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Abstract: Tetrabromobisphenol A (TBBPA) is a fire-retardant containing bromine, produced in large
quantities worldwide and extensively used in several industrial products. This compound was
identified as a potential contaminant of the environment, causing toxicity to organisms. However,
its toxicity remains poorly understood in marine bivalves. The first objective of this work was to
evaluate the impact of TBBPA on mussels (Mytilus galloprovincialis) exposed for 28 days to various
concentrations of TBBPA (0, 1, 10, and 100 µg·L−1), by assessing stress biomarkers’ responses (Glu-
tathione S-transferase, superoxide dismutase, catalase, lipid peroxidation, total antioxidant capacity,
total ubiquitin, caspase-3 and acetylcholinesterase). The results showed that lower concentrations
(1 and 10 µg·L−1) were efficiently detoxified, as suggested by GST activities, which were supported
by the responses of the other biomarkers. The most pronounced effects were observed in animals ex-
posed to the highest concentration of TBBPA (100 µg·L−1), suggesting oxidative stress. Additionally,
significant strong correlations were found between total antioxidant capacity and some biomarkers
(superoxide dismutase and lipid peroxidation), showing that processes involved in oxidative stress
fighting are working to avoid cell injury. In brief, mussels’ defense mechanisms were capable of
dealing with exposure to the lower concentrations tested. Despite this, the risk of consuming shellfish
or other fishery products contaminated with TBBPA should be a cause for concern.
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1. Introduction

Discharging various chemical substances into the environment has increased the num-
ber of emerging contaminants (e.g., endocrine disruptors, pharmaceuticals, brominated
and perfluorinated compounds, and personal care products), which has raised significant
concern worldwide [1,2]. Flame retardants (FRs) constitute a group of synthetic compounds
commonly incorporated into a wide range of industrial and household items, including
plastics, polymers, textiles, and electronic equipment, to reinforce their resistance to com-
bustion. They can be categorized into organic (halogenated), inorganic, organophosphorus,
and nitrogen-based compounds [3]. Brominated FRs (BFRs) are the most commercialized
due to their low cost and high efficiency, comprising mainly hexabromocyclododecane
(HBCDs), polybrominated diphenyl ethers (PBDEs), brominated phenols (BrPhs) and tetra-
bromobisphenol A (TBBPA) [3,4]. TBBPA emerges as one of the most widely used FRs
globally, exhibiting substantial production volumes and widespread use [5,6]. Thus, water
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samples have shown the levels of TBBPA, from various regions of the world, ranging from
non-detected (n.d.) to 4.87 µg·L−1 of magnitude [7,8] and in sediments between n.d. and
500 of µg·kg−1 [8,9].

Despite the absence of current limitations on the manufacture and use of TBBPA, its
inclusion by the Convention for the Protection of the Marine Environment of the Northeast
Atlantic (OSPAR) on the substances requiring priority action [10] implies urgent assessment
and intervention. Thus, releasing these compounds into aquatic ecosystems represents an
increased risk to aquatic biota due to their persistent nature, promoting an accumulation in
sediments and marine organisms [11,12]. Furthermore, TBBPA’s high lipophilicity and heat
stability lead to bioconcentration and biomagnification across trophic levels [4,13]. More-
over, the consumption of contaminated seafood could endanger human health. However,
studies to detect their presence in food are still insufficient [14], and frequent monitoring
should be carried out.

Additionally, identifying TBBPA as a potential endocrine disruptor [15], and its as-
sociated neurotoxic, immunotoxic, nephrotoxic, and hepatotoxic effects, highlights the
urgency of understanding its toxicity [16–18]. Furthermore, it is recognized by the EU
as carcinogenic (https://echa.europa.eu/, accessed on 6 February 2024). Although the
debate surrounding the toxicity of TBBPA persists [19], evidence indicates its harmful
impact on several aquatic organisms, including algae, bivalves, crustaceans, and fish [20],
implicating fisheries as potential sources of human exposure. Consuming food contami-
nated with TBBPA can lead to diverse health problems, including its capacity to disrupt the
endocrine system [1,21].

