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Abstract: Distributed-drive vehicles utilize independent drive motors on the four-wheel hubs. The
working conditions of the wheel-hub motors are so harsh that the motors are prone to failing under
different driving conditions. This study addresses the impact of drive motor faults on vehicle
performance, particularly on slippery roads where sudden faults can lead to accidents. A fault-
tolerant control system integrating motor fault diagnosis and a direct yaw moment control (DYC)
based fault-tolerant controller are proposed to ensure the stability of the vehicle during various
motor faults. Due to the difficulty of identifying the parameters of the popular permanent magnet
synchronous wheel hub motors (PMSMs), the system employs a model-free backpropagation neural
network (BPNN)-based fault detector. Turn-to-turn short circuits, open-phase faults, and diamagnetic
faults are considered in this research. The fault detector is trained offline and utilizes rotor speed
and phase currents for online fault detection. The system assigns the torque outputs from both
healthy and faulted motors based on fault categories using sliding mode control (SMC)-based DYC.
Simulations with four-wheel electric vehicle models demonstrate the accuracy of the fault detector
and the effectiveness of the fault-tolerant controller. The proposed system is prospective and has
potential for the development of distributed electric vehicles.

Keywords: motor fault diagnosis; vehicle fault tolerance; neural network; sliding mode control;
direct yaw moment control

1. Introductory

Transportation of people, goods, and services by vehicles is associated with problems
such as energy shortages, environmental pollution, and traffic safety. Therefore, the de-
velopment of electric vehicles (EVs), which are energy-saving, safe, and environmentally
friendly, is an excellent solution for combating these problems [1–3]. Design ideas for
electric vehicles are constantly changing and improving. An attractive drive form called
“distributed independent drive” was recently proposed. It contains the advantages of fewer
mechanical parts, a shorter transmission chain, and a flexible space arrangement. The
distributed-drive electric vehicle (DDEV) has a motor installed in each wheel, which is
called a wheel-hub motor. Through proper control, the drive forces and moment can be
properly adjusted, thereby reducing the burden on the suspension system and improving
the handling and responsiveness of the vehicle [4]. In addition, the distributed-drive vehicle
can also improve its energy effectiveness [5]. Due to the advantages of DDEV, this research
focuses on DDEV.

However, the operating conditions of the wheel-hub motor are very harsh. For
example, the motor has poor heat dissipation due to the enclosure of the wheel; the
motor suffers from severe vibration caused by the road and a rapid change in motor load.
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Therefore, the wheel-hub motor is prone to failure. If one of the motors fails and cannot
provide proper torque output, it will significantly impact the vehicle’s stability. The vehicle
will shift uncontrollably and vibrate swiftly [6]. In addition, on slippery roads, such as snow,
ice, and mud roads, the friction factor of the road surface changes considerably, posing
a more significant challenge to vehicle stability. For instance, Salimi et al. investigated
the effect of different road conditions on the friction factor and vehicle tires. The results
showed that the wet road decreases the friction factor and is detrimental to the stability
of the vehicle [7]. As a result, appropriate fault-tolerant control strategies are required to
maintain the stability and reliability of the vehicle in such conditions [8]. The basis of fault-
tolerant control is fault diagnosis. It is a procedure to identify the position of the faulted
motor and the type of fault. Under some electrical fault conditions (such as phase loss),
the faulted motor can still provide limited torque output. Keeping such faulted motors
working is necessary to prevent the overall drive forces and moment from significantly
decreasing. The fault-tolerant controller can maintain the overall stability of the vehicle
under acceptable, faulty conditions. It adjusts the healthy motors based on the results
of the fault detector. It is only possible to assign the torque outputs of the rest of the
healthy motors by identifying the faulted motors. Therefore, fault diagnosis for fault motor
detection must come before vehicle-level fault-tolerant control.

Permanent magnet synchronous motors (PMSMs) are usually employed as hub motors
for distributed electric vehicles. The common faults associated with PMSMs usually
include the following aspects: open-circuit faults, turn-to-turn short-circuit faults, and
demagnetization faults [9]. Open-circuit faults mean that the connection between the one-
phase winding and the power source is lost and the current loop is opened due to vibration
and other reasons such as loosening. These faults lead to electrical and mechanical faults
and decrease output torque and load-carrying capacity [10]. Turn-to-turn short-circuit
faults mean that the coils connect to each other and a closed loop for currents is created
inside a phase winding due to high temperatures or other reasons. These faults increase
stator winding current, overheat the motor, and vary the magnetic field and torque [11].
Torque outputs can be partially recovered by controlling the armature voltage of the motor
to reduce the output torque fluctuation of the motor. The motor can still provide torque
output with a few unpredicted deviations when the faults are electrical (including open
circuit and turn-to-turn short circuit faults) [12]. The vehicle level controller amends the
deviations through other healthy motors. Demagnetization faults are caused by high
temperatures or pollution, resulting in the loss of magnetism in the permanent magnets.
These faults result in an unstable flux density and change the electrical performance of the
faulted PMSM. These faults are hard to detect and diagnose in terms of their severity [13].
Therefore, it is necessary to shut down the faulted motors with demagnetization faults and
control the integral vehicle with other healthy motors.

Observer-based fault detectors have been among the most popular methods for elec-
trical fault diagnosis in recent years. Zhang et al. proposed a fault-tolerant control method
for steer-by-wire (SBW) based on the Kalman filtering technique to mitigate the adverse
effects of steering angle sensor faults [14]. Bonci et al. investigated the application of a load
torque observer based on the extended Kalman filter in diagnosing electric drives operating
under non-stationary conditions [15]. The data-driven method are also a standard method
for fault diagnosis. Typical methods include back propagation neural networks (BPNN);
for instance, Kao et al. proposed an effective neural network-based algorithm for a series
of faults of varying severity occurring in PMSMs operating at different speed ranges [16].
Wang et al. proposed a deep learning-based model called a multi-resolution and multi-
sensor fusion network to diagnose electric motor faults by performing a multi-scale analysis
of motor vibration and stator current signals [17]. Both methods are very efficient ways to
achieve fault diagnosis. The parameters of PMSMs, such as flux density, inductance, and
resistance, change with currents and temperatures, which are time-varying. This makes
online parameter identification difficult. However, the data-driven methods can build
the fault model automatically for fault detection based on sample input and output data
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without knowing the exact model parameters. As compared with deep learning approaches,
BPNN is a data-driven method without the need for a million training data points. BPNN
was adopted for this research.

Typical fault-tolerant controllers for vehicles often include logic-based or reinforcement-
learning-based methods. Guo et al. proposed an adaptive fault-tolerant control method
based on nonlinear vehicle dynamics and a new quadratic spacing strategy, which is used
to ensure vehicle stability [18]. Deng et al. proposed a fault-tolerant control method based
on deep reinforcement learning to consider the vehicle’s stability and the motor’s power
consumption [19]. Logic-based methods depend more on experts as they require much
practical experience. Reinforcement learning-based methods require much training in a
virtual environment or in reality, which is costly and dangerous.

In addition, direct yaw moment control (DYC) is a standard vehicle stability control
method. The controller adjusts the motion and driving stability of the vehicle by coordinat-
ing the brakes, engine output torques, and suspension system parameters of the vehicle. It
has the advantages of fast speed, high precision, and low noise [20]. The main purpose of
DYC is to give a slight direct yaw moment when the vehicle is steering and to improve the
handling performance of the vehicle [21]. For example, in the case of steering at high speeds,
if the torque from the right wheels reduces, the vehicle will turn to the right unpredicted.
The DYC can reduce the output torque of the left wheels, increase the yaw moment to the
left, and help the vehicle remain stable. For distributed-drive vehicles, when some motors
fail, the stability of the direct motion of the vehicle can also be achieved by reasonably
distributing the driving force of the remaining motors. DYC considers the performance and
parameters of the whole vehicle. Many practical and theoretical analyses have confirmed
the reliability of DYC in the application of distributed-drive vehicles. Therefore, DYC is
believed to be adopted for fault-tolerant control of the vehicle. As a result, this study adopts
the method of DYC for fault-tolerant control.

