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Abstract: Curb detection tasks play a crucial role in the perception of the autonomous driving
environment for logistics vehicles. With the popularity of multi-modal sensors under the BEV (Bird’s
Eye View) paradigm, curb detection tasks are increasingly being integrated into multi-task perception
networks, achieving robust detection results. This paper modifies and integrates the tri-plane spatial
feature representation method of the EG3D network from the field of 3D reconstruction into a BEV-
based multi-modal sensor detection network, including LiDAR, pinhole cameras, and fisheye cameras.
The system collects a total of 24,350 frames of data under real road conditions for experimentation,
proving the effectiveness of the proposed method.

Keywords: curb detection; BEV-encoder; tri-plane feature representation; autonomous delivery vehicles

1. Introduction

With the rise of applications of AI in the field of autonomous deliveries, more and
more specific subdivided tasks are emerging. With respect to autonomous logistics vehicles
used in urban areas, the task of curb detection plays an important role not only for its safe
navigation and precision in delivery, but also for autonomous parking.

In coping with the challenge of adverse weather and varying lighting conditions,
LiDAR is usually a required item for sensor choice. Furthermore, the combination of
telephoto cameras and fisheye cameras is beneficial for achieving both a 360-degree field
of view and ensuring obstacle detection coverage. Early curb detection tasks were based
on either pure vision [1,2] or pure mobile laser scanning [3] or LiDAR sensors [4]. As the
requirements for environmental information in autonomous driving tasks have gradually
increased, recent approaches have seen the emergence of deep learning-based, multi-modal
detection methods. For instance, Deac [5] utilized a fisheye with LiDAR method, while
Ma [6] employed a satellite imagery with LiDAR approach.

The combination of LiDAR and multi-view cameras in the BEV perspective is a popular
paradigm in the industrial realm of autonomous driving perception. Curb detection
methods based on this paradigm can also be more conveniently integrated into other road
object detection and even prediction tasks, especially those involving the detection of lane
lines, which are also road elements.

For these reasons, this paper analyzes relevant research on BEV feature representation
methods (Section 2), proposes a deep learning network for multi-modal fusion curb detec-
tion using multiple fisheye cameras, pinhole cameras, and LiDAR (Section 3), validates
the effectiveness of this method with real vehicle tests on a logistics vehicle (Section 4),
and finally, analyzes the results (Section 5). The conclusions are summarized in Section 6.

2. Related Work

Due to the optical principles of lens imaging, object coordinates in the three-dimensional
physical coordinate system often need to be mapped to the pixel plane through an appro-
priate camera projection model, while the reverse 2D-to-3D conversion process involves
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uncertainty. Moreover, to obtain a more accurate relationship for 3D-to-2D coordinate trans-
formation, it is necessary to acquire a precise optical model of the camera through a rigorous
camera calibration process. In these processes, fisheye cameras, because of their significant
optical distortion, present additional challenges to obtaining more accurate 3D coordinate
mapping relationships or extracting features through conventional image convolution
methods. Consequently, in addition to traditional physical modeling methods [7], in recent
years, many approaches based on deep learning, especially GAN-based [8] methods, have
emerged for the distortion correction of fisheye camera images. Instead of estimating the
heterogeneous distortion parameters, Liao et al. [9] constructed a distortion distribution
map that intuitively indicates the global distortion features of a distorted image.

In the context of the BEV perception paradigm, it is a challenge to transform 2D
features from multi-view camera images into 3D representations, contrasting with the
natural three-dimensionality of LiDAR point clouds. The transformation process including
geometric prior information, crucial for establishing directional accuracy, hinges on whether
the optical model and camera extrinsic parameters are explicitly utilized for feature space
transformation. Research in this area is broadly categorized into two main approaches.
The first approach explicitly employs geometric prior information to project 2D features
into the 3D space [10]. Conversely, the second approach begins with features in the BEV
coordinates, facilitating interaction with 2D feature representations through 3D-to-2D
feature map query modules derived mainly from transformer technology [11,12].

