangement
reaction, the process produced chiral β-keto esters 72 as major products along with minor
regioisoimers 73 with 35–98% yields and good levels of regioselectivity (72/73 = 82:18
to >95:5). The major products 72 were obtained with 39–98% ee through selective alkyl-
group migration of the ketone moieties (Scheme 18). It must be noted that uniformly high
enantioselectivities (≥89% ee) were achieved excepted in the reaction of acetone (R1 = Me)
which provided the desired product with only 39% ee. (Hetero)aryl- and alkyl-substituted
acyclic ketones were compatible as well as various α-diazo esters. By using a related chiral
ligand, such as N,N′-dioxide ligand 75, cyclic ketone 74 was capable to undergo the ring
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expansion to yield by reaction with various α-diazo esters 70 chiral cyclic β-keto esters 76
with 85–92% ee and 21–54% yields.
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In the same year, an asymmetric domino dearomative spiroannulation of quinolines
77 with alkynes 78 was disclosed by Luo and Hou (Scheme 19) [63]. Carried out at 80 ◦C in
toluene in the presence of 6 mol% of chiral half-sandwich scandium catalyst 79, the reaction
resulted in the formation of biologically interesting chiral spiro-dihydroquinolines 80 in
good yields (72–95%) and low to excellent ee values (28–94% ee). As shown in Scheme 19,
the reaction evolves through the C−H activation of the 2-aryl substituent of 77 promoted
by the scandium catalyst to give intermediate F. The latter then undergoes nucleophilic
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1,2-addition of the resulting scandium alkenyl species to the imine of the quinoline, leading
to intermediate G, which delivers the final product through protonation.
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In 2022, Dong, Peng and Feng developed enantioselective catalytic domino Pudovik
addition/[1,2]-phospha-Brook rearrangement reaction between α-alkynylketoamides 81
and diarylphosphine oxides 82 (Scheme 20) [64]. The process was promoted at 0 ◦C
in dichloromethane by a chiral scandium catalyst in situ generated from 5–10 mol% of
Sc(OTf)3 and the same quantity of chiral N,N′-dioxide ligand 83. Using water as an ad-
ditive, it produced regio- and enantioselectively a range of chiral trisubstituted allenes
84 bearing a diarylphosphinate functionality with good to high yields (57–97%) and gen-
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erally excellent ee values (44–96% ee). The substrate scope was found to be wide, since
α-alkynylketoamides bearing symmetrical, unsymmetric, acyclic and cyclic N-substituents
were compatible, thus forming the corresponding products with uniformly high ee values
(80–92% ee) excepted substrate exhibiting a N,N-diisopropyl group (R1 = R2 = i-Pr), which
reacted with a lower enantioselectivity (44% ee). Moreover, different aryl substituents (R3)
on the alkyne terminus were tolerated regardless of the electronic properties and positions
of the substituents on the phenyl ring. Heteroaromatic substituents as well as aliphatic ones
were also tolerated. To explain their results, the authors proposed the mechanism depicted
in Scheme 20 in which the α-alkynylketoamide was activated through bidentate coordina-
tion to the catalyst to give intermediate H. Then, the latter species underwent nucleophilic
Pudovik addition with the isomerized diarylphosphine oxide 85 to generate alkoxide
intermediate I. Subsequently, 1,2-phospha-Brook rearrangement of I occurred, yielding
intermediate J. In the presence of water, γ-protonation of J delivered the final allene.
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In the same year, a dual scandium/iridium catalysis was applied by Yang and Deng
to promote an unprecedented enantioselective γ-allylic alkylation of in situ generated free
dienolates, thus allowing the regio- and highly enantioselective synthesis of chiral γ-allylic
crotonaldehydes (Scheme 21) [65]. Indeed, the domino reaction began with the in situ gener-
ation of dienolates from scandium-mediated Meinwald rearrangement of the corresponding
vinyloxiranes 86. Then, these dienolates subsequently underwent iridium-catalyzed asym-
metric γ-allylic alkylation with aromatic allylic alcohols 87 to afford the corresponding
chiral γ-allylic crotonaldehydes 88 with moderate to high yields (47–92%) and uniformly
high enantioselectivities (81 ≥ 99% ee). The domino Meinwald rearrangement/γ-allylic
alkylation reaction was performed at 50 ◦C in THF and required one equivalent of Sc(OTf)3,
4 mol% of [Ir(cod)Cl]2 and 16 mol% of chiral P,N-ligand 89 as a catalyst system. The sub-
strate scope of the reaction was found remarkably wide, especially for the allylic alcohols,
which could bear either electron-donating or electron-withdrawing groups at any position
of the phenyl ring but also heteroaromatic substituents. Concerning the vinyloxirane part-
ner, differently substituted phenyl rings were compatible as substituents (R1), providing
the corresponding products with 96–98% ee. Moreover, alkyl-substituted vinyloxiranes
(R1 = Me, n-Pent) also reacted smoothly to give the desired products with 95 ≥ 99% ee.
Even challenging vinyloxiranes bearing an electron-withdrawing group (R2 = CO2Et) on
the vinyl moiety provided the corresponding trisubstituted crotonaldehyde with 92% yield,
75% de and 81% ee through an exclusive γ-regioselectivity. The authors proposed the
mechanism detailed in Scheme 21, beginning with the generation of the active catalyst
from [Ir(cod)Cl]2 and ligand 89. The latter specie further coordinated the allylic alcohol to
give intermediate K, which then underwent oxidative addition promoted by Sc(OTf)3 to
provide π-allyl-iridium intermediate L. Concurrently, Sc(OTf)3 triggered the ring opening
of the vinyloxirane to give scandium-bound zwitterionic species M, which subsequently
underwent a 1,2-hydride shift/tautomerization sequence providing the active scandium
dienolate O. Subsequently, because of the steric hindrance of the Si-face in intermediate
L, the scandium dienolate O approached intermediate L from the Re-face, delivering the
product along with regenerated iridium catalyst.
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3. Enantioselective Scandium-Catalyzed Cycloadditions
3.1. [3 + 2] Cycloadditions

Spirooxindoles are widely present among natural and pharmaceutical products. In
2019, Franz et al. developed an asymmetric synthesis of cyclopentene-spirooxindoles con-
taining a vinylsilane moiety, which are potentially interesting in medicinal chemistry [66].
It was based on an enantioselective formal [3 + 2] cycloaddition of alkylideneoxindoles 90
with allenylsilanes 91 performed at room temperature in dichloromethane. The cycloaddi-
tion was catalyzed in the presence of NaBArF as an additive by a chiral scandium complex
in situ, formed from 10 mol% of Sc(OTf)3 and the same quantity of chiral Pybox ligand 92, as
illustrated in Scheme 22. After a subsequent N-acyl deprotection of the cycloadduct by treat-
ment with NaHCO3/H2O2, the corresponding chiral silylated cyclopentene-spirooxindoles
93 were generated in moderate to quantitative yields (38–97%) as almost single diastere-
omers (80–98% de) in uniformly high enantioselectivities (80–98% ee). The vinylsilane
group provided a versatile functional group to further modify the spirooxindole skeleton
to be used in medicinal chemistry. The reaction of alkylideneoxindoles 90 exhibiting an
ester group (EWG = ester) at the alkylidene moiety provided both higher yields (64–97%
vs. 38%) and enantioselectivities (82–98% ee vs. 80% ee) than that of an alkylidene oxin-
dole bearing a cyano group (EWG = CN). Moreover, a range of electron-donating and
electron-withdrawing substituents on the oxindole ring were tolerated.
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Later in 2022, Franz and Hein employed related chiral ligand 60 in combination with
the same precatalyst Sc(OTf)3 to promote the enantioselective formal [3 + 2] cycloaddi-
tion between alkylideneoxindole 90a and allylsilane 94 (Scheme 23) [67]. Employed at
respectively 11 and 10 mol% of catalyst loadings in dichloromethane in the presence of
NaBArF as an additive, the annulation resulted in the formation of novel tetrahydropyra-
noindole 95 with complete conversion, excellent diastereoselectivity (90% de) and good
enantioselectivity (84% ee).
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In 2020, Feng and Liu described the first catalytic asymmetric [3 + 2] cycloaddition
of diaziridines via C–N bond cleavage [68]. Indeed, in the presence of a chiral scandium
catalyst prepared from 15 mol% of Sc(OTf)3 and 10 mol% of chiral N,N′-dioxide chiral
ligand 6 in a 95:5 mixture of dichloromethane/THF as solvent, diaziridines 96 formed
the corresponding azomethine imine intermediates P through C–N bond cleavage. The
latter further reacted with scandium-activated chalcones 97 to give the corresponding
chiral 1,5-diazabicyclo [3.3.0]octanes 98. As presented in Scheme 24, a range of these
bicyclic products were synthesized as single diastereomers (>90% de) in variable yields
(18–93%) and moderate to high enantioselectivities (50–93% ee). Chalcones bearing an
electron-withdrawing substituent on the phenyl ring of R1 generally provided better yields
(76–93%) than those having an electron-donating substituent (70–75%). The position of
these substituents was also found crucial, especially to obtain a high enantioselectivity. For
example, the enantioselectivity of the reaction decreased from 90% ee for a para-chloro-
substituted substrate to 84% ee for a meta-chloro-substituted substrate and to 50% ee for
an ortho-chloro-substituted substrate. The electronic nature of the substituents exhibited
by the aryl group of the diaziridines was found to play a key influence on the reactivity.
For example, para-chloro- and para-methyl-substituted diaziridines (Ar = p-ClC6H4, p-Tol)
led to the corresponding cycloadducts in high enantioselectivities (90% ee) albeit with low
yields (20–24%).