Various fault-tolerant control algorithms for distributed-drive EVs have been proposed
and applied to DYC. Peng et al. proposed a robust model of predictive control (MPC)
with a finite time for coordinated path tracking and DYC of distributed EVs [22]. Jin et al.
proposed a robust fuzzy H ∞ control strategy by integrating a DYC system and active
front steering to improve the lateral stability and handling performance of the vehicle [23].
Yue et al. investigated PMSM speed control using a direct torque control (DTC) scheme
and space vector pulse width modulation (SVPWM) and designed a fractional order PID
controller using fractional order calculus theory [24].

In contrast to the above algorithms, sliding mode control (SMC) has the advantages of
fast response, insensitivity to parameter variations, no need for online system identification,
disturbance tolerance, and simple physical implementation [25]. A sliding mode controller
is a non-linear control method that defines a sliding mode surface that characterizes the
state error of the system, and the system can adjust its outputs according to the changes
in the sliding mode surface to gradually reduce the system error. There are also several
applications of DYC on electric vehicles equipped with four in-wheel motors (IWMs).
Li et al. proposed an adaptive SMC control scheme that is based on a novel stability index
to represent the stability level quantitatively, thus improving handling and stability [26].
SMC has a tremendous advantage in hardware applications, especially in DYC control at
the whole vehicle level [27]. Therefore, this research also adopts the SMC algorithm for
fault-tolerant control.

The contributions and innovations of this paper include the following aspects: (1) It
is an innovative attempt to study different motor fault types and their impact on vehicle
performance, which can lay the foundation for a more in-depth study of the fault tolerance
of electric vehicle systems. (2) It is a more forward-looking application of machine learning
(particularly BPNN) based methods on motor fault detection in real working situations
and not only considers the motor level but also the vehicle level. It also analyzes more
efficient and feasible fault-tolerant strategies, providing a promising way of improving the
reliability and safety of electric vehicles. (3) It is also an innovative attempt to propose a
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framework that combines motor fault diagnosis with vehicle-level fault-tolerant control,
which is lacking in current research.

The remainder of this paper is assigned as follows: In Section 2, the vehicle model and
both faulted and healthy motor models are developed. Section 3 shows the principles of
the BPNN-based fault diagnosis and the SMC-based fault tolerance controller. Section 4
shows the simulation experimental results to verify their validity. Section 5 summarizes
this paper and shows the possible work in the future.

2. Fault Modeling and Simulation
2.1. Modeling Distributed Drive Vehicles
2.1.1. 2-DOF Model

The 2-DOF model, as shown in Figure 1, describes the longitudinal speed u, lateral
speed, v, and yaw rate r of a vehicle based on tire dynamics. It provides an accurate
motion model of the vehicle for reference. In this research, it serves as a reference for the
fault-tolerant controller.
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The 2-DOF vehicle body dynamics equation is

.
v =

Fy
m − u·r,

.
r = Mz

Izz
,

(1)

where u, v, r are the longitudinal speed, lateral speed, and yaw rate of the vehicle, respec-
tively; Fy represents the longitudinal force of the car; Mz is the yaw moment to the vehicle;
Izz is the moment of inertia of the car, given by

Mz = FyF·L f − FyR·Lr,
Fy = FyF + FyR,

(2)

where FyF and FyR are the longitudinal forces on the front and rear wheels of the car,
respectively given by

FyF = FwyF·cos(dF),
FyR = FwyR,

(3)

where FwyF and FwyR are lateral forces for front and rear wheels; dF is the steering angle.
FwyF and FwyR, are given by

FwyF = −atan
( vr+L f ·rr

u

)
·C f − dF,

FwyR = −atan
(

vr−Lr ·rr
ur

)
·Cr,

(4)
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where C f and Cr are the lateral cornering stiffness of the front and rear wheels, respectively;
L f and Lr are the front and rear wheelbase, respectively.

2.1.2. 7-DOF Model

A 7-degree-of-freedom (7-DOF) model of the distributed electric vehicle is shown in
Figure 2a. The forces on a single tire are shown in Figure 2b. This model works as the
plant model of the distributed drive electric vehicle in the simulation environment in this
research.
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The dynamic equation for the vehicle body is

.
u = Fx

m + v· r,
.
v =

Fy
m − u· r,

.
r = Mz

Izz
,

(5)

where u, v, r are the longitudinal speed, lateral speed, and yaw rate of the vehicle, respec-
tively; Fx, Fy and Mz are the longitudinal and lateral forces and the yaw moment of the
vehicle, respectively; Izz is the moment of inertia of the car, and m represents the weight of
the vehicle.

The longitudinal drive force Fx is the sum of the longitudinal forces of the four wheels,
and the air resistance is expressed as

Fx = FxLF + FxRF + FxLR + FxRR − Fdrag, (6)

where FxLF, FxRF, FxLR, FxRR are the longitudinal forces of the left front, right front, left
rear and right rear, wheels, respectively; Fdrag is the air resistance.

The lateral force of the vehicle Fy is the sum of the lateral forces of all four wheels, as
shown in the equation of

Fy = FyLF + FyRF + FyLR + FyRR, (7)

where FyLF, FyRF, FyLR, FyRR are the lateral forces of the left front, right front, left rear, and
right rear wheels, respectively.

The yaw moment of the vehicle is defined as

Mz =
1
2
·Wr·(FxLF − FxRF + FxLR + FxRR) +

(
FyLF + FyRF

)
·L f −

(
FyLR + FyRR

)
·Lr, (8)

where Wr is the width of the vehicle; L f and Lr are the front and rear wheelbase of the
vehicle, respectively.
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The longitudinal drive forces FxLF, FxRF, FxLR, FxRR and the lateral forces FyLF, FyRF,
FyLR, FyRR of the wheels are defined by

FxLF = FwxLF·cos(dLF)− FwyLF·sin(dLF),
FxRF = FwxRF·cos(dRF)− FwyRF·sin(dRF),

FxLR = FwxLR,
FxRR = FwxRR,

FyLF = FwxLF·sin(dLF) + FwyLF·cos(dLF),
FyRF = FwxRF·sin(dRF) + FwyRF·cos(dRF),

FyLR = FwyLR,
FyRR = FwyRR,

(9)

where FwxLF, FwxRF, FwxLR and FwxRR are the drive force by the wheel hub motors, respec-
tively; FwyLF, FwyRF, FwyLR and FwyRR are the lateral tire forces on left front, right front, left
rear and right rear wheels, respectively; dRF and dLF are the steering angles of the left front
and right front wheels, respectively, which is defined by

dLF = atan
L f +Lr

L f +Lr
tandF

+ 1
2 ·Wr

,

dRF = atan
L f +Lr

L f +Lr
tandF

− 1
2 ·Wr

,
(10)

where dF is the front wheel steering angle. It is given by the driver in relation to the steering
wheel angle. The relationship between these two angles is

dF =
dF
25

, (11)

where dF is the steering wheel angle given by the driver. The resistance is considered air
resistance Fdrag in this research is defined as

Fdrag =
1
2
·u2·1.206·Cd·A. (12)

where Fdrag0 is the initial air resistance; A is the cross sectional area of the car; Cd is the
drag coefficient.