Furthermore, multi-view visual perception methods in BEV are transitioning from two-
dimensional (front- or top-view) to three-dimensional (occupancy grid) representations.
Occupancy grids partition the physical space into a voxel grid using a strategy that does
not emphasize object classification but is dedicated to detecting whether there are obstacles
in the road space.

Feature extraction in the field of 3D reconstruction typically involves optimizing a dif-
ferentiable 3D spatial feature representation using multi-view images [13,14]. The seminal
work NeRF [15] implicitly represents scenes using positional encoding and fully connected
layers, which is relatively computationally expensive; explicit discrete voxel grid represen-
tation methods [16] present a significant challenge to memory space, whereas local implicit
representations [17] and hybrid explicit—implicit representations [18] adopt a compromise
approach, achieving a favorable balance between the above-mentioned two.

This paper is inspired by the spatial feature representation of the generator in the
EG3D [19] network within the field of 3D reconstruction and modifies its tri-plane fea-
ture representation method to the feature space transformation in BEV in the task of
curb detection.

Furthermore, for the spatial interaction and feature fusion of multi-view camera
images, we utilize the attention mechanism, which is widely employed in transformer-
derivative networks, to establish the interaction between multi-view cameras. Moreover,
to reduce the computational cost of queries, we integrate the mechanism of deformable
attention [20] into the feature fusion method.

3. Methodology

To complete the projection transformation from 2D image space to 3D BEV perspec-
tive, inspired by the generator in the EG3D network, this paper designs a “modified
tri-plane BEV-encoder” to accomplish the BEV feature encoding task for multi-view cam-
era information. This module is then applied to the curb detection network of a logistic
vehicle. Section 3.1 introduces the structure of the “modified tri-plane BEV-encoder”, and
Section 3.2 explains how the images from fisheye cameras are rectified. Section 3.3 discusses
the construction of the multi-modal sensor curb detection network.

3.1. Modified Tri-Plane BEV-Encoder

Figure 1 shows the schematic diagram of the “modified tri-plane BEV-encoder” struc-
ture exemplified by data from a single camera. After preprocessing the original image,
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features are extracted using ResNet-34 and then passed through three different modules
composed of 2D convolutions and BN (Batch Normalization) layers. These modules split
and map the feature channels extracted by the backbone into three feature planes (namely
Fxy, Fyz, Fxz planes), thereby dividing the 3D space into a corresponding number of voxels
using the grid of the three planes.

Unlike the direct voxel representation method, where the memory occupied by the
features grows cubically with the width of the feature map, to save memory consumption,
this paper employs the tri-plane method of spatial feature representation [19]. The blue
sphere represents the “tri-plane” feature at a certain spatial position coordinate (x′, y′, z′)
in the 3D voxel space. Its position coordinates are projected onto the Fxy, Fyz, Fxz planes,
and the features on the three planes are, respectively, indexed as fx′y′ , fy′z′ , fx′z′ . By adding
these features together, we obtain the “tri-plane 3D spatial feature”. Subsequently, the spa-
tial features located on the same “pillar” in the BEV perspective are encoded using 1D
convolution and a BN (Batch-Normalization) layer, thus obtaining the output feature map.

Figure 1. The architecture of the proposed modified tri-plane BEV-encoder taking a single camera
input as an example. (The blue sphere represents the feature map value of the position (x′, y′, y′) in
the 3D feature-map grid coordinates).