In 2021, the same group reported an enantioselective [3 + 2] cycloaddition ofα-substituted
diazoesters 99 with exocyclic enones 100 under catalysis with a related chiral scandium cat-
alyst in situ formed from 10 mol% of Sc(OTf)3 and the same quantity of chiral N,N′-dioxide
ligand 101 (Scheme 25) [69]. Performed at −10 ◦C in DCE, the cycloaddition resulted in the
formation of a wide range of chiral 1-pyrazolines 102 with good yields (50–93%), gener-
ally excellent diastereoselectivities (72 ≥ 90% de) and low to excellent enantioselectivities
(6–98% ee). A range of tert-butyl α-alkyl-α-diazoesters was compatible as well as various
exocyclic enones, including chromanones (X = O, n = 1) and other cyclic enones. Indeed,
1-pyrazoline-based spirochromanones 102 (X = O, n = 1) were produced with 35–93% ee,
regardless of the electronic nature of the substituents at meta- or para-position of the benzyl
group of the diazoacetates. While the reaction of a 2-naphthyl substituted diazoacetate
afforded the corresponding product with 90% ee, that of 1-naphthyl substituted substrate
led to the desired product with a drastically lower ee value (56% ee). Concerning the enone
partners, the reaction of 5,7-dimethyl enone (X = CH2, n = 1, R2 = R4 = Me) led to the corre-
sponding cycloadduct with a low ee value (27% ee). On the other hand, five-membered
2-methylene-2,3-dihydroindenones (X = CH2, n = 0) reacted with high enantioselectivities
(90–98% ee) while a seven-membered spiropyrazoline (X = CH2, n = 2) was isolated with
the lowest ee value of 6% ee.
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Multisubstituted chiral 1-aminoindanes constitute the skeletons of many bioactive
molecules. These important products can be directly synthesized via asymmetric [3 + 2]
cycloadditions of aldimines with alkenes through C−H activation but these methodologies
still remain undeveloped. In 2023, Hou and Cong described the first enantioselective
[3 + 2] cycloaddition between aromatic aldimines 103 and styrenes 104 occurring through
ortho-C(sp2)−H activation (Scheme 26) [70]. When the reaction was promoted at 80 ◦C by 6
mol% of chiral half-sandwich scandium catalyst 79 in toluene, it afforded stereoselectively
the corresponding chiral trans-cycloadducts 105 with moderate to high yields (50–93%),
trans-diastereo- (60 ≥ 90% de) and enantioselectivities (66–98% ee). The catalyst system
tolerated variously substituted aromatic aldimines as well as styrenes bearing diverse
functional groups, which allowed the synthesis of a series of multisubstituted chiral 1-
aminoindanes. Interestingly, the reaction became cis-diastereoselective by using a less-
sterically demanding chiral scandium catalyst 106 (Scheme 26). Indeed, in the presence of
10 mol% of this catalyst in toluene at 70 ◦C, aromatic aldimines 103 reacted with styrenes
104 to give the cis-diastereomers of 1-aminoindanes 105 with 40–85% yields, 50 ≥ 90% de,
and 74–92% ee.
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Scheme 26. [3 + 2] Cycloadditions of aromatic aldimines with styrenes [70]. 
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Moreover, these authors also investigated the [3 + 2] cycloaddition of aliphatic alkenes
107 with N-tert-butylbenzaldimine 103a by using 8 mol% of chiral catalyst 79 (Scheme 27) [70].
In contrast with the exclusive formation of 2-aryl-1-aminoindanes through 2,1-insertion in
the analogous reaction with styrenes, the annulation with aliphatic α-olefins afforded at
80 ◦C the corresponding chiral 3-alkyl-1-aminoindanes 108 through a 1,2-insertion. These
products were generally obtained with moderate yields (44–63%) and moderate to high
trans-diastereoselectivities (66–90% de) combined with homogeneously high ee values
(80–94% ee). The scope of the methodology was also extended to 1,3-dienes 109, which
underwent at 60 ◦C a trans-selective [3 + 2] cycloaddition with N-tert-butylbenzaldimine
103a in the presence of 6 mol% of catalyst 79. The reaction took place exclusively at the
terminal C = C bond to afford the corresponding chiral 1-amino-2-alkenyl-substituted
indanes 110 as almost single trans-diastereomers (>90% de) with moderate to good yields
(56–82%) and in most cases with high ee values (54–92% ee).
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3.2. (Hetero)-Diels–Alder Reactions

In 2018, Feng and Liu developed a highly efficient asymmetric inverse-electron-
demand oxa-Diels–Alder reaction of ortho-quinone methides 111 with symmetrical fulvenes
112 catalyzed by a chiral scandium complex in situ generated from 10.5 mol% of chiral
N,N′-dioxide ligand 113 and 10 mol% of Sc(OTf)3 (Scheme 28) [71]. Evolving at 0 ◦C in
ethyl acetate, the [4 + 2] cycloaddition allowed the corresponding optically active chromane
derivatives 114 to be synthesized as almost single diastereomers (>90% de) with both
remarkable yields (95–99%) and enantioselectivities (90–95% ee).
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For example, when using 10 mol% of Sc(OTf)3 as precatalyst in combination with the same 
quantity of chiral ligand 115 in acetonitrile at 0 °C, the [4 + 2] cycloaddition of pyrrolidine-
incorporated siloxydiene 116 with enamide 117 led to the corresponding cycloadduct 118 
in good yield (69%) and exo-diastereoselectivity (86% de), albeit associated with a low en-
antioselectivity (28% ee), as illustrated in Scheme 29. 
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rated α-ketoesters 119 and various types of electron-enriched dienophiles, such as cyclo-
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Scheme 28. Oxa-Diels–Alder reaction of ortho-quinone methides with fulvenes [71].