The lateral forces of each wheel, which are represented by FwyLF, FwyRF, FwyLR and
FwyRR are defined by the side slip angles of the wheels as expressed by

FwyLF = −C f ·
(

atan
v+L f ·r

(u+ 1
2 ·Wr ·r)

− dLF

)
,

FwyRF = −C f ·
(

atan
v+L f ·r

(u− 1
2 ·Wr ·r)

− dRF

)
,

FwyLR = −Cr·atan v−Lr ·r
(u+ 1

2 ·Wr ·r)
,

FwyRR = −Cr·atan v−Lr ·r
(u− 1

2 ·Wr ·r)
,

(13)

where C f and Cr are the cornering stiffness of front and rear tires, respectively.
The vertical forces of the wheels shall be used to determine whether the driving force

can be provided based on the maximum fractional forces from the ground. The vertical
forces of the vehicle are defined as
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FzLF = 1
2 ·m·g·

Lr
L f +Lr

− 1
2 ·m·

( .
u− v·r

)
· h

L f +Lr
− 1

2 ·m·
( .
v + u·r

)
· h

Wr
,

FzRF = 1
2 ·m·g·

Lr
L f+Lr −

1
2 ·m·

( .
u− v·r

)
· h

L f +Lr
+ 1

2 ·m·
( .
v + u·r

)
· h

Wr
,

FzLR = 1
2 ·m·g·

L f
L f +Lr

+ 1
2 ·m·

( .
u− v·r

)
· h

L f +Lr
− 1

2 ·m·
( .
v + u·r

)
· h

Wr
,

FzRR = 1
2 ·m·g·

L f
L f +Lr

+ 1
2 ·m·

( .
u− v·r

)
· h

L f +Lr
+ 1

2 ·m·
( .
v + u·r

)
· h

Wr
,

(14)

where FzLF, FzRF, FzLR, FzRR are the vertical forces of the left front, right front, left rear, and
right rear wheels, respectively; h is the height of the center of gravity with respect to the
ground. A single-wheel model is also defined in Figure 3.
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Figure 3. Forces on one tire.

The commonly used Magic Tire formula [15] that takes into account the longitudinal
drive is [28].

Fwxij = FzijDsin(Catan((Bκ − E(Bκ − atan(Bκ))))), (15)

where Fzij is the vertical load, B, C, and D are coefficients to be determined, κ is the slip
rate of the tire, i = L, R represent the tire position of left and right wheels, respectively;
j = F, R represent the tire position of front and rear wheels, respectively. The driving force
works as not only the power source for the motion of the vehicle but also provides the
driving torque. The values of B, C, and D for normal roads are listed in Table 1.

Table 1. Coefficients of different road surfaces.

B C D E

Dry tarmac 10 1.9 1 0.97

Wet tarmac 12 2.3 0.82 1

Ice 4 2 0.1 1

Snow 5 2 0.3 1

3. Fault Tolerance Control

In this research, as shown in Figure 4, the integral system, which combines an BPNN-
based motor fault detector and a SMC-based DYC-based fault-tolerant control, is developed.
The BPNN-based motor fault detector collects and processes current signals to derive fault
parameters X, and analyze the motor fault wheel and fault type Y. According to Y, to select
controllers for different faults, the controller calculates the yaw moment from the desired
side yaw rate r∗ for the 2-DOF and the feedback yaw rate r for the 7-DOF model.
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Since the function is a time-domain signal, it is difficult to analyze, so the function is 

transformed into a frequency-domain signal by means of a fast Fourier transform. 

For a function with period 𝑇, the fast Fourier transform is defined as 

𝑓(𝑡) = ∑ 𝐶𝑛𝑒𝑗(
2𝜋
𝑇

𝑛)

+∞

𝑛=−∞

 (17) 

where the coefficient 𝐶𝑛 is 

𝐶𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑗(

2𝜋

𝑇
𝑛)𝑡𝑑𝑡

𝑇

2

−
𝑇

2

  (18) 

Assuming the reference frequency is 𝑓, the reference period is 𝑇 =
1

𝑓
. 

The fault indicators are the result of Fourier transforms with multiple frequencies of 

0, 𝑓, 2𝑓, 3𝑓. . .. The amplitude of these fault indicators is used to indicate the fault condi-

tions of the motor. In this research, 𝑁  sets of harmonic frequencies are designed and 

tested. 

It is assumed that the motor is categorized into three types of faults: no faults, short 

circuit faults, and open circuit faults.  

              

              

            

            

              

              

              

              

                 

          

          
       

   

             

             

             
 

     

            

        

       

            

     

                   

   

         

    

        

          

            

       

                     

Figure 4. Schematic diagram of the control system.

3.1. BPNN-Based Motor Fault Diagnosis

Classical observer-based fault detectors require parameter identification of the motors.
It is challenging work, especially for the PMSM. As a result, a model-free BPNN-based
motor fault detector is proposed in this research. The flow chart of the proposed BPNN-
based motor fault detector is shown in Figure 5.
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Figure 5. Flow chat of a BPNN-based motor fault detector.

When a motor fails, its current signals are bound to deviate. In the d-q-0 coordinate
system, the current signals are excellent fault indicators.

When no electrical fault occurs in the motor, the training objects are the current of id, iq,
and i0, and at the same time, the angular velocity of the motor rotor ωR needs to be taken
into account. So, a fault identification function whose name is “J function” is defined as

J =
1
2

i2d +
1
2

i2q +
1
2

i20 +
1
2

ω2
r (16)

Since the function is a time-domain signal, it is difficult to analyze, so the function is
transformed into a frequency-domain signal by means of a fast Fourier transform.

For a function with period T, the fast Fourier transform is defined as

f (t) =
+∞

∑
n=−∞

Cnej( 2π
T n) (17)

where the coefficient Cn is

Cn =
1
T

∫ T
2

− T
2

f (t)e−j( 2π
T n)tdt (18)

Assuming the reference frequency is f , the reference period is T = 1
f .

The fault indicators are the result of Fourier transforms with multiple frequencies
of 0, f , 2 f , 3 f . . . . The amplitude of these fault indicators is used to indicate the fault
conditions of the motor. In this research, N sets of harmonic frequencies are designed
and tested.

It is assumed that the motor is categorized into three types of faults: no faults, short
circuit faults, and open circuit faults.
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The flowchart of the fault diagnosis training structure based on the BP neural network
is shown in Figure 6.
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Figure 6. Schematic diagram of a neural network.

In Figure 6, the I1, I2, . . . , IN are the domain of frequencies of 0, 1 f , 2 f , . . . , (N − 1) f .
w11, w12, . . . wL1, wL2, . . . , wLs are random weights of the hidden layers. b11, b12, . . . bL1,
bL2, . . . , bLs are the random biases of the neurons. u11, u12, . . . uL1, uL2, . . . , uLs are the
neurons in hidden layers. The initial weights and biases are randomly defined at the
first step of training. They are updated via the gradient descent method during the
training processes.