3.2. A Fisheye-Camera Rectification Module

The perspective projection of a general pinhole camera can be described by Equation (1),
where f represents the focal length of lens, θ is the angle between the ray from the camera’s
principal axis to the point P in the real word and the principal axis itself, and r refers to the
distance between the image point and the principal point.

r = f tan θ, (1)

Due to the unique distortion characteristics of fisheye cameras, however, distinct mod-
els for projection are employed, such as orthogonal projection (Equation (2)), equidistant
projection (Equation (3)), etc.

r = f sin(θ) (2)

r = f θ (3)

To obtain a universal expression, in the research by Kannala and Brandt [21], a general
radially symmetric model (Equation (4)) is used to represent the perspective projection
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model of traditional, wide-angle, and fisheye lens cameras, and a corresponding calibration
method is provided.

r(θ) = k1θ + k2θ3 + k3θ5 + k4θ7 + k5θ9 + . . . (4)

Here, as is shown in Figure 2, r(ϕ) represents the radial distance from a point on the
image plane to the principal point, and k1, k2, and . . . are the model parameters.

This model has been extensively applied in the industry, such as the fisheye camera
model implemented in OpenCV [22]. By employing higher-order polynomials, the model
can approximate real lens distortions with high accuracy; however, to balance the cost of
calibration, employing a second-order polynomial is a common practice. Therefore, this
paper employs the following simplified model, which is implemented by OpenCV [23],
to correct the distortion from fisheye cameras in the pixel coordinate:[

x′

y′

]
=

(
1 + K1r2

d + K2r4
d

)[x
y

]
+

[
2p1xy + p2

(
r2

d + 2x2)
2p1

(
r2

d + 2y2)+ 2p2xy

]
(5)

r2
d = x2 + y2 (6)

where p1, p2 are tangential distortion coefficients and K1, K2 are radial distortion coefficients.

Figure 2. The general, radially symmetric projection model proposed by Kannala and Brandt.
The image of the point P is p, whereas it would be p′ in the case of a pinhole camera.

3.3. A Curb-Detection Algorithm Using LiDAR–Camera Fusion with a Tri-Plane BEV-Encoder

To fuse multi-modal sensor data (to fuse multi-modal sensor data from a setup com-
prising five LiDAR and six cameras, including both pinhole and fisheye types), this paper
designs a curb detection network structure as shown in Figure 3 and implements it using
the MMDetection [24] framework.

For the camera branch: after preprocessing and data augmentation, the original
images are fed into the “modified tri-plane BEV-encoder” module described in Section 3.2
to obtain multi-camera feature maps. These are then processed with deformable attention
to extract and fuse spatial information of interest from multiple viewpoints in the BEV
perspective. Subsequently, multi-scale features are fused through the FPN (Feature Pyramid
Network) module.
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Figure 3. The framework of the proposed curb detection network.

For the LiDAR branch, data outside the region of interest is filtered out. The point
cloud is voxelized in the manner of PointPillars and input into the PointPillarsEncoder [25],
which consists of the PillarFeatureNet as points voxel encoder and the PointPillarsScatter
as points middle encoder, to obtain the point cloud feature map in the BEV perspective.

Then, the data from the two modalities are fused using convolutional methods and
are input into the decoder composed of the SECOND backbone and SECOND FPN for curb
detection [26].

The curb detection head is composed of three branches. Bilinear interpolation is
applied to the ground truth annotations of curbs as needed, allowing for loss calculation of
the following three branches by querying the relationship between the BEV grid and the
actual 3D space coordinates:

1. Semantic Segmentation Branch: a binary classification semantic segmentation branch
for predicting whether each BEV grid cell belongs to the lane line;

2. Instance Segmentation Branch: used to distinguish between different lane lines instances;
3. Position Offset Branch: predicts the minimum distance of lane line instances from the

center of the BEV grid cells, serving as the position offset loss for curb detection in
order to enhance detection accuracy. The output channel number is 2, corresponding
to the offset in the x and y directions.

4. Experiments
4.1. Dataset Setup

The experimental logistics vehicle was equipped with six cameras and five LiDAR
sensors: one telephoto pinhole camera and one wide-angle pinhole camera were mounted
in the front-view direction, while four fisheye cameras were installed at the front, back, left,
and right views, respectively; there are two livox LiDARs at the front and the back view;
one 16-line LiDAR on both the left and right sides; and a 32-line LiDAR mounted on the
top (as shown in Figure 3).