Later in 2020, Harada and Nishida reported the synthesis of novel hexadentate chiral
ligands such as 115 [72]. These stable helical catalysts were found efficient to promote
the enantioselective Diels–Alder reaction of electron-rich siloxydiene 116 with enamide
117. For example, when using 10 mol% of Sc(OTf)3 as precatalyst in combination with
the same quantity of chiral ligand 115 in acetonitrile at 0 ◦C, the [4 + 2] cycloaddition
of pyrrolidine-incorporated siloxydiene 116 with enamide 117 led to the corresponding
cycloadduct 118 in good yield (69%) and exo-diastereoselectivity (86% de), albeit associated
with a low enantioselectivity (28% ee), as illustrated in Scheme 29.
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Chiral dihydropyran derivatives are privileged and prevalent structures in many natural and
bioactive products. In 2022, Wang, Qi and Wang developed enantioselective scandium-catalyzed
inverse-electron-demand oxa-Diels-Alder reactions between β,γ-unsaturated α-ketoesters 119
and various types of electron-enriched dienophiles, such as cyclopentadiene, 2,3-dihydrofuran,
3,4-dihydro-2H-pyran, and tetrahydropyridine (Scheme 30) [73]. To promote these re-
actions, the authors selected a previously designed chiral bis-oxalamide ligand 120 to
be combined at 12 mol% of a catalyst, loading to 10 mol% of Sc(OTf)3 as a precatalyst.
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In a first time, cyclopentadiene 121 was employed as an electron-rich dienophile and
the hetero-Diels-Alder reactions with various (hetero)aryl-substituted β,γ-unsaturated
α-ketoesters 119 performed at −60 ◦C resulted in the formation of the corresponding
chiral 3,4-dihydro-2H-pyran derivatives 122 as almost single diastereomers (>90% de)
with good yields (63–75%) and moderate to excellent enantioselectivities (60–98% ee).
The scope of the methodology could be extended at −40 ◦C to other dienophiles, such
as 2,3-dihydrofuran 123a (X = O, n = 1), 3,4-dihydro-2H-pyran 123b (X = O, n = 2), and
1-tosyl-1,2,3,4-tetrahydropyridine 123c (X = NTs, n = 2), which smoothly reacted with aryl-
substituted β,γ-unsaturated α-ketoesters 119 to give the corresponding chiral cycloadducts
124 with generally high yields (55–99%) and ee values (84–92% ee). Indeed, the products
generated from 2,3-dihydrofuran 123a were obtained with both excellent yields (92–99%)
and enantioselectivities (84–90% ee) as well as that derived from 3,4-dihydro-2H-pyran
123b (Ar = p-Tol, R = Me, n = 2: 81%, 92% ee). A slightly lower yield (55%) and ee value
(85% ee) were observed for the reaction of 1-tosyl-1,2,3,4-tetrahydropyridine 123c (Ar = Ph,
R = Me, n = 2). This work constituted the first asymmetric hetero-Diels-Alder reactions
catalyzed in the presence of a chiral bis-oxalamide ligand.
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3.3. [2 + 1] Cycloadditions

In 2018, a chiral scandium complex derived from chiral N,N′-dioxide ligand 125 was
employed by Feng and Liu as promotor in [2 + 1] cycloadditions of α-substituted vinyl
ketones 126 with α-substituted α-diazoesters 127 [74]. As shown in Scheme 31, these
two substrates underwent at 0 ◦C in dichloromethane a [2 + 1] cycloaddition to afford
the corresponding chiral tetrasubstituted cyclopropanes 128 as single diastereomers in
moderate to good yields (42–65%) and uniformly excellent enantioselectivities (94–99% ee).
Besides these cycloadducts, chiral products 129 were generated from a competitive C–H
insertion reaction. The latter also obtained enantioenriched (72–95% ee) in 24–57% yields.
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4. Enantioselective Scandium-Catalyzed Michael Additions

In order to prepare functionalized chiral allenes, which are valuable intermediates
in organic synthesis, Liu and Feng developed in 2016 an asymmetric Michael addition
of malonates 130 to enynes 131 (Scheme 32) [75]. The catalyst system was composed of
10 mol% of Sc(OTf)3 and the same quantity of chiral N,N′-dioxide ligand 132. Performed
at 0 ◦C in dichloromethane as solvent in the presence of NBu3 as base, the conjugate
addition afforded a range of chiral trisubstituted 1,2-allenyl ketones 133 with moderate to
quantitative yields (61–98%), moderate to excellent diastereoselectivities (56–90% de), and
remarkable enantioselectivities (97–99% ee). To demonstrate the utility of this methodology,
some products could be easily converted into chiral furan and 5-hydroxy-pyrazoline
derivatives, which are important skeletons of many bioactive compounds. To explain
the stereoselectivity of the reaction, the authors proposed the mechanism depicted in
Scheme 32 which begins with the coordination of the N-oxides and amide oxygen atoms
of ligand 132 to scandium to give complex Q. Then, the enyne chelated to this complex
to give intermediate R. Concomitantly, enolate 134 was generated from malonate 130 in
the presence of NBu3. Then, enolate 134 was added to the enyne from the Si-face in S to
give intermediate T, which delivered the final product through protonation along with
regenerated catalyst.
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With the aim of opening a novel route to potentially biologically active chiral γ-alkenyl
butenolides, the same group investigated in 2017 another chiral N,N′-dioxide ligand 135 to
induce the Michael addition of butenolides 136 to terminal alkynones 137 (Scheme 33) [76].
The process involved 5 mol% of this ligand 135 in combination with the same quantity
of Sc(OTf)3 as a precatalyst in acetonitrile as solvent. Carried out at 30 ◦C, the conju-
gate addition of variously γ-substituted butenolides 136 to terminal alkynones 137 led to
the corresponding chiral γ-alkenyl butenolides 138 as almost single trans-diastereomers
(trans/cis = 82:18 to >95:5) in good to quantitative yields (54–98%), and homogeneously
high enantioselectivities (80–97% ee). The catalyst system was compatible with a range of
aryl-, heteroaryl- and even alkyl-substituted alkynones albeit with lower yields (54–72%) in
this last case. On the other hand, while comparable yields and enantioselectivities were
obtained in the reaction of alkyl- and aryl-substituted butenolides, the latter generally
provided lower trans/cis ratios.

Chemistry 2024, 6, FOR PEER REVIEW 33 
 

 

With the aim of opening a novel route to potentially biologically active chiral γ-
alkenyl butenolides, the same group investigated in 2017 another chiral N,N’-dioxide lig-
and 135 to induce the Michael addition of butenolides 136 to terminal alkynones 137 
(Scheme 33) [76]. The process involved 5 mol% of this ligand 135 in combination with the 
same quantity of Sc(OTf)3 as a precatalyst in acetonitrile as solvent. Carried out at 30 °C, 
the conjugate addition of variously γ-substituted butenolides 136 to terminal alkynones 
137 led to the corresponding chiral γ-alkenyl butenolides 138 as almost single trans-dia-
stereomers (trans/cis = 82:18 to >95:5) in good to quantitative yields (54–98%), and homo-
geneously high enantioselectivities (80–97% ee). The catalyst system was compatible with 
a range of aryl-, heteroaryl- and even alkyl-substituted alkynones albeit with lower yields 
(54–72%) in this last case. On the other hand, while comparable yields and enantioselec-
tivities were obtained in the reaction of alkyl- and aryl-substituted butenolides, the latter 
generally provided lower trans/cis ratios. 

135 (5 mol%)

Sc(OTf)3 (5 mol%)

136

138

+

MeCN, 30 °C

137

N N
O O

NHArO O
ArHN

Ar = 2,6-i-Pr2C6H3
O

R1

O
O

R2

O

R1
O O

R2

54-98%, trans/cis = 82:18 to >95:5, 80-97% ee

R1 = Ph, o-Tol, m-Tol, p-Tol, p-MeOC6H4, p-FC6H4, p-ClC6H4,
p-BrC6H4, 3,4-MeO2C6H3, 2-Naph, 3-furyl, Me, BnCH2,

O
O

R2 = Me, Et, i-Pr, n-C10H21, Ph, p-ClC6H4  
Scheme 33. Michael addition of butenolides to terminal alkynones [76]. 

A closely related catalyst system derived from chiral N,N’-dioxide ligand 19 and 
Sc(OTf)3 was also applied to the Michael addition of butenolides 136 to internal alkynones, 
such as β-ester alkynones 139 (Scheme 34) [76]. Under comparable reaction conditions, the 
conjugate addition afforded chiral ester-substituted γ-alkenyl butenolides 140 with high 
cis/trans ratios (cis/trans = 81:19 to >95:5), good to quantitative yields (69–99%) and high 
enantioselectivities (85–95% ee).  

Scheme 33. Michael addition of butenolides to terminal alkynones [76].