It is necessary to normalize the input data to the range of [0, 1]. Maximum and
minimum normalization methods are used for this step. The normalization process is
conducted as follows:

Ii =
Ci −minC

maxC−minC
(19)

where C is the set of the harmonic amplitudes and is defined by

C = [C1, C2, . . . , CN ] (20)

The input layer nodes are amplitudes of different frequencies. The hidden layer may
have more than one layer, and the number of nodes in each layer can be defined as desired.
The vector of inputs is:

I =


I1
I2
. . .
IN

 (21)

A random weight matrix w as well as a bias matrix b are defined. Then, the nodes of
the first hidden layer are defined as shown as

u11
u12
. . .
u1n

 =


w111 w112 . . . w11N
w121 w122 . . . w12N
. . . . . . . . . . . .

w1n1 w1n2 . . . w1nN




I1
I2
. . .
IN

+


b11
b12
. . .
b1n

 (22)

Hidden nodes need to be activated by the activation function; otherwise, the increase
in the number of layers is ineffective. Here, the activation function is chosen as a sigmoid
function, shown as

S(u) =
1

1 + e−u . (23)
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Assuming that the number of hidden nodes is s after L hidden layers, the output
layer satisfies: 

P1
P2
. . .
Pk

 =


wL11 wL12 . . . wL1s
wL21 wL22 . . . wL2s
. . . . . . . . . . . .

wLk1 wLk2 . . . wLks




uL1
uL2
. . .
uLs

+


bL1
bL2
. . .
bLk

 (24)

In this study, the output needs to consider the three types of motor faults. So k = 3,
and the predicted output P̂ is defined as

P̂ =

wL11 wL12 . . . wL1s
wL21 wL22 . . . wL2s
wL31 wL32 . . . wL3s




uL1
uL2
. . .
uLs

+

bL1
bL2
bL3

 (25)

Backpropagation requires adjusting the weight matrix and bias matrix by gradient
descent. Define the error as:

E =
1
2
(
P− P̂

)2 (26)

Fault labels to be utilized in the training process are defined in Table 1. The state of the
motor includes no fault (NF), short circuit fault (SCF), open circuit fault (OCF), and their
combinations. The training labels are listed in Table 2.

Table 2. Definition of fault labels for training.

Fault Types Label P1 Label P2 Label P3

NF P1 = 1 P2 = 0 P3 = 0
SCF P1 = 0 P2 = 1 P3 = 0
OCF P1 = 0 P2 = 0 P3 = 1

For layer i nodes, the gradient of P is obtained by solving the partial derivatives based
on the error. It is expressed by

ŵ(i+1)jk = ŵijk − ηw
∂E

∂ŵijk
,
(

ŵijk = wijk

)
b̂(i+1)jk = b̂ijk − ηb

∂E
∂b̂ijk

,
(

b̂ijk = bijk

)
,

(27)

where ηw and ηb are the learning rates. According to the above method, a multilayer neural
network based fault recognition indicator can be built.

When the system recognizes the information about the motor fault, it defines the
motor torque output coefficient, which means the percentage of the output of the motors.
Considering that the recognized motor parameters cannot be exactly integers, a range of
parameters is defined whose relationship with the motor fault status coefficients is shown
in Table 3.

Table 3. Fault logic table.

Identification Parameters Motor Status Motor Torque Output Coefficient

P = [1, 0, 0] No motor fault kij = 1
P = [0, 0, 1] Open circuit fault kij = 1
P = [0, 1, 0] Short circuit failure kij = 1
Other results Other faults kij = 0

Where ij is the position of the wheels, i = L, R represent “left wheels” and “right wheels”, respectively; j = F, R
represent “front wheels” and “rear wheels”, respectively. For example, kLF represents the coefficient of the motor
at the left front wheel.
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It is quite common that the predicted results do not accurately meet the defined
labels. As a result, a function is defined to find the fault state of the motor. The function is
defined as

P′i =
⌊

Pi
max(P1, P2, P3)

⌋
(28)

where [.] is the function of rounding down.

3.2. Vehicle Fault Tolerant Control

Fault-tolerant control is conducted by a direct yaw moment controller (DYC). In the
DYC, there are two layers; SMC is used at the upper level of the controller to calculate
the yaw moment. The lower-layer controller distributes proper output torque to each
healthy motor to generate the desired yaw moment. Although vehicles with two faulted
motors are also possible in fault tolerance, the probability of simultaneous faults of two
different wheels is low from practical views. In addition, according to the literature [29],
although fault tolerance can be realized for two faulty wheel motors, it is dangerous and
not recommended to attempt fault tolerance even when two wheels fail. Therefore, only
the case of a one-wheel fault is considered in this study. Figure 7a shows the force analysis
of the direct yaw moment control when the left rear motor is faulted, and Figure 7b shows
a flowchart of the DYC.
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Figure 7. DYC schematic diagram (a) Force analysis of DYC; (b) DYC flowchart.

3.2.1. Design of the Upper Level of DYC

When DYC is performed, SMC is used for the calculation of the yaw moment.
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The equation for the yaw rate is defined as:

Izz
.
r = Mz. (29)

Thus, there are
.
r =

1
Izz

Mz, (30)

and
..
r =

1
Izz

.
Mz. (31)

A sliding mold surface is defined as

s = λ0

(
r* − r

)
+ λ1

( .
r* − .

r
)

, (32)

where λ0, λ1 are the weights of variables and λ0, λ1 > 0.
The linear reaching law is chosen for the sliding mode, and it is expressed as

.
s = −k·sgn(s), (33)

where k is a constant and k > 0.
The function sgn(s) is defined as

sgn(s) =


1, i f s > 0
−1, i f s < 0
0, i f s = 0

. (34)

Deriving Equation (34) yields

.
s = λ0

( .
r* − .

r
)
+ λ1

(..
r* − ..

r
)

. (35)

Thus, there is

−k·sgn(s) = λ0

( .
r* − .

r
)
+ λ1

(
..
r* − 1

Izz

.
Mz

)
. (36)

Simplifying Equation (37) yields

.
Mzc =

k
λ1

Izz sgn(s) +
λ0

λ1
Izz

( .
r* − .

r
)
+ Izz

..
r*. (37)

Integrating Equation (38) yields

Mzc =
∫ t

0

(
k

λ1
Izz sgn(s) +

λ0

λ1
Izz

( .
r* − .

r
)
+ Izz

..
r*
)

dt. (38)

A stability analysis must be conducted to find the range of the gains. The Lyapunov
second law is chosen to complete the analysis.

A function V is defined as
V =

1
2

s2. (39)

If the following two conditions are all met, the system is proven to be stable.
Condition 1: It is always true that V ≥ 0 and when and only when s = 0, V = 0.
Condition 2: It is always true that

.
V ≤ 0 and when and only when s = 0,

.
V = 0.

Deriving Equation (55) yields

.
V = s

.
s =

(
λ0

(
r* − r

)
+ λ1

( .
r* − .

r
))

(−k·sgn(s)). (40)
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For condition 1, it is obvious that V ≥ 0 is always true. And only when s = 0, v = 0.
So, condition 1 is met.

For condition 2, when s > 0, sgn(s) = 1, and λ0
(
r* − r

)
+ λ1

( .
r* − .

r
)

> 0, thus
there is .

V = s
.
s = −k(λ 0

(
r* − r

)
+ λ1

( .
r* − .

r
))

< 0. (41)

when s < 0, sgn(s) = −1, and λ0
(
r* − r

)
+ λ1

( .
r* − .

r
)
< 0, thus there is

.
V = s

.
s = k

(
λ0

(
r* − r

)
+ λ1

( .
r* − .

r
))

< 0. (42)

Therefore, from Equations (55)–(58), there must be
.

V < 0. It is also apparent that when
and only when s = 0,

.
V = 0. So, Condition 2 is always met. As a result, the stability of the

controller is proven.

3.2.2. Design of the Lower Layer of DYC

The yaw moment calculated by the upper layer is generated by the wheel drive forces.
And it is defined as

Mzc =
1
2 Wr·kLFFwxLFrcos dLF +

1
2 Wr·kLRFwxLRrcos dRF

− 1
2 Wr·kRFFwxRFr − 1

2 Wr·kRRFwxRRr,
(43)

where FwxLFr, FwxLRr,FwxRFr and FwxRRr are the drive forces from the motors of the left
front wheel, right front wheel, left rear wheel, and right rear wheel, respectively. Mzc is the
desired yaw moment calculated by the DYC. kLF, kRF, kLR and kRR are the coefficients of
the motors which represent the fault conditions of the motors as defined in Table 2.