The logistics vehicle collected a total of 24,350 frames of data in urban areas, including
conditions during clear weather, rainy weather, and nighttime driving.

For the curb instance annotation, a set of key-points was used, selecting sufficient
key-points on the curb to represent its shape, and these points were annotated with their
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spatial two-dimensional Cartesian coordinates in the vehicle’s ego-coordinate system (In
the vehicle’s coordinate system, the direction in front of the vehicle is defined as the positive
direction of the x-axis, and the left side of the vehicle is defined as the positive direction of
the y-axis, with the z-axis direction being disregarded.).

4.2. Fisheye Camera Rectification

To test whether correcting the distortion of fisheye cameras affects feature extraction,
this paper employs the Kannala–Brandt model [21] to correct the original images from
fisheye cameras before using them as the initial input for network training, as is shown
in Figure 4. It also compares the impact on detection performance with and without the
fisheye camera distortion correction step.

(a) (b)
Figure 4. Fisheye camera undistortion test visualization. (a) Raw fisheye camera image. (b) Rectified
fisheye camera image using Kannala–Brandt model.

4.3. Comparison with Existing Image-to-BEV Feature Projection Method

As outlined in Section 2, establishing a relationship between image features and BEV-
space features based on prior knowledge such as the physical rotation and translation
relationships as well as the optical model of camera imaging is an intuitive approach. This
method, by leveraging prior information instead of encoding features through hidden
layers in deep learning network, conserves a significant number of learnable parameters.
Consequently, it offers substantial advantages in training and inference speed due to the
reduced computational complexity.

Drawing from the foundational concepts of M2BEV [27], fast-BEV [28] enhances the
view transformation process introduced by M2BEV. It adopts a strategy similar to the
edge-3D’s use of a look-up table to associate tri-plane features with voxel features in the
BEV space (Equation (7)), where the 3D voxel projection technique is predicated on the
hypothesis that the depth distribution along a camera ray is uniform. That implies that
each voxel intersected by the same ray possesses identical features derived from a single
pixel in the pixel coordinate system.

[Fi,j|D] = IEVi,j,k, (7)

In the experiment carried out, F ∈ RH×W×c is an image-feature extracted by ResNet-34
backbone with c channels and of height H and width W; E is the camera’s extrinsic matrix; I
is the camera’s intrinsic matrix; and V ∈ RXc×Yc×Zc×C is the voxel tensor in 3D space with C
channels. In the experiment in this article, the 2D-to-3D view transformation (Equation (7))
is compared with the from-EG3D-adapted tri-plane BEV-encoder, as described in Figure 1.
The comparison result is shown in Table 1.
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Table 1. Overall result of the overall experiments.

Experiment
Setting Precision Recall

Tri-Plane
Encoder

M2BEV’s
Image-to-BEV

Feature
Projection

Fisheye
Rectification

✓ 62.2% 66.0%

✓ ✓ 65.7% 64.6%

✓ 64.8% 66.6%

✓ ✓ 66.6% 67.3%

60.0% 62.9%

✓ 60.1% 62.6%

4.4. Evaluation Metrics

For the evaluation of curb detection performance, this paper employs recall and
precision metrics to assess the model. The calculation of these metrics can be summarized
in the following three steps:

4.4.1. Instance Matching for Detected and Ground Truth Curbs

Similar to the trained detection head, based on the configured resolution of the BEV
perspective, generate a binary semantic segmentation map under the BEV top-down view
for the curb ground truths along with matching instance labels. Subsequently, calculate the
intersection over union (IoU) for the semantic segmentation maps of the ground truth and
the network-predicted curbs. Based on the IoU, use the Hungarian matching algorithm to
calculate the matching relationship between ground truth instances and predicted instances.