A closely related catalyst system derived from chiral N,N′-dioxide ligand 19 and
Sc(OTf)3 was also applied to the Michael addition of butenolides 136 to internal alkynones,
such as β-ester alkynones 139 (Scheme 34) [76]. Under comparable reaction conditions, the
conjugate addition afforded chiral ester-substituted γ-alkenyl butenolides 140 with high
cis/trans ratios (cis/trans = 81:19 to >95:5), good to quantitative yields (69–99%) and high
enantioselectivities (85–95% ee).

The same year, these authors investigated another type of nucleophiles, such as
β-naphthols 141, in this type of reactions [77]. Indeed, the Michael addition of the latter
to either terminal (R2 = H) or internal alkynones (R2 ̸= H) 142 performed at 30 ◦C in DCE
as solvent led, when catalyzed by a combination of 5 mol% of Sc(OTf)3 with 5 mol% of
chiral N,N′-dioxide ligand 9, to the corresponding chiral β-naphthalenones 143 (Scheme 35).
The process required the presence of m-chlorobenzoic acid as an additive. The products
were obtained with excellent cis/trans selectivities (82:18 to >95:5) in all cases of substrates.
The products derived from terminal alkynones were obtained in moderate to quantitative
yields (33–98%) and generally excellent enantioselectivities (89–98% ee) excepted for C3-H-
β-naphthols (R4 = H), which provided lower enantioselectivities (66–71% ee) than C3-alkyl-
substituted-β-naphthols (R4 ̸= H). Internal alkynes (R2 = CO2Et) also reacted smoothly to
give the corresponding chiral Michael adducts with comparable cis/trans stereoselectivities
(87:13 to >95:5), combined with good yields (72–79%) and excellent enantioselectivities
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(98% ee). The authors proposed the transition state depicted in Scheme 35 to explain the
stereoselectivity of the reaction. Its formation began with the tetracoordination of the
N-oxides and amide oxygen atoms of ligand 9 to scandium to form two six-membered
chelate rings. Then, the alkynone and the β-naphthol coordinated to scandium. Since
the Si-face of the β-naphthol was strongly sterically hindered by the nearby phenyl ring
of the ligand, the alkynone attacked from the Re-face predominantly to afford the final
(R)-configured product.
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In another context, another type of chiral 1,5-dicarbonyl compounds, such as products
144, were synthesized in 2018 by Singh et al. on the basis of an asymmetric scandium-
catalyzed Mukaiyama–Michael reaction of α,β-unsaturated 2-acyl imidazoles 145 with
trimethylsilyl enol ethers 146 (Scheme 36) [78]. This reaction occurred at room temperature
in chloroform in the presence of 10 mol% of Sc(OTf)3 as a precatalyst, 12 mol% of chiral
Pybox ligand Pybox ligand 60, and HFIP as an additive. It afforded chiral 1,5-diketones 144
in both good to high yields (78–93%) and enantioselectivities (70–84% ee). Both the two
substrates exhibited aromatic substituents. In the case of the trimethylsilyl enol ether, it
could bear either electron-withdrawing or electron-donating substituents on the phenyl ring
of Ar1. Moreover, an heteroaromatic trimethylsilyl enol ether (Ar1 = 2-thienyl) also reacted
smoothly with 84% yield and 81% ee. Concerning the other aromatic substrate partner,
a range of electron-withdrawing substituents were tolerated on the phenyl ring of Ar2.
Furthermore, a naphthyl-substituted α,β-unsaturated 2-acyl imidazole (Ar2 = 2-Naph) led
to the corresponding product in 79% yield and 79% ee. Earlier in 2017, the same conditions
were applied to develop the first diastereo- and enantioselective vinylogous Mukaiyama–
Michael reaction of silyloxyfurans 147 with α,β-unsaturated 2-acyl imidazoles 148, which
allowed chiral γ-substituted- and γ,γ-disubstituted butenolides 149 to be synthesized as
almost single diastereomers (>90% de) with excellent enantioselectivities (86–98% ee) and
yields (88–93%), as presented in Scheme 36 [79].



Chemistry 2024, 6 129Chemistry 2024, 6, FOR PEER REVIEW 35 
 

 

 
Scheme 35. Michael addition of β-naphthols to alkynones [77]. Scheme 35. Michael addition of β-naphthols to alkynones [77].



Chemistry 2024, 6 130

Chemistry 2024, 6, FOR PEER REVIEW 36 
 

 

In another context, another type of chiral 1,5-dicarbonyl compounds, such as prod-
ucts 144, were synthesized in 2018 by Singh et al. on the basis of an asymmetric scandium-
catalyzed Mukaiyama–Michael reaction of α,β-unsaturated 2-acyl imidazoles 145 with tri-
methylsilyl enol ethers 146 (Scheme 36) [78]. This reaction occurred at room temperature 
in chloroform in the presence of 10 mol% of Sc(OTf)3 as a precatalyst, 12 mol% of chiral 
Pybox ligand Pybox ligand 60, and HFIP as an additive. It afforded chiral 1,5-diketones 
144 in both good to high yields (78–93%) and enantioselectivities (70–84% ee). Both the 
two substrates exhibited aromatic substituents. In the case of the trimethylsilyl enol ether, 
it could bear either electron-withdrawing or electron-donating substituents on the phenyl 
ring of Ar1. Moreover, an heteroaromatic trimethylsilyl enol ether (Ar1 = 2-thienyl) also 
reacted smoothly with 84% yield and 81% ee. Concerning the other aromatic substrate 
partner, a range of electron-withdrawing substituents were tolerated on the phenyl ring 
of Ar2. Furthermore, a naphthyl-substituted α,β-unsaturated 2-acyl imidazole (Ar2 = 2-
Naph) led to the corresponding product in 79% yield and 79% ee. Earlier in 2017, the same 
conditions were applied to develop the first diastereo- and enantioselective vinylogous 
Mukaiyama–Michael reaction of silyloxyfurans 147 with α,β-unsaturated 2-acyl imidaz-
oles 148, which allowed chiral γ-substituted- and γ,γ-disubstituted butenolides 149 to be 
synthesized as almost single diastereomers (>90% de) with excellent enantioselectivities 
(86–98% ee) and yields (88–93%), as presented in Scheme 36 [79]. 

 
Scheme 36. Mukaiyama–Michael additions of trimethylsilyl enol ethers/silyloxyfurans to α,β-un-
saturated 2-acyl imidazoles [78,79]. 
Scheme 36. Mukaiyama–Michael additions of trimethylsilyl enol ethers/silyloxyfurans to
α,β-unsaturated 2-acyl imidazoles [78,79].

Later in 2020, Schindler et al. described a novel total synthesis of tetracyclic meroter-
penoid natural product (−)-lingzhiol, the key step of which dealt with an enantioselective
Michael addition catalyzed by a chiral scandium complex in situ produced from Sc(OTf)3
(5 mol%) and chiral bipyridine ligand 150 (10 mol%) [80]. This reaction occurred in DCE as
solvent at 80 ◦C between methyl vinyl ketone 151 and β-ketoester 152 to deliver chiral dike-
tone 153 in 58% yield and 91% ee. The latter was further converted through six additional
steps into expected (−)-lingzhiol (Scheme 37).
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5. Enantioselective Scandium-Catalyzed Ring-Opening Reactions

In 2018, another type of chiral scandium catalyst was employed by Feng et al. to
develop the first catalytic asymmetric ring-opening reaction of cyclopropyl ketones with
β-naphthols (Scheme 38) [81]. Indeed, in the presence of 10 mol% of a chiral complex in
situ generated from Sc(OTf)3 and chiral N,N′-dioxide ligand 9, the ring-opening reaction of
aromatic or vinyl cyclopropyl ketones 154 (R1 = aryl, vinyl) with β-naphthols 155 performed
at 60 ◦C in ethyl acetate as solvent led to the corresponding chiral β-naphthol derivatives
156 in both moderate to excellent yields (52–99%) and enantioselectivities (53–97% ee). The
highest enantioselectivities were generally achieved in the reaction of 3-alkoxy-2-naphthols
(R2 = OMe, OBn, OEt). For example, the reaction of β-naphthols exhibiting an hydrogen
atom at R2 (R2 = H) provided lower enantioselectivities (53–56% ee vs. 72–97% ee with
R2 = OMe, OBn, OEt). Concerning the cyclopropyl ketones, many aromatic cyclopropyl
ketones with either electron-donating or electron-withdrawing substituents on the phenyl
ring were tolerated. Surprisingly, the catalyst system was also found compatible with a
vinyl cyclopropyl ketone (R1 = vinyl), providing the corresponding product with 93% ee
and 56% yield. Excellent results (99% yield, 95% ee) were also obtained in the reaction of a
naphthyl-substituted substrate (R1 = 2-Naph).