The driving forces generated by the body need to be 0 to maintain the longitudinal
speed of the vehicle and meet the requirements of

kLFFwxLFcosdLF + kRFFwxRFcosdRF + kRRFwxLR + kLRFwxRR = 0. (44)

Front and rear drive forces are distributed according to the longitudinal distances
between the center of gravity and the front and rear axles, which are shown as

kLF(FwxLF) + kRF(FwxRF)

kLR(FwxLR) + kRR(FwxRR)
=

Lr

L f
(45)

The matrix of the extra forces is shown as

 1
2 Wr·kLFcos dLF − 1

2 Wr·kRFcos dRF
1
2 Wr·kLR

1
2 Wr·kRR

kLF kRF kLR kRR
kLFL f kRFL f −kLRLr −kRRLr




FwxLF
FwxRF
FwxLR
FwxRR

 =

Mzc
0
0

 (46)

Pseudo-reversal is used to obtain extra drive to the wheels.
∆FeLF
∆FeRF
∆FeLR
∆FeRR

 =

 1
2 Wr·kLFcos dLF − 1

2 Wr·kRFcos dRF
1
2 Wr·kLR

1
2 Wr·kRR

kLF kRF kLR kRR
kLFL f kRFL f −kLRLr −kRRLr

+Mzc
0
0

 (47)

4. Simulation Experiments

The effectiveness of the proposed system is verified via simulation experiments based
on MATLAB/Simulink (version 2022a) due to the high cost and safety risks of road tests.
The vehicle models are constructed using the methods proposed in this paper. The parame-
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ters of the vehicle are derived from Carsim 8 (Version 8.02). The healthy and faulted motors
are constructed via research on PMSMs [30,31].

4.1. Modeling of Three-Phase PMSMs

It is quite dangerous and costly to collect data from realistic-fault PMSMs. And the
parameter identification of the PMSMs is also challenging. In this research, models based
on MATLAB/Simulink (version 2022a) are constructed for data collection and providing
torques to the vehicles.

4.1.1. Model of a Healthy PMSM

The typical PMSM is represented by an equivalent circuit as shown in Figure 8.
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The voltage equation is defined as:Va
Vb
Vc

 =

Rs 0 0
0 Rs 0
0 0 Rs

ia
ib
ic

+

 Ls Ms Ms
Ms Ls Ms
Ms Ms Ls

 d
dt

ia
ib
ic

+

eas
ebs
ecs

, (48)

where eas, ebs and ecs are the back-electromagnetic forces (back-emf) of three phases, which
are defined as eas

ebs
ecs

 =
d
dt

 φmcos(θe)

φmcos
(
θe − 2

3 π
)

φmcos
(
θe +

2
3 π
)
. (49)

where θe is the electrical position of the rotor. It has a relationship with the mechanical
position of the rotor and is defined as

θe = Nθr,

where N is the number of pole pairs of the motor. θr is the mechanical position of the rotor.
φm is the flux linkage of the permanent magnet of the motor.

The output torque of the motor is defined by

Te =
1
ωr

(easias + ebsibs + ecsics). (50)
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where ωr is the mechanical rotating speed of the motor rotor. It has the relationship between
the θr and is defined as

dθr

dt
= ωr

Park’s transform is often used for motor control. Park’s transform is a method to
change the three-phase coordinate of the a-b-c coordinate into another coordinate of d-q-0
for easy control. Park’s transform is described by the transformation matrix P which is
defined as

P =
2
3

 cos(θe) cos
(
θe − 2

3 π
)

cos
(
θe +

2
3 π
)

−sin(θe) −sin
(
θe − 2

3 π
)
−sin

(
θe +

2
3 π
)

1
2

1
2

1
2

. (51)

For phase currents and voltages, Park’s transform is expressed byid
iq
i0

 = P

ia
ib
ic

,ud
uq
u0

 = P

ua
ub
uc

.

(52)

In d-q-0 coordinates, the output torque is expressed as

Te =
3
2

Niqφm. (53)

The desired output torque is represented by: T∗e . So, the desired current i∗q in q-axis is
defined as

i*q =
T*

e
2
3 Nφm

. (54)

The controller for PMSMs is shown in Figure 9.
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Figure 9. Control diagram of PMSMs.

In Figure 9, ud, uq represent the voltages transformed by input phase voltages
ua, ub, uc. The controller controls the currents to follow i∗d = 0 and i∗q . proportional-
integrational (PI) is used for this controller. The transformed voltages ud, uq are
expressed as

ud = Kpud(0− id) + Kiud

(∫ t
0 (0− id)dt

)
,

uq = Kpud

(
i*q − iq

)
+ Kiud

(∫ t
0

(
i*q − iq

)
dt
)

,
(55)

where Kpud, Kiud are the proportional and integral gains of the PI controller, respectively.
The voltages on the d-q axis cannot be expressed directly, so the inverse of Park’s

matrix is applied to the controller. The input phase voltages of windings (phase A, phase B,
and phase C) are defined by
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ua
ub
uc

 = P−1

ud
uq
0

. (56)

4.1.2. Modeling a Motor with a Short-Circuit Fault

For a short-circuit fault, the following assumptions are made: (a) The faulted phase is
a phase A fault. (b) k percent of the proportional coil is circuited, and the remaining (1 − k)
percent turns of the coils work normally. Therefore, the short-circuit is defined as phase f.
The equivalent circuit model for a turn-to-turn short circuit fault is shown in Figure 10.
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ia
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ic
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(57)

where Rs is the resistance of the stator winding of the motor; Ls is the inductance of the
stator winding of the motor; Ms is the mutual inductance of the stator winding; Ua, Ub
and Uc are the input voltage of the three-phase; ia, ib, ic and i f are the stator currents of
the three phases and the equivalent short-circuited phase, respectively; k is the percentage
of short-circuited winding turns.

Induced electromotive force eas, ebs, ecs and e f s are defined by the flux linkage equation
and they are expressed as


eas
e f s
ebs
ecs

 =
d
dt


(1− k)φmcos(ωet)

kφmcos(ωet)
φmcos

(
ωet− 2

3 π
)

φmcos
(
ωet + 2

3 π
)
, (58)

The torque equation of the motor with a short-circuit fault is expressed as

Te =
1

ωr

(
easia + e f si f + ebsib + ecsic

)
(59)
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4.1.3. Model of Motor with Open-Circuit Fault

Phase A is assumed to be an open-circuit phase, which means phase A is unable to
form a closed loop. The equivalent circuit is shown in Figure 11:
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The equivalent torque equation is

Te =
1

ωr
(ebsib + ecsic) (62)

4.1.4. Motor Demagnetization Fault

The most obvious characteristic of demagnetization faults is the loss of motor torque,
which is difficult to model accurately due to the complexity of the demagnetization fault
mechanism [9]. Hence, a demagnetization fault is considered a motor shutdown.

4.2. Setting up a Simulation Environment

In order to investigate the effectiveness of the proposed system with the BPNN-based
fault detector and the SMC-based DYC-based fault tolerant controller when a single motor
fails in a distributed electric vehicle on a wet and slippery road surface, this study selects
two typical conditions when the vehicle is driven on highways. The first one is the straight-
lane condition, which shows the stability of a vehicle when one motor fails at high speed.
The second one is the single-lane change condition at a relatively low speed, which shows
the safety of the vehicle for an emergency stop.

All faults are assumed to occur at the left rear wheel. The three main types of faults
are turn-to-turn short circuits, open-circuit faults, and demagnetization faults, which are
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represented by “shutdown”. Motor faults are assumed to occur at t = 5 s. The BPNN-
based fault detector is trained offline. The motor parameters used in this study are shown
in Table 4. All the parameters of the motor are collected from a real PMSM.

Table 4. Motor parameters.

Parameter Description Unit Value

Ls Phase-winding inductance H 0.05
Ms Phase mutual induction H −0.005
Rs Phase winding resistance Ω 3
Llm Permanent magnet flux linkage Wb 1.25
P Pole pairs / 4
k Percentage of short-circuited winding turns / 35

The simulation results of the 2-DOF vehicle model are used as references. There are
some definitions of simulated vehicles, as listed.