4.4.2. Calculation of Matching Information for Each Curb Instance

Since the network employs an xy-offset task to calculate the deviation of the predicted
curb points from the BEV grid center points, the predicted curb points are roughly uniformly
distributed according to the configured BEV resolution. Perform linear interpolation on
the curb ground truths according to the resolution, thereby aligning the true and predicted
points’ coordinates in the x-direction. Then, based on the offset in the y-direction, classify
the predicted points as TP (True Positives), FP (False Positives), TN (True Negatives),
and FN (False Negatives).

4.4.3. Aggregation and Statistical Metrics

Aggregate the matching results of the current frame and calculate positives and
negatives based on the Euclidean distance, thereby computing the recall, precision, and IoU
metrics for the current frame. Additionally, for the direction in front of and behind the
vehicle, results can be categorized and analyzed according to different distance groups
based on the x-direction distance in the vehicle’s coordinate system.

5. Results and Discussion
5.1. Methodology and Criteria for Data Presentation Selection

In the coordinate system of the ego vehicle, the direction of the road edge is generally
considered the boundary of the vehicle’s lateral (y-axis) movement range. From the
perspective of motion control, lateral constraints on the movement planning of autonomous
logistic vehicles are primarily imposed, encompassing aspects such as lane selection and
the obstacle avoidance strategy choices of the autonomous delivery vehicle. On the other
hand, given the current situation in which autonomous logistic vehicles predominantly
operate in urban-area bicycle lanes and exhibit a lower average traveling speed compared
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to passenger cars, the precision of predictions in the y-direction is relatively more critical
than in the x-direction. Therefore, this study defines the area of interest for evaluating
the proposed perception algorithms as the range shown in Figure 5. A resolution of 2 m
in the near field and 3 m in the further field on the lateral side (y-direction) is utilized to
ensure that the evaluation area sufficiently covers lane planning and prevents collisions
with road edges. A resolution of 20 m in the longitudinal direction (x-axis) is adopted in
order to meet the requirements for maintaining a safe following distance. Additionally,
the evaluation metrics introduced in Section 4.4 are employed to calculate the quantified
average perception performance within each segmented area.

The overall comparative experiments are conducted between modules “modified
tri-plane BEV-encoder” and “M2BEV’s image-to-BEV feature projection” (Section 4.3), and
both utilize the network architecture depicted in Figure 1. Specifically, in the experiments
conducted for module “M2BEV’s image-to-BEV feature projection”, only the tri-plane
module presented in Figure 1 was substituted with the module itself (with the same
backbone, ResNet-34), with all the remaining components of the network unchanged.
Concurrently, the experiment denoted as “fisheye rectification” refers to the network’s
image preprocess of undistorting fisheye camera images based on calibration results and
the rectification model described in Section 3.2. The result is shown in Table 1.

The comparative analysis of the effectiveness of different parts of the ROI region for
the fisheye camera distortion correction method and the tri-plane BEV-encoder is presented
in Tables 2 and 3.

Within a ±40-m range to the front and rear and a ±5-m range to the left and right
in the vehicle’s coordinate system, both of the two proposed modules contribute to an
improvement in detection accuracy for the curb detection network. The network’s inference
results are visualized in Figures 6 and 7.

Table 2. Recall result using proposed evaluation metrics in different parts of the ROI.

y_Range (m) x_Range (m)

With Tri-Plane
Encoder &

without Fisheye
Rectification

With Tri-Plane
Encoder & with

Fisheye
Rectification

Without Tri-Plane
Encoder &

without Fisheye
Rectification

Without Tri-Plane
Encoder & with

Fisheye
Rectification

2~5

−40~−20 78.7% 80.6% 77.8% 77.8%
−20~0 83.3% 79.7% 82.3% 82.6%
0~20 71.2% 77.2% 72.5% 72.6%

20~40 75.6% 69.7% 76.4% 76.2%

0~2

−40~−20 52.7% 48.2% 65.7% 61.2%
−20~0 81.3% 78.5% 77.5% 75.3%
0~20 58.6% 78.1% 49.9% 51.6%