The same group also applied this catalyst system in the presence of MgCl2 as an
additive to the enantioselective ring-opening reaction of cyclopropyl ketones 154 with
indoles 157 (Scheme 39) [82]. Performed at 35 ◦C in chloroform, the process delivered
chiral 3-alkylated indoles 158 with both moderate to excellent yields (52–99%) and enan-
tioselectivities (73–96% ee). Actually, high enantioselectivities (84–96% ee) were obtained
for all (hetero)aryl-substituted cyclopropyl ketones while a vinyl-substituted cyclopropane
(R1 = vinyl) reacted with a lower ee value (73% ee). A transition state is proposed in Scheme 39,
in which the four oxygen atoms of the ligand and cyclopropyl ketone 154a (R1 = Ar = Ph)
coordinated to scandium to form an octahedral complex. Then, indole 157a (R2 = H,
R3, =; Me, ) attacked the cyclopropyl ketone from the least sterically hindered face to de-
liver the (R)-configured product.
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In 2021, Kotora et al. developed novel types of chiral bipyridine ligands to be investi-
gated in enantioselective scandium-catalyzed ring-opening reactions of meso-epoxides with
alcohols (Scheme 40) [83]. When only 2 mol% of optimal ligand 159 was combined with the
same quantity of Sc(OTf)3 in dichloromethane at 25 ◦C, a range of meso-epoxides 160 could
be submitted to desymmetrization with various alcohols 161 to give the corresponding
chiral 1,2-alkoxyalcohols 162 with low to high yields (27–88%) and uniformly high enan-
tioselectivities (85–99% ee). A wide variety of substrates, spanning from alkyl, cycloalkyl,
benzyl or allyl to propargyl alcohols, were compatible. The scope of the methodology
could be extended to other nucleophiles, such as anilines 163. However, their reaction with
diphenyl epoxide 160a led to the corresponding chiral 1,2-aminoalcohols 164 with both
lower enantioselectivities (68–98% ee) and yields (45–80%). In the same year, Kobayashi and
Kitanosono described the synthesis of novel supramolecular chiral scandium catalysts to be
used in water [84]. The latter were generated through co-polymerization between a styrene-
tagged chiral bipyridine tetraol monomer, divinylbenzene and styrene, providing the
corresponding polystyrene-bound chiral 2,2′-bipyridine, which was further submitted to
Sc(OTf)3 to give the active supramolecular catalyst. When applied to the same ring-opening
reactions of epoxides with either alcohols or amines as nucleophiles, the reaction performed
at room temperature in water afforded chiral 1,2-alkoxyalcohols and 1,2-aminoalcohols
with both moderate to excellent yields (53–97%) and ee values (70–97% ee). The catalyst
could be reused up to ten times without losing its performance.
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6. Enantioselective Scandium-Catalyzed Friedel-Crafts Reactions

The first asymmetric scandium-catalyzed Friedel–Crafts reaction of ortho-hydroxybenzyl
alcohols 165 with C3-substituted indoles 166 was developed by Feng and Liu, in 2016
(Scheme 41) [85]. It required the use of 5 mol% of a catalyst system composed of Sc(OTf)3
and chiral N,N′-dioxide ligand 167. Under these conditions, chiral diarylindol-2-ylmethanes
168 were produced at 40 ◦C with 39–99% yields and 90–99% ee. The process evolved
through the mechanism detailed in Scheme 41 based on the formation of ortho-quinone
methides. The scandium center coordinated to one oxygen atom of the ortho-hydroxybenzyl
alcohol to give intermediate U. The latter was further converted into intermediate V,
resulting from the capture of the proton of the OH group by TfO-. The reprotonation of
the hydroxyl group in the presence of TfOH in V generated intermediate W. A subsequent
dehydration occurred in the presence of 5Å MS to give intermediate X. Finally, the indole
attacked intermediate X from its less-hindered Si-face in Y to afford the final product.

Chemistry 2024, 6, FOR PEER REVIEW 41 
 

 

167 (5 mol%)
Sc(OTf)3 (5 mol%)

165

168

+
THF, 40 °C

166

N N
O O

NHArO O
ArHN

Ar = 2,6-i-Pr2-4-BrC6H2

39-99%, 90-99% ee

R1 = H, F, Cl, Br, Me, OMe
R2 = Me, Et, i-Pr, Pr, Bn, c-Pent, Cy, c-Hept,
TsNH(CH2)2, allyl, TBSO(CH2)2, N3(CH2)2
R3 = Me, Et
R4 = H, Me, OMe, Br
R5 = H, 2-Me, 3-Me, 4-F, 4-Cl, 4-Br, 4-Ph, 4-Me, 4-OMe

LiBr, 5Å MS

N

R2

R3

R1

HO

R5

R4

OH

N

R2

R3

R1

R4

OH

R5

mechanism (with R1 = R4 = R5 = H, R2 = R3 = Me):

165a

OH

OTf

U

OH

OH

O

Sc(OTf)3/167

Sc(167)

Sc(167)OTf

OTf

OTf + LiBr

TfOH

V

OH

O
Sc(167)

Li

TfOH

W

OH2

O
Sc(167)

Li

5Å MS

H2O
X

O
Sc(167)

Y

O
Sc(167)

N

N
166a

167a

N
OH

OTf

 
Scheme 41. Friedel‒Crafts reaction of C3-substituted indoles with ortho-hydroxybenzyl alcohols 
[85]. 
Scheme 41. Friedel-Crafts reaction of C3-substituted indoles with ortho-hydroxybenzyl alcohols [85].



Chemistry 2024, 6 135

Later in 2021, Kobayashi and Saito developed a novel chiral heterogeneous scandium
catalyst to be used under continuous-flow conditions in asymmetric Friedel–Crafts reactions
between isatins 169 and indole 170 (Scheme 42) [86]. This catalyst was synthesized by
simply mixing a chiral scandium complex in situ generated from Sc(OTf)3 and chiral Pybox
ligand ent-60 with heteropoly acid(PTA)-anchored amine-functionalized SiO2 as a support.
Using this heterogeneous catalyst under continuous-flow conditions, differently substituted
isatins 169 underwent Friedel–Crafts alkylation with indole 170 to afford the corresponding
chiral functionalized products 171 with high yields (81–99%) and moderate to excellent
enantioselectivities (60–99% ee). This study constituted the first example of highly efficient
continuous-flow heterogeneous chiral scandium catalysis.
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In 2019, Liu and Feng investigated the asymmetric Baeyer-Villiger oxidation of
3-substituted cyclohexanones 172 under catalysis with a chiral scandium complex derived
from 10 mol% of Sc(OTf)3 and 10 mol% of chiral N,N′-dioxide ligand 173 (Scheme 43) [87].
The process was performed at −20 ◦C in ethyl acetate as solvent in the presence of Al(Oi-
Pr)3 as an additive. Evolving through parallel kinetic resolution, 3-substituted cyclohex-
anones 172 were oxidized with MCPBA to give both the two seven-membered lactones 174
and 175 in high yields (84–98%) and enantioselectivities (80–87% ee for 174, 91–97% ee for
175). Aryl-substituted cyclohexanones provided higher enantioselectivities (92–98% ee)
than alkyl-substituted ones (84% ee).

Related reaction conditions, albeit based on the use of chiral N,N′-dioxide ligand
135, were also applied to the desymmetrization of meso-3,5-disubstituted cyclohexanones
176 through Baeyer-Villiger oxidation (Scheme 44) [87]. The oxidation of 3,5-diaryl- and
3,5-dimethylsubstituted cyclohexanones 176 with MCPBA led to the corresponding chiral
seven-membered lactones 177 in quantitative yields (97–99%) and excellent enantioselectiv-
ities (91–97% ee).