1. “2-DOF” represents the reference 2-DOF model.
2. “7-DOF” represents the vehicle without any DYC.
3. “Open circuit” represents the vehicle with a faulted motor in an open-circuit fault

without any DYC.
4. “Short circuit” represents the vehicle with a faulted motor of short-circuit fault without

any DYC.
5. “Shut down” represents the vehicle with a faulted motor and other serious faults

without any DYC.
6. “Open circuit with SMC” represents the vehicle with a faulted motor in an open-circuit

fault with SMC-based DYC.
7. “Short circuit with SMC” represents the vehicle with a faulted motor with a short-

circuit fault with SMC-based DYC.
8. “Shut down with SMC” represents the vehicle with a faulted motor of another fault

with SMC-based DYC.

Appropriate noise signals—about 5% of the inputs—are added to the steering angle to
better represent the driver’s driving situation in reality.

Vehicle parameters are listed in Table 5. All the parameters of the vehicle are collected
from a real passenger car.

Table 5. Vehicle parameters.

Parameter Description Unit Value

m Vehicle mass kg 1250
L f Distance from center of gravity (CG) to front axle m 1.4
Lr Distance from CG to rear axle m 1.6
Wr Wheelbase m 1.8
h Height of the center of gravity of the vehicle m 1.5

Izz Yaw moment of inertia kg/m2 2800
C f Front wheel cornering stiffness N/rad 65,000
Cr Rear wheel cornering stiffness N/rad 62,500

In order to simulate a slippery road surface, an unaveraged road surface friction
coefficient is designed [7]. When there is water or ice in the center of the road, the friction
coefficient of the road is defined in Figure 12.
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Figure 12. Friction coefficient of the road for simulation tests.

4.3. Motor Fault Diagnosis

The motor fault detector is trained offline. The base frequency of the manually defined
function J signal is 0.067 Hz, and the maximum examined frequency is 500 Hz.

The power spectral density in dB is calculated as:

P̂x( f ) = 20 log10
1
N

∣∣∣∣∣N−1

∑
n=0

x(n)e−j2π f n

∣∣∣∣∣
2

. (63)

where N is the length of data to be analyzed; f is the base frequency.
Here is an example of motors with and without faults. For the motors without any

fault, the angular speed of the motor was assumed to be constant at 20 rad/s, 30 rad/s, and
40 rad/s, respectively, with a rotational moment of inertia assumed to be 0.075 kgm2 and a
frictional drag moment coefficient of 0.003 Nm·s. When the healthy motors operate, the
time domain response of the J function and the power spectral density response are shown
in Figure 13a,b, respectively.
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Figure 13. J functions for normal motors. (a) time domain response; (b) power spectral density response.

From Figure 13, the power spectral densities of healthy motors have the same trend
and different amplitudes for different speeds.

The time-domain and power spectral density response of the J-function for the occur-
rence of short-circuit faults and phase-loss faults is shown in Figure 14a,b.
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Figure 14. J functions for normal, open circuit, and short circuit faults. (a) time domain response;
(b) power spectral density response.

When the motor is running at a certain speed under fault-free conditions, the J value
tends to be stable, and the faster the motor rotates, the higher the power spectral density is,
which is shown in Figure 14b. However, when electric faults occur, the J-value will oscillate,
and the power spectral density differs from that of healthy motors. Therefore, the power
spectral density can be used to determine the state of the fault in motors.

The BPNN is trained based on the simulation of different faulted motors at different
speeds. The angular speed is selected as the arbitrary angular velocity from 0 to 130 rad/s.
Phase A is assumed to be the fault phase. For short-circuit faults, 35% of the total number
of turns are assumed to be short-circuited at the time of the beginning of the fault. In order
to better simulate the actual situation, the currents of id, iq, and i0 signal are combined with
random white noise. The amplitude of the white noise is 2% of the original signals. The
data for this study contains 300 sets, of which 240 are training sets, 45 are validation sets,
and 15 are test sets. Meanwhile, the number of fault indication frequency features used for
training is 13 (from 0 Hz to 500 Hz, every 38 Hz per feature). After many trials, the number
of layers of the neural network is set to 20, and the learning rate is set to 0.001. The hidden
neuron nodes are defined as 10 neurons per layer in each hidden layer, and the number of
input nodes is set to 13 based on the above frequency analysis.

The mean square errors for training sets, verification sets, and test tests are shown in
Figure 15.
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It can be seen that after 10 iterations, the error of the training set reaches the order of
10−30, while the error of the test set and the validation set is also at the level of 10−5, so the
training results can be considered valid.

The trained model is input into the whole vehicle model, assuming the vehicle travels
in a straight lane at different speeds. A total of 240 sets of tests are further conducted
according to different types of faults occurring in different motor positions, and the test
results are shown in Figure 16.
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Figure 16. The confusion matrix of results for BPNN. (a) Confusion matrix of results; (b) Confusion
matrix of results in percentage.

In Figure 16a,b, the accuracies of the fault detector in the 240 sets of tests are 97.5% for
detecting no fault, 98.75% for detecting open circuit faults, and 95.00% for detecting short
circuit faults. The fault detector is accurate and can effectively indicate the type of fault in
the motor under vehicle conditions.

4.4. Straight-Lane Condition

In the 120km/h straight-lane condition, when the left rear motor fails, the phase
currents of the motors with short-circuit (SC) faults and open-circuit (OC) faults are shown
in Figure 17a,b. Figure 17c–f shows the results of the longitudinal speed, u, lateral speed, v,
yaw rate, r and the trajectory of the vehicle, respectively.
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Figure 17. Simulation results for straight-line driving with a faulted LR motor. (a) Phase currents
of the motor with SC faults; (b) Phase currents of the motor with OC faults; (c) Longitudinal speed;
(d) Lateral speed; (e) Yaw rate; (f) Trajectory.

The average trajectory offset (ATO) and improvement rate (IR ) are also calculated to
show the detailed results of the simulation, which are defined by

ATO =

n
∑

j=1

√
(Y0i−Yi)

2

n ,

IR = ATOFaulted−ATO
ATOFaulted

,

(64)

where ATO represents the average trajectory offset, Yi represents experimental group Y
position, Y0i represents control group Y position (2-DOF), n represents total amount of data,
IR represents experimental group improvement rate, and ATOFaulted represents faulted
experimental group average trajectory offset.

In the straight-lane condition, for the trajectories of the vehicles, only the Y direction is
considered.

The ATOs and IRs are listed in Table 6.
The simulation results show that the proposed fault-tolerant controller can effectively

control the vehicle with faults and maintain stability on a slippery road. As shown in
Figure 17, the trajectories of vehicles with the proposed system are closer to the desired
trajectories (trajectories of the 2-DOF model) than those of the vehicles without the proposed
system. The system performs best in the event of a short-circuit fault. The improvements of
the vehicles with the proposed fault-tolerant controllers compared with the vehicles without
them are 77.725%, 73.272%, and 82.201%, respectively, as listed in Table 6. The simulation
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results show that in straight-lane conditions, the proposed fault tolerant controller is
effective under all conditions of motor faults.

Table 6. The average trajectory offset and improvement rate for straight-line driving.

Groups ATO IR

Open circuit 3.156 \
Open circuit with SMC 0.703 77.725%

Shut down 4.643 \
Shut down with SMC 1.241 73.272%

Short circuit 1.472 \
Short circuit with SMC 0.262 82.201%

4.5. Single Lane Change Condition (SLC)

For the single-lane change (SLC) condition, the longitudinal speed is 60 km/h, and
the steering angle of the front wheel is shown in Figure 18a. Faults occur at the left rear
motor at t = 5 s. Figure 18b,c show the phase currents of the motors with short-circuit (SC)
faults and open-circuit (OC) faults. Figure 18d–g shows the longitudinal speed u, lateral
speed v, yaw rate r and the trajectory of the vehicle, respectively.