20~40 45.2% 75.0% 38.7% 41.7%

−2~0

−40~−20 58.9% 53.8% 63.8% 63.5%
−20~0 93.4% 93.2% 87.4% 86.1%
0~20 96.3% 96.1% 90.2% 89.6%

20~40 71.8% 50.2% 70.9% 70.6%

−5~−2

−40~−20 80.8% 64.3% 81.3% 80.3%
−20~0 57.7% 53.8% 52.0% 52.2%
0~20 48.4% 56.2% 44.8% 45.3%

20~40 59.3% 59.2% 60.9% 60.7%
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Table 3. Precision result using proposed evaluation metrics in different parts of the ROI.

y_Range (m) x_Range (m)

With Tri-Plane
Encoder &

without Fisheye
Rectification

With Tri-Plane
Encoder & with

Fisheye
Rectification

Without Tri-Plane
Encoder &

without Fisheye
Rectification

Without Tri-Plane
Encoder & with

Fisheye
Rectification

2~5

−40~−20 34.7% 43.0% 36.6% 37.4%
−20~0 88.8% 91.4% 89.8% 89.9%
0~20 88.9% 93.4% 89.6% 89.3%

20~40 69.0% 75.5% 68.1% 68.1%

0~2

−40~−20 21.9% 44.2% 21.4% 21.2%
−20~0 45.2% 65.6% 35.8% 37.3%
0~20 64.7% 76.7% 42.4% 45.1%

20~40 32.2% 54.5% 26.3% 26.9%

−2~0

−40~−20 39.8% 45.0% 36.3% 37.7%
−20~0 64.5% 67.3% 57.6% 57.2%
0~20 81.4% 81.6% 76.3% 75.7%

20~40 43.9% 42.8% 44.0% 45.0%

−5~−2

−40~−20 82.6% 83.3% 82.3% 84.2%
−20~0 82.6% 88.0% 81.0% 80.8%
0~20 74.7% 88.5% 73.1% 73.3%

20~40 65.6% 68.4% 62.6% 62.9%

Figure 5. Schematic diagram of the evaluation region of interest with dimensions in meters.
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(a) (b) (c)
Figure 6. Curb detection network result visualization, where different colors represent different
instances. (the unit of the distance range is meters). (a) LiDAR points in BEV perspective. (b) Ground
truth curb instance. (c) Predicted curb instance.

5.2. Comparative Experimental Analysis of Algorithm Modules

From the results presented in Table 1, the following observations can be made:

• The modified tri-plane BEV-encoder module, compared to the M2BEV’s image-to-BEV
feature projection module, demonstrated superior average precision and recall rates in
the urban-area road experiments conducted for autonomous delivery vehicles in this
article under conditions both with and without the fisheye rectification preprocessing
step for fisheye camera images;

• The presence of a fisheye camera distortion correction preprocessing step showed
relatively minor performance differentiation when neither of the above-mentioned spa-
tial transformation modules were utilized. However, when employing the M2BEV’s
image-to-BEV feature projection module, considering both the average accuracy and
recall, the fisheye camera distortion correction preprocessing did not result in a no-
table improvement in performance. In contrast, with the implementation of the
tri-plane encoder module, this preprocessing step led to a certain degree of perfor-
mance enhancement.
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Figure 7. Schematic illustration of curb detection results. From right to left, the first to third columns
represent the LiDAR points BEV diagram, ground truth annotations of curb instances on the BEV
plane, and visualization of the network’s detection results, respectively. (Different colors represent
different curb instances).

5.3. Performance Analysis of ROI Partitioning in Algorithms

This section conducts a quantitative analysis and discussion on the performance of
the multi-modal curb detection network across different parts of the ROI for autonomous
delivery vehicles. The evaluation aims to assess the network’s effectiveness in its applied
scenario and whether its ability meets the task’s requirements.