In spite of the fact that fluorinated molecules play a major role in medicinal chemistry,
the synthesis of chiral cycloalkanones with a stereocenter bearing a CF3 group remained
undeveloped for a long time. To fill this gasp, Wang et al. disclosed in 2022 an asym-
metric homologation reaction of γ-mono-substituted cyclohexanones 178 by reaction with
CF3CHN2 as the trifluoromethylation agent (Scheme 45) [88]. The process occurred at
−20 ◦C in toluene in the presence of a chiral scandium catalyst in situ generated from 5
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or 10 mol% of Sc(OTf)3 and 6 or 12 mol% of chiral bisoxazoline ligand 179. It allowed
desired chiral α-trifluoromethyl cycloheptanones 180 containing a C(sp3)-CF3 bond to be
synthesized with good to high yields (58–88%) and generally excellent enantio- (54–95%
ee) and diastereoselectivities (42 ≥ 90% de). Actually, homogeneously high diastereo-
(>90% de) and enantioselectivities (83–95% ee) were obtained for a range of variously
substituted cyclohexanones excepted in the case of that bearing an OTs substituent on the
γ-position which led to the corresponding product with only 42% de and 54% ee. With
the aim of extending the scope of this methodology, the authors investigated the use of
γ,γ-disubstituted silacyclohexanones 181 as substrates (Scheme 45). The reaction of sila-
cyclohexanones 181 bearing a methyl and aryl group on silicon centers with CF3CHN2
afforded the corresponding chiral α-trifluoromethyl silacycloheptanones 182 in moderate
to high yields (53–87%), variable diastereoselectivities (0–75% de) and moderate to excellent
enantioselectivities (73–94% ee).
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Cyclopentanones represent important structural motifs in a wide number of natural
products, such as prostaglandins and steroids, making their synthesis challenging. In 2023,
Wahl and Tenberge described a novel access to chiral β-substituted cyclopentanones based
on an enantioselective scandium-catalyzed methylene insertion into the corresponding
prochiral cyclobutanones (Scheme 46) [89]. This desymmetrization was catalyzed in toluene
by a chiral catalyst in situ, formed from the reaction between 15 mol% of Sc(OTf)3 and 10
mol% of chiral bisoxazoline ligand 183 bearing an CEt2 moiety. Commercially available
trimethylsilyl as well as other silyl diazomethanes 184 acted as one-carbon synthon for
insertion into cyclobutanones 185 in the presence of the catalyst to afford the corresponding
chiral β-substituted cyclopentanones 186 with moderate to high yields (29–94%) and low to
good enantioselectivities (18–76% ee). It was found that alkyl-substituted cyclobutanones
(R1 = BnCH2, n-Bu) furnished the corresponding cyclopentanones in slightly lower yields
(71–80% vs. 94%) but higher ee values (76% vs. 70% ee) than phenyl-substituted substrate
(R1 = Ph). In the mechanism depicted in Scheme 46, the silyl diazomethane attacks the
cyclobutanone activated by the catalyst to give intermediate Z as an isomeric mixture. The
latter subsequently undergoes rearrangement to provide α-silyl ketones 187, as a mixture
of diastereomers, which rapidly converge to the corresponding silyl enol ether 188 under
strongly Lewis acidic conditions. A final hydrolysis delivers the product.



Chemistry 2024, 6 138

Chemistry 2024, 6, FOR PEER REVIEW 45 
 

 

Cyclopentanones represent important structural motifs in a wide number of natural 
products, such as prostaglandins and steroids, making their synthesis challenging. In 
2023, Wahl and Tenberge described a novel access to chiral β-substituted cyclopentanones 
based on an enantioselective scandium-catalyzed methylene insertion into the corre-
sponding prochiral cyclobutanones (Scheme 46) [89]. This desymmetrization was cata-
lyzed in toluene by a chiral catalyst in situ, formed from the reaction between 15 mol% of 
Sc(OTf)3 and 10 mol% of chiral bisoxazoline ligand 183 bearing an CEt2 moiety. Commer-
cially available trimethylsilyl as well as other silyl diazomethanes 184 acted as one-carbon 
synthon for insertion into cyclobutanones 185 in the presence of the catalyst to afford the 
corresponding chiral β-substituted cyclopentanones 186 with moderate to high yields (29–
94%) and low to good enantioselectivities (18–76% ee). It was found that alkyl-substituted 
cyclobutanones (R1 = BnCH2, n-Bu) furnished the corresponding cyclopentanones in 
slightly lower yields (71–80% vs. 94%) but higher ee values (76% vs. 70% ee) than phenyl-
substituted substrate (R1 = Ph). In the mechanism depicted in Scheme 46, the silyl diazo-
methane attacks the cyclobutanone activated by the catalyst to give intermediate Z as an 
isomeric mixture. The latter subsequently undergoes rearrangement to provide α-silyl ke-
tones 187, as a mixture of diastereomers, which rapidly converge to the corresponding 
silyl enol ether 188 under strongly Lewis acidic conditions. A final hydrolysis delivers the 
product. 

 
Scheme 46. Ring-expansion of cyclobutanones with silyl diazomethanes [89]. Scheme 46. Ring-expansion of cyclobutanones with silyl diazomethanes [89].

8. Enantioselective Scandium-Catalyzed Rearrangement Reactions

In 2017, You et al. employed a chiral Pybox-derived scandium catalyst to promote enantios-
elective Claisen rearrangement reactions of 2-allyloxyindoles with 2-propargyloxyindoles [90].
These processes allowed the formation of potentially bioactive chiral oxindoles exhibiting a
quaternary stereocenter at the C3-position to be achieved (Scheme 47). When submitted
to a chiral scandium catalyst derived from 30 mol% of Sc(OTf)3 and 33 mol % of chiral
Pybox ligand 60, a range of 2-allyloxyindoles 189 underwent at room temperature in DCE
as solvent an asymmetric Claisen rearrangement reaction to give the corresponding chiral
3-allyloxindoles 190. These products were obtained in homogeneous high yields (89–97%)
and good to high enantioselectivities (68–96% ee). In all cases of variously substituted
2-allyloxyindoles bearing a methyl group at the allyl C2′ position (R1 = Me), enantios-
electivities of >90% ee were obtained while the presence of an hydrogen atom at this
position (R1 = H) resulted in decreased enantioselectivities (68–74% ee). The same catalyst
system was applied to the Claisen rearrangement reaction of 2-propargyloxyindoles 191
(Scheme 47). When using 1–30 mol% of the same scandium complex, the process led to the
formation of the corresponding chiral 3-allenyloxindoles 192 in both moderate to excellent
yields (37–99%) and enantioselectivities (30 ≥ 99% ee). Generally, high enantioselectivities
(79 ≥ 99% ee) were obtained in the reaction of a range of alkyl- and aryl-substituted alkynes



Chemistry 2024, 6 139

(R1 = alkyl, aryl) while H- and TMS-substituted alkynes provided lower enantioselectivities
(30–72% ee).
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Later in 2020, Zhou and Feng described an asymmetric acyloin rearrangement of
acyclic α-hydroxy aldimines 193 promoted by a combination of 10 mol% of Sc(OTf)3 with
10 mol% of chiral N,N′-dioxide ligand 194 (Scheme 48) [91]. The process performed at 40 ◦C
in toluene resulted in the formation of chiral α-amino ketones 195 in good to quantitative
yields (73–99%) and moderate to excellent ee values (53–98% ee).
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9. Enantioselective Scandium-Catalyzed Miscellaneous Reactions