The average trajectory offset (ATO) and improvement rate (IR) are also calculated to
show the detailed results of the simulation, which are defined as

ATO =

n
∑

j=1

√
(X0i−Xi)

2+(Y0i−Yi)
2

n
IR = ATOFaulted−ATO

ATOFaulted

(65)

where, ATO represents experimental group average trajectory offset, Xi represents experi-
mental group X position, X0i represents control group X position (2-DOF), Yi represents
experimental group Y position, Y0i represents control group Y position (2-DOF), n rep-
resents total amount of data, IR represents experimental group improvement rate, and
ATOFaulted represents failed experimental group average trajectory offset.

The combined effect of the X and Y directions is considered.
The ATOs and IRs are listed in Table 7.

Table 7. The average trajectory offset and improvement rate for SLC.

Groups ATO IR

Open circuit 28.837 \
Open circuit with SMC 16.951 41.218%

Shut down 0.934 \
Shut down with SMC 0.587 37.152%

Short circuit 32.362 \
Short circuit with SMC 17.908 44.663%

The simulation results show that the proposed fault-tolerant controller can effectively
control the vehicle with faults and help steer on a slippery road. As shown in Figure 18,
the trajectories of vehicles with the proposed system are closer to the desired trajectories
(trajectories of the 2-DOF model) than those of the vehicles without the proposed system.
The system performs best in the event of a short-circuit fault. The improvements of the
vehicles with the proposed fault-tolerant controllers compared with the vehicles without
them are 41.218%, 37.152%, and 44.663%, respectively, as listed in Table 7. The simulation
results show that in single-lane change conditions, the proposed fault tolerant controller is
effective under all conditions of motor faults.
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Figure 18. Simulation results for SLC with a faulted LR motor. (a) Steering angles of the front
wheel; (b) Phase currents of the motor with SC fault; (c) Phase currents of the motor with OC fault;
(d) Longitudinal speed; (e) Lateral speed; (f) Yaw rate; (g) Trajectory.
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5. Conclusions

This paper proposes a novel fault-tolerant control system for distributed electric ve-
hicles. It comprises a BPNN-based motor fault detector and an SMC-based, DYC-based
fault-tolerant controller. The proposed system demonstrates its remarkable efficacy, particu-
larly in controlling vehicles on slippery road surfaces. Since it works perfectly on simulated
slippery road conditions, it is believed that the proposed system can also enhance vehicle
safety on real roads, even when the road condition is not good. Specifically, the BPNN-
based motor fault detector is precise and reliable in diagnosing fault types and finding
the position of faulted motors. Under straight-lane and single-lane change conditions,
the DYC-based fault-tolerant controller exhibits notable effectiveness in tolerating motor
short-circuit, open-circuit, and demagnetization faults. Simulation results indicate that the
vehicles with the proposed system outperform the ones without the proposed system in all
faulted motor conditions.

This research not only serves as a comprehensive guide for the practical application of
fault detectors and fault-tolerant controllers in distributed electric vehicles but also carries
substantial implications for enhancing vehicle safety. Moreover, it contributes significantly
to the ongoing development of the electric vehicle industry.

Nevertheless, there are certain limitations to the present study. Firstly, other scenarios
and a more extensive range of general working conditions are necessary to enhance the
applicability of the system. Secondly, BPNN-based fault detectors have some disadvantages:
(a) BPNN requires a large amount of data to achieve high accuracy. It takes more time
and requires more samples to obtain a large amount of data on motor faults, which is a
challenging task; (b) the computational speed decreases significantly with large data; and
(c) the accuracy of BPNN decreases if the dimension of the variables is very large. Lastly,
this research uses a simple and constrained friction model between wet and slippery road
surfaces and tires, which is common in normal conditions. Some tasks will be required
in the future. First, more driving conditions should be tested. Secondly, more data from
real motors should be collected and compared with the simulated motors to improve the
BPNN-based fault detector. Thirdly, methods to improve the fault detector should be
further improved, such as using emerging machine learning approaches, dealing with
input data with other signal-proceeding methods, etc. Finally, more road conditions and
tire models should also be considered.

Author Contributions: Conceptualization, T.S.; Methodology, T.S. and X.W.; Software, T.S. and X.W.;
Investigation, T.S.; Data curation, X.W.; Writing—original draft, T.S.; Writing—review & editing,
P.-K.W. and X.W.; Supervision, P.-K.W.; Project administration, P.-K.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by the research grant of the University of Macau (No. MYRG-
GRG2023-00235-FST-UMDF) and Jiangsu Province Science and Technology Special Fund (Innovative
Support Project for International Science and Technology Cooperation/ Hong Kong, Macao and
Taiwan Science and Technology Cooperation, No. BZ2022055).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors thank Hardey Byro for his great support in the writing of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gelmanova, Z.S.; Zhabalova, G.G.; Sivyakova, G.A.; Lelikova, O.N.; Onishchenko, O.N.; Smailova, A.A.; Kamarova, S.N. Electric

cars. Advantages and disadvantages. J. Phys. Conf. Ser. 2018, 1015, 052029. [CrossRef]
2. Yao, S.; Bian, Z.; Hasan, M.K.; Ding, R.; Li, S.; Wang, Y.; Song, S. A bibliometric review on electric vehicle (EV) energy efficiency

and emission effect research. Environ. Sci. Pollut. Res. 2023, 30, 95172–95196. [CrossRef] [PubMed]
3. Mariasiu, F.; Kelemen, E.A. Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle. Batteries

2023, 9, 419. [CrossRef]
4. Husain, I.; Ozpineci, B.; Islam, M.S.; Gurpinar, E.; Su, G.J.; Yu, W.; Chowdhury, S.; Xue, L.; Rahman, D.; Sahu, R. Electric Drive

Technology Trends, Challenges, and Opportunities for Future Electric Vehicles. Proc. IEEE 2021, 109, 1039–1059. [CrossRef]

https://doi.org/10.1088/1742-6596/1015/5/052029
https://doi.org/10.1007/s11356-023-29143-y
https://www.ncbi.nlm.nih.gov/pubmed/37596481
https://doi.org/10.3390/batteries9080419
https://doi.org/10.1109/JPROC.2020.3046112


Vehicles 2024, 6 118

5. Hua, M.; Chen, G.; Zhang, B.; Huang, Y. A hierarchical energy efficiency optimization control strategy for distributed drive
electric vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 605–621. [CrossRef]

6. Liu, Z.; Han, Z.; Zhao, Z.; He, W. Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures.
Sci. China Inf. Sci. 2021, 64, 152208. [CrossRef]

7. Salimi, S.; Nassiri, S.; Bayat, A.; Halliday, D. Lateral coefficient of friction for characterizing winter road conditions. Can. J. Civ.
Eng. 2016, 43, 73–83. [CrossRef]

8. Liu, L.; Shi, K.; Yuan, X.; Li, Q. Multiple model-based fault-tolerant control system for distributed drive electric vehicle. J. Braz.
Soc. Mech. Sci. Eng. 2019, 41, 531. [CrossRef]

9. Zheng, J.; Wang, Z.; Wang, D.; Li, Y.; Li, M. Review of fault diagnosis of PMSM drive system in electric vehicles. In Proceed-
ings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; IEEE: Washington, DC, USA, 2017;
pp. 7426–7432. Available online: http://ieeexplore.ieee.org/document/8028529/ (accessed on 23 September 2023).