According to the results presented in Tables 2 and 3, the multi-modal network incor-
porating the tri-plane encoder and fisheye rectification module exhibits higher detection
precision in areas close to the ego-vehicle (i.e., within ±2 m in the x-direction and ±20 m in
the y-direction) than that in those more distant regions (i.e., ±2~±5 m in the x-direction
and ±20~±40 m in the y-direction). In those further parts of ROI, although a certain
degree of performance degradation is observed, detection precision remains above 50% on
average. This performance reduction is consistent with the inherent properties of LiDAR
point clouds, which are denser near the sensor and sparser at greater distances, and the
challenges associated with detecting distant objects using visual detection algorithms.

Additionally, it is notable that, due to the test set’s characteristics, the average distri-
bution of the curb in the ego-vehicle coordinate system does not guarantee strict symmetry.
Furthermore, more sensors are mounted in the front side of the vehicle in order to obtain
a robust perception result in the driving direction. Consequently, the evaluation metrics
within the ROI do not exhibit spatial symmetry.

In summary, for applications involving autonomous delivery vehicles operating at
relatively low speeds, the proposed multi-modal curb detection network demonstrates
significant utility.
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6. Conclusions
6.1. The Effectiveness of the Modified Tri-Plane Encoder

Based on the observations in Section 5.2, we can draw the following conclusions:

• The tri-plane BEV-encoder module, adapted and introduced from the domain of
3D image reconstruction, has shown potential for application in tasks such as curb
detection. This is evidenced by its comparative analysis with an existing similar
method, despite the well-acknowledged inherent randomness associated with deep
learning-based approaches.

• The rectification of fisheye camera images contributes to an improvement in the
performance of the aforementioned spatial transformation module.

6.2. The Effectiveness of the Proposed Multi-Modal Edge Detection Network

Based on the analysis presented in Section 5.3, it can be concluded that for applications
involving autonomous delivery vehicles operating at relatively low speeds, the proposed
multi-modal curb detection network exhibits a certain degree of utility.

6.3. Highlight of Contributions

The contributions of this paper are summarized as follows:

1. The spatial transformation of features, particularly the conversion of image features to
Bird’s Eye View (BEV) space, remains a focal issue in the field of autonomous driving
detection. We observed that the tri-plane encoder within the EG3D network from the
domain of 3D image reconstruction achieves a balance between parameter quantity
and the volume of spatial representation information. Consequently, this feature space
transformation module was fine-tuned and integrated into a multi-modal network.

2. This paper introduces a multi-modal curb detection network that supports LiDAR,
pinhole telephoto cameras, and fisheye cameras. In addition to the camera branch
featured in the above-mentioned module, the network’s LiDAR branch employs one
of the industry’s most widely used models from the PointPillar series; meanwhile,
the task head for curb detection takes a weighted sum of a semantic segmentation
loss in BEV space, a longitudinal and lateral detection offset loss in the BEV plane,
and a clustering loss for different curb instances.

3. We utilized a logistics vehicle equipped with LiDAR, pinhole telephoto, and fisheye
cameras to collect 24,350 frames of real-world data on urban roads for training and
testing the proposed model. This data also served to validate the effectiveness of the
tri-plane encoder module and assess the impact of fisheye camera image distortion
removal preprocessing on the network relative to a baseline comparison.

4. Based on the results analyzed, the introduced tri-plane encoder module exhibits
considerable performance in curb detection tasks. Furthermore, the proposed multi-
modal curb detection network meets the fundamental application requirements for
this scenario.

6.4. Limitations and Future Directions of the Study

Within this paper, the following research limitations and inadequacies are acknowl-
edged, which can be discussed in further research:

1. A fisheye camera correction model of limited precision was employed, without com-
parison to more refined correction models or novel correction modules based on GAN
networks, etc.

2. The study did not subdivide specific curb scenarios and hard case for detection,
which would have allowed for targeted optimization in scenarios where the detection
algorithm under performs.

3. The introduced tri-plane encoder module requires further investigation into these aspects:

• Its placement relative to other components of the network, such as being posi-
tioned before the FPN module or integrated within it;
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• The optimization of voxel resolution settings in relation to the ego-vehicle’s
ROI size.
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