In 2016, Feng and Liu reported the first kinetic resolution of 2H-azirines 196 evolving
through asymmetric imine amidation with oxindole 197, which was catalyzed by a chiral
scandium complex [92]. The latter was in situ produced from 5 mol% of Sc(OTf)3 and 6
mol% of chiral N,N′-dioxide ligand 167 in a mixture of toluene and diethyl ether as solvent
(Scheme 49). Performed at 35 ◦C, the reaction led to unreacted 2H-azirines (R)-196 with
low to moderate yields (19–65%) and high ee values (78–99% ee) along with protecting-
group free aziridines 196 with moderate yields (30–67%) and variable enantioselectivities
(25–99% ee). Selectivity factors of up to 790 were achieved in some cases. It must be noted
that this is the first example which involved an oxindole reacting with its N1 atom instead
of a C3 atom.
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In 2017, the same authors reported the use of a chiral scandium catalyst derived from
a N,N′-dioxide ligand in a novel synthesis of chiral substituted ortho-quinols, which are
known to be widely present in natural and biologically active product structures [93]. The
methodology dealt with an asymmetric hydroxylative dearomatization of variously substi-
tuted β-naphthols 199 with oxaziridine 200 as oxidant performed at 30 ◦C in dichloromethane
as solvent (Scheme 50). Only 5 mol% of Sc(OTf)3 and chiral N,N′-dioxide ligand 25 were
sufficient to promote this reaction, which delivered chiral substituted ortho-quinols 201 in
good to quantitative yields (66–99%) and moderate to high enantioselectivities (50–90% ee).
It was found that β-naphthols could be variously substituted, providing the corresponding
products with uniformly high enantioselectivities of >84% ee. However, the presence of
a substituent at the ortho-position of the hydroxyl group (R2 = Me instead of H) resulted
in a decreased enantioselectivity (67% ee). The influence of the steric hindrance of sub-
strates was also shown by changing R1 from a methyl group to an ethyl group since the
enantioselectivity of the reaction decreased to 50% ee in this latter case.
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Scheme 50. Hydroxylative dearomatization of β-naphthols with an oxaziridine [93].

An enantioselective epoxidation of electron-deficient enynes 202 with aqueous hydro-
gen peroxide as an oxidant was also described the same year by Lin and Feng by using an
extremely low catalyst loading (0.5 mol%) of a chiral scandium complex [94]. The latter
was in situ prepared from Sc(OTf)3 and chiral N,N′-dioxide ligand 25 in THF at 35 ◦C
(Scheme 51). Under these conditions, a variety of trisubstituted alkynyl chiral epoxides
203 were synthesized in both excellent yields (90–97%) and enantioselectivities (95–99%
ee). The authors proposed the transition state depicted in Scheme 51 in which the enyne
coordinated to the scandium center through a bidentate fashion. Since the Si-face of enyne
202a (R2 = R3 = Ph) was shielded by the nearby isopropylphenyl group of the ligand,
hydrogen peroxide attacked the β-carbon atom of the Michael acceptor enyne preferentially
from the Re-face.

These authors also employed 10 mol% of chiral N,N′-dioxide ligand 135 in combi-
nation with the same quantity of Sc(NTf2)3 as precatalyst to promote enantioselective
bromoamination of α,β-unsaturated ketones 204 with NBS as both bromine and amide
source (Scheme 52) [95]. Carrying out the reaction at 35 ◦C in dichloromethane as solvent,
the corresponding chiral bromoamination products 205 were obtained with good yields
(64–92%) and variable enantioselectivities (11–97% ee). Actually, uniformly excellent ee
values (86–97% ee) were achieved in the reaction of chalcones while alkyl-substituted
α,β-unsaturated ketones (R1 = n-Bu, CO2t-Bu) led to the corresponding products with
much lower enantioselectivities (11–30% ee).
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In order to synthesize biologically interesting γ,γ-disubstituted butenolides, the same
group applied in 2017 related chiral ligand 19 at 10 mol% of catalyst loading in combination
with 10 mol% of Sc(OTf)3 to promote at 30 ◦C in THF a direct asymmetric vinylogous
aldol reaction of isatins 206 with β,γ-unsaturated butenolides 207 (Scheme 53) [96]. This
reaction allowed the synthesis of a wide variety of chiral δ-hydroxybutenolides 208 bearing
congested adjacent tetrasubstituted stereocenters to be achieved with both good to excellent
yields (67–99%) and diastereoselectivities (66 ≥ 90% de) combined with generally excellent
enantioselectivities (93–99% ee). A transition state is proposed in Scheme 53 in which
the N-oxides and amide oxygens of the ligand are tetracoordinated to scandium to form
two six-membered chelate rings. Meanwhile, the two carbonyl groups of isatin 206a
(R1 = H, R2 = Me) coordinate to the scandium center so that β,γ-unsaturated butenolide
207a (R3 = Me, R4 = R5 = H) attacks the Si-face of isatin 206a to afford the final (3S,2′S)-
configured product.
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So far, little attention has been paid to the asymmetric synthesis of silicon-stereogenic
silanes. In 2018, Hou et al. reported a rare methodology to prepare these products based
on the first enantioselective intermolecular hydrosilylation of alkenes with dihydrosilanes
catalyzed by chiral preformed half-sandwich scandium complex 209 [97]. Performed in
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C6D6 at 75 or 85 ◦C in the presence of only 2–5 mol% of this chiral catalyst 209, the reaction
of cyclic dihydrosilane 210 with monosubstituted alkenes 211 afforded the corresponding
chiral tertiary silanes 212 in both uniformly high yields (89–97%) and enantioselectivities
(88 ≥ 98% ee). The process tolerated a wide range of differently functionalized alkyl-
substituted alkenes as well as (hetero)aryl-substituted ones. The conditions were also
applicable to other dihydrosilanes, such as acyclic ones 213, which underwent the hydrosi-
lylation with alkenes 211 to give the corresponding chiral acyclic silanes 214 in good to
high yields (71–92%) and enantioselectivities (72–92% ee), as illustrated in Scheme 54.
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In another area, Cao and Feng reported in 2018 the use of a chiral scandium cat-
alyst derived from a N,N′-dioxide chiral ligand 25 in asymmetric α-propargylation of
N-unprotected 3-substituted oxindoles (Scheme 55) [98]. The reaction of a range of
N-unprotected 3-substituted oxindoles 215 with propargyl chloride derivatives 216 per-
formed at 60 ◦C in chloroform in the presence of 10 mol% of Sc(OTf)3 and 12 mol% of
chiral ligand 25 led to chiral 3,3-dialkylsubstituted oxindoles 217 in good to excellent
yields (62–96%) and uniformly high enantioselectivities (81–99% ee). Remarkable enantios-
electivities (>95% ee) were achieved for a wide range of variously 3-alkyl substituted oxin-
doles, while slightly lower enantioselectivities (81–85% ee) were obtained in the reaction
of 3-methyl-2-oxindole (R1 = Me) and 3-(2-furylmethyl)-2-oxindole (R1 = 2-furylmethyl).
Similarly, a broad substrate scope was found for the propargylated chloride partner since
enantioselectivities of 91–98% ee were obtained in the reaction of a range of aryl-substituted
alkynes (R2 = aryl) including 1-naphthyl-substituted ones. Furthermore, even a terminal
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alkyne (R2 = H) was compatible, giving the corresponding oxindole in 77% yield and
96% ee. The scope of the process could be extended to other electrophiles, such as allyl
and benzoyl chlorides. Indeed, under the same reaction conditions, 3-benzyl-2-oxindole
215a reacted with many allyl and benzoyl chlorides 218 to afford the corresponding chiral
3,3-dialkylsubstituted oxindoles 219 in both homogeneously high yields (85–95%) and
enantioselectivities (86–96% ee).
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chlorides [98].