10. Choi, C.; Lee, W. Design and evaluation of voltage measurement-based sectoral diagnosis method for inverter open switch faults
of permanent magnet synchronous motor drives. IET Electr. Power Appl. 2012, 6, 526. [CrossRef]

11. Zheng, P.; Zhao, J.; Liu, R.; Tong, C.; Wu, Q. Magnetic Characteristics Investigation of an Axial-Axial Flux Compound-Structure
PMSM Used for HEVs. IEEE Trans. Magn. 2010, 46, 2191–2194. [CrossRef]

12. Ma, L.; Cheng, C.; Guo, J.; Shi, B.; Ding, S.; Mei, K. Direct yaw-moment control of electric vehicles based on adaptive sliding
mode. Math. Biosci. Eng. 2023, 20, 13334–13355. [CrossRef] [PubMed]

13. Rosero, J.; Romeral, L.; Ortega, J.A.; Urresty, J.C. Demagnetization fault detection by means of Hilbert Huang transform of the
stator current decomposition in PMSM. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics,
Cambridge, UK, 30 June–2 July 2008; IEEE: Washington, DC, USA, 2008; pp. 172–177. Available online: http://ieeexplore.ieee.
org/document/4677217/ (accessed on 23 September 2023).

14. Zhang, L.; Wang, Z.; Ding, X.; Li, S.; Wang, Z. Fault-Tolerant Control for Intelligent Electrified Vehicles Against Front Wheel
Steering Angle Sensor Faults During Trajectory Tracking. IEEE Access 2021, 9, 65174–65186. [CrossRef]

15. Bonci, A.; Indri, M.; Kermenov, R.; Longhi, S.; Nabissi, G. Comparison of PMSMs Motor Current Signature Analysis and Motor
Torque Analysis Under Transient Conditions. In Proceedings of the 2021 IEEE 19th International Conference on Industrial
Informatics (INDIN), Palma de Mallorca, Spain, 21–23 July 2021; pp. 1–6.

16. Kao, I.-H.; Wang, W.-J.; Lai, Y.-H.; Perng, J.-W. Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on
Learning. IEEE Trans. Instrum. Meas. 2019, 68, 310–324. [CrossRef]

17. Wang, J.; Fu, P.; Zhang, L.; Gao, R.X.; Zhao, R. Multilevel Information Fusion for Induction Motor Fault Diagnosis. IEEE/ASME
Trans. Mechatron. 2019, 24, 2139–2150. [CrossRef]

18. Guo, G.; Li, P.; Hao, L.-Y. A New Quadratic Spacing Policy and Adaptive Fault-Tolerant Platooning With Actuator Saturation.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 1200–1212. [CrossRef]

19. Deng, H.; Zhao, Y.; Nguyen, A.-T.; Huang, C. Fault-Tolerant Predictive Control with Deep-Reinforcement-Learning-Based Torque
Distribution for Four In-Wheel Motor Drive Electric Vehicles. IEEE/ASME Trans. Mechatron. 2023, 28, 668–680. [CrossRef]

20. Ma, L.; Mei, K.; Ding, S. Direct yaw-moment control design for in-wheel electric vehicle with composite terminal sliding mode.
Nonlinear Dyn. 2023, 111, 17141–17156. [CrossRef]

21. Raksincharoensak, P.; Nagai, M.; Shino, M. Lane keeping control strategy with direct yaw moment control input by considering
dynamics of electric vehicle. Veh. Syst. Dyn. 2006, 44, 192–201. [CrossRef]

22. Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust
MPC With the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066.
[CrossRef]

23. Jin, X.; Yu, Z.; Yin, G.; Wang, J. Improving Vehicle Handling Stability Based on Combined AFS and DYC System via Robust
Takagi-Sugeno Fuzzy Control. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2696–2707. [CrossRef]

24. Yue, Y.; Zhang, R.; Wu, B.; Shao, W. Direct torque control method of PMSM based on fractional order PID controller. In Proceedings
of the 2017 6th Data Driven Control and Learning Systems (DDCLS), Chongqing, China, 26–27 May 2017; pp. 411–415.

25. Komurcugil, H.; Biricik, S.; Bayhan, S.; Zhang, Z. Sliding Mode Control: Overview of Its Applications in Power Converters. IEEE
Ind. Electron. Mag. 2021, 15, 40–49. [CrossRef]

26. Li, X.; Xu, N.; Guo, K.; Huang, Y. An adaptive SMC controller for EVs with four IWMs handling and stability enhancement based
on a stability index. Veh. Syst. Dyn. 2021, 59, 1509–1532. [CrossRef]

27. Venkatesan, M.; Ravi, V.R. Sliding Mode Observer based Sliding Mode Controller for Interacting Nonlinear System. In Proceedings
of the Second International Conference on Current Trends in Engineering and Technology (ICCTET 2014), Coimbatore, India, 8
July 2014; pp. 1–6.

28. Besselink, I.J.M.; Schmeitz, A.J.C.; Pacejka, H.B. An improved Magic Formula/Swift tyre model that can handle inflation pressure
changes. Veh. Syst. Dyn. 2010, 48, 337–352. [CrossRef]

29. Qiu, H.; Qi, Z. A New Motors Fault Tolerance Control Strategy to 4WID Electric Vehicle. In Proceedings of the 2015 6th
International Conference on Automation, Robotics and Applications (ICARA), Queenstown, New Zealand, 17–19 February 2015;
pp. 17–21.

https://doi.org/10.1177/0954407017751788
https://doi.org/10.1007/s11432-020-3109-x
https://doi.org/10.1139/cjce-2015-0222
https://doi.org/10.1007/s40430-019-2047-6
http://ieeexplore.ieee.org/document/8028529/
https://doi.org/10.1049/iet-epa.2011.0315
https://doi.org/10.1109/TMAG.2010.2042042
https://doi.org/10.3934/mbe.2023594
https://www.ncbi.nlm.nih.gov/pubmed/37501490
http://ieeexplore.ieee.org/document/4677217/
http://ieeexplore.ieee.org/document/4677217/
https://doi.org/10.1109/ACCESS.2021.3075325
https://doi.org/10.1109/TIM.2018.2847800
https://doi.org/10.1109/TMECH.2019.2928967
https://doi.org/10.1109/TITS.2020.3023453
https://doi.org/10.1109/TMECH.2022.3233705
https://doi.org/10.1007/s11071-023-08760-9
https://doi.org/10.1080/00423110600870006
https://doi.org/10.1109/TVT.2020.2981619
https://doi.org/10.1109/TITS.2017.2754140
https://doi.org/10.1109/MIE.2020.2986165
https://doi.org/10.1080/00423114.2020.1767795
https://doi.org/10.1080/00423111003748088


Vehicles 2024, 6 119

30. Mellor, P.H.; Wrobel, R.; Holliday, D. A computationally efficient iron loss model for brushless AC machines that caters for rated
flux and field weakened operation. In Proceedings of the 2009 IEEE International Electric Machines & Drives Conference, VOLS
1-3, Miami, FL, USA, 3–6 May 2009; pp. 490–494.

31. Anderson, P.M. Analysis of Faulted Power Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introductory 
	Fault Modeling and Simulation 
	Modeling Distributed Drive Vehicles 
	2-DOF Model 
	7-DOF Model 


	Fault Tolerance Control 
	BPNN-Based Motor Fault Diagnosis 
	Vehicle Fault Tolerant Control 
	Design of the Upper Level of DYC 
	Design of the Lower Layer of DYC 


	Simulation Experiments 
	Modeling of Three-Phase PMSMs 
	Model of a Healthy PMSM 
	Modeling a Motor with a Short-Circuit Fault 
	Model of Motor with Open-Circuit Fault 
	Motor Demagnetization Fault 

	Setting up a Simulation Environment 
	Motor Fault Diagnosis 
	Straight-Lane Condition 
	Single Lane Change Condition (SLC) 

	Conclusions 
	References