In 2020, Hou et al. disclosed the first exo-selective C–H alkylation of imidazoles 220
with 1,1-disubstituted alkenes [99]. This intramolecular reaction was promoted at 70 or
85 ◦C by only 5 mol% of half-sandwich scandium catalyst 221 in toluene-D8 as solvent
(Scheme 56). It allowed the formation of the corresponding chiral bicyclic imidazole deriva-
tives 222 exhibiting a quaternary stereocenter to be achieved in quantitative yields (92–96%)
and good to high enantioselectivities (68–94% ee). The process showed a wide scope since
various 1,1-disubstituted (functionalized) aliphatic alkenes, styrenes, enynes and dienes
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were all compatible. The authors proposed the mechanism depicted in Scheme 56, which
begins with deprotonative C−H activation by the Sc−CH2Ar species which can occur at
either the C2 or C3 position of substrate 220a (R1, R2 = (CH = CH)2, R3 = n-Bu, n = 2),
affording intermediates AA or AB, respectively. The latter can be interconverted by a
similar reaction with another molecule of 219a. The intramolecular insertion (cyclization) of
the C = C unit into the Sc−imidazolyl bond in intermediate AA via intermediate AC leads
to intermediate AD. The hydrogen abstraction of 220a by the Sc−C σ-bond in intermediate
AD resulted in the formation of product 222a along with regenerated AA or AB.
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lyst loadings, in the presence of 16 mol% of chiral phosphoramidite ligand ent-89 (Scheme 
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Earlier in 2019, Sun et al. described the first regiocontrolled allylic amination of
unactivated dienyl allylic alcohols with secondary amines [100]. The process involved
two metal catalysts, such as Sc(OTf)3 and [Ir(cod)Cl]2, at100 and 4 mol%, respectively,
of catalyst loadings, in the presence of 16 mol% of chiral phosphoramidite ligand ent-
89 (Scheme 57). A series of dienyl allylic alcohols 223 reacted at room temperature in
toluene with dibenzylamine 224 to regio- and enantioselectively lead to the corresponding
C3-amination products 225 in moderate to good yields (55–78%) and uniformly high
enantioselectivities (87–99% ee).

Chemistry 2024, 6, FOR PEER REVIEW 55 
 

 

amination products 225 in moderate to good yields (55–78%) and uniformly high enanti-
oselectivities (87–99% ee). 

 
Scheme 57. Allylic amination of dienyl allylic alcohols with dibenzylamine [100]. 

In 2021, Hou and Luo described the synthesis of novel chiral half-sandwich scandium 
catalyst 79 which was further applied to promote the first enantioselective alkenylation of 
quinoline-substituted ferrocenes 226 with alkynes 227 (Scheme 58) [101]. The reaction was 
performed at 80 °C in the presence of 4 mol% of this novel catalyst in toluene as the sol-
vent, resulting in the formation of a new family of planar-chiral ferrocenes 228 bearing an 
alkene functionality with remarkable enantioselectivities (92–98% ee) and moderate to 
high yields (64–94%). The catalyst system tolerated a wide variety of internal alkynes bear-
ing various aryl and alkyl substituents. The carbon−carbon bond formation took place re-
gioselectively at the carbon atom of the alkyne bond unit bearing the alkyl substituent, 
affording the corresponding alkenylated ferrocene derivatives in both high yields and en-
antioselectivities. A wide range of alkynes was tolerated, including sterically demanding 
diphenylacetylene (R1 = R2 = Ph), which led to the corresponding almost enantiopure prod-
uct (96% ee) in 72% yield. Concerning the quinoline-substituted ferrocene partner, it was 
found that the presence of different substituents (Me, Br, F) at the quinoline moiety had 
no impact on the enantioselectivity of the reaction. Even a fused polycyclic quinoline unit 
smoothly underwent the reaction (73% yield, 92% ee). 

Scheme 57. Allylic amination of dienyl allylic alcohols with dibenzylamine [100].

In 2021, Hou and Luo described the synthesis of novel chiral half-sandwich scandium
catalyst 79 which was further applied to promote the first enantioselective alkenylation
of quinoline-substituted ferrocenes 226 with alkynes 227 (Scheme 58) [101]. The reaction
was performed at 80 ◦C in the presence of 4 mol% of this novel catalyst in toluene as the
solvent, resulting in the formation of a new family of planar-chiral ferrocenes 228 bearing
an alkene functionality with remarkable enantioselectivities (92–98% ee) and moderate
to high yields (64–94%). The catalyst system tolerated a wide variety of internal alkynes
bearing various aryl and alkyl substituents. The carbon−carbon bond formation took place
regioselectively at the carbon atom of the alkyne bond unit bearing the alkyl substituent,
affording the corresponding alkenylated ferrocene derivatives in both high yields and
enantioselectivities. A wide range of alkynes was tolerated, including sterically demanding
diphenylacetylene (R1 = R2 = Ph), which led to the corresponding almost enantiopure
product (96% ee) in 72% yield. Concerning the quinoline-substituted ferrocene partner, it
was found that the presence of different substituents (Me, Br, F) at the quinoline moiety
had no impact on the enantioselectivity of the reaction. Even a fused polycyclic quinoline
unit smoothly underwent the reaction (73% yield, 92% ee).
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10. Conclusions

This review updates the progress achieved in the application of asymmetric scandium
catalysis to enantioselective organic reactions since the beginning of 2016. In this period, the
use of chiral scandium catalysts has allowed many types of transformations to be developed
with generally very high enantioselectivities, spanning from modern domino reactions to
more simple cycloadditions, Michael additions, and miscellaneous reactions. In most cases,
the catalysts employed were derived from N,N′-dioxide ligands albeit several other types
of ligands, including Pybox ligands, phosphoramidites, or phosphine oxides among others,
also gave successful results. The review demonstrates that these novel methodologies have
allowed the synthesis of a wide diversity of chiral complex and functionalized products,
such as benzimidazoles via domino ring-opening/cyclization/retro-Mannich reaction of cy-
clopropyl ketones with aryl 1,2-diamines with up to 97% ee; 4-hydroxy-dihydrocoumarins
via domino ring-opening/nucleophilic addition/cyclization reaction of cyclobutenones
with 2-hydroxyacetophenones with up to 93% ee; spirocyclohexene pyrazolones via domino
Michael/aldol reaction of α-arylidene pyrazolinones with β,γ-unsaturated α-ketoesters
with up to 94% ee; aryl 5-bromo-1,3-oxazinan-2-ones via domino bromination/amination re-
action of (E)-cinnamyl tosylcarbamates with up to 99% ee; 3-substituted chiral 3,4-dihydro-
2H-1,2,4-benzothiadiazine-1,1-dioxides via domino imine formation/intramolecular ami-
nation reaction of 2-aminobenzenesulfonamide with aldehydes with up to 93% ee; tetrahy-
droindolizines via three-component reaction of alkenyloxindoles, diazoacetates and pyridines
with up to 99% ee; silylated cyclopentene-spirooxindoles via [3 + 2] cycloaddition of alkyli-
deneoxindoles with allenylsilanes with up to 98% ee; 1,5-diazabicyclo [3.3.0]octanes via
[3 + 2] cycloaddition of diaziridines with chalcones with up to 90% ee; tetrasubstituted
functionalized cyclopropanes via [2 + 1] cycloaddition of α-substituted vinyl ketones with
α-substituted α-diazoesters with up to 99% ee; γ-alkenyl butenolides via Michael addition
of butenolides to alkynones with up to 97% ee; β-naphthalenones via Michael addition of
β-naphthols to alkynones with up to 98% ee; 2-acyl imidazoles via Mukaiyama–Michael
addition of trimethylsilyl enol ethers to α,β-unsaturated 2-acyl imidazoles with up to 84%
ee; ortho-quinols via hydroxylative dearomatization of β-naphthols with an oxaziridine
with up to 90% ee; β-naphthol derivatives via ring-opening reaction of cyclopropyl ketones
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with β-naphthols with up to 97% ee; 3-allyloxindoles and 3-allenyloxindoles via Claisen
rearrangements of 2-allyloxyindoles and 2-propargyloxyindoles with up to 96 and 99%
ee, respectively; cyclic or acyclic tertiary silanes via hydrosilylations of alkenes with up
to 98% ee; 3,3-dialkylsubstituted oxindoles via alkylations of N-unprotected 3-substituted
oxindoles with propargyl, allyl and benzyl chlorides with up to 99% ee; bicyclic imida-
zoles via intramolecular C–H alkylation of imidazoles with 1,1-disubstituted alkenes with
up to 94% ee; dienyl allylic amines via allylic amination of dienyl allylic alcohols with
secondary amines with up to 99% ee; seven-membered lactones via Baeyer-Villiger re-
action of 3-substituted cyclohexanones with up to 97% ee or Baeyer-Villiger reaction of
meso-3,5-disubstituted cyclohexanones with up to 97% ee. The uniformly high enantioselec-
tivities described in these simple processes, combined with their diversity, demonstrate
that scandium catalysts constitute a great promise for the future of greener catalysis.
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