Regarding LC50 values found for TBBPA, Jiang et al. [22] found 7.4 mg·L−1 (96h-LC50)
in juvenile clams (Ruditapes philippinarum). However, we found no LC50 information for
mussels. In a review by Yang et al. [8], it was reported that the 96 h LC50 for freshwater
fishes (Pimephales promelas and Danio rerio) ranged from 0.006 to 3.0 mg·L−1. But, we should
be cautious about some of these results, since in some cases the experiment conditions were
not the same.

Mussels, such as M. galloprovincialis, are widely distributed in Europe from the Mediter-
ranean to the U.K. and Norway coasts [23]. Thus, mussels are often utilized in toxicity
studies as biological models due to their filtration capabilities, wide distribution, and
capability to bioaccumulate contaminants [24], enabling the understanding of ecological
disturbances induced by exposure to contaminants and functioning as indicators of aquatic
pollution in environmental monitoring programs [25].

Biomarkers of response, including indicators of oxidative stress and markers of cellular
damage, are essential in strategies for monitoring and evaluating the effects of contaminants
on living organisms. Biomarkers can, therefore, be utilized as early warning indicators
to assess the condition of the environment [26,27]. Multi-biomarker methodologies have
been recommended to assess the impacts of toxic substances and understand the impact
on ecosystems [28]. Exposure to various types of pollutants may result in an excess of
reactive oxygen species (ROS) that can induce oxidative stress and cell damage in cells,
as the organism is unable to remove the excess of ROS produced [29–32]. To evaluate the
consequences of exposure to contaminants, antioxidant enzymes can be helpful [31] in
addition to other biomarkers that suggest damage at a cellular level (e.g., lipid peroxidation,
caspase, and ubiquitin) [33,34]. However, there are few studies on antioxidant enzymes
and other biomarkers of response (e.g., caspase, ubiquitin) in mussels exposed to TBBPA.
Thus, multi-biomarker studies are essential for comprehending the effects of exposure to
these compounds in marine biota.

The purpose of this work was to study the effects of TBBPA on the mussel (Mytilus
galloprovincialis), a common marine model, by exposing the animal for 28 days to three
different concentrations of TBBPA (1, 10, and 100 µg·L−1) and then analyzing oxidative
stress biomarkers, such as GST (glutathione S-transferase), SOD (superoxide dismutase),
CAT (catalase), LPO (lipid peroxidation), and TAC (total antioxidant capacity). Protein
degradation signaling was examined by assessing total ubiquitin, cellular apoptosis was
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evaluated by measuring caspase (CASP-3) levels, and neurotoxicity was assessed by ana-
lyzing acetylcholinesterase (AChE) activity. In addition, an integrated biomarker analysis
was also performed to provide further information on the effects on mussels, allowing a
better understanding of the risk of exposure to the marine ecosystem.

2. Materials and Methods
2.1. TBBPA Stock Solution

To prepare the TBBPA (CAS No. 79-94-7; ≈99.3%; ref. 330396, Sigma-Aldrich, Shang-
hai, China), a stock solution was prepared, where 0.1 g of the compound was dissolved
in 100 mL of methanol (≈99.8% (v/v); Honeywell, Seelze, Germany). An appropriate vol-
ume was then added to each aquarium to attain the concentrations to be tested (1, 10 and
100 µg·L−1). An additional aquarium with filtered seawater was used as a control. Consid-
ering the dilution factor, the methanol concentration in each aquarium was estimated to
be ≤0.01%.

2.2. Experimental Trials

M. galloprovincialis (Lamarck, 1819) were manually gathered at Guincho coast (Cascais,
Lisbon, Portugal) in January/February 2023. Only mussels of comparable lengths were
collected to prevent variations in bioaccumulation and biomarker responses due to size
or age. The animals (n = 40; 1.270 g ± 0.365) were transported in a thermal box to the
laboratory facilities at NOVA School of Science and Technology. They were acclimatized in
an aquarium with 50 L of seawater (from the same collection site—Guincho), with filtration,
water recirculation, and aeration (>6 mg·L−1 dissolved O2). They were maintained at a
pH of 8.1 ± 0.2; a temperature of 20.0 ± 1.0 ◦C; a salinity of 33 ± 1 g·L−1; a photoperiod
of 12 h of light and 12 h of darkness; and continuously aerated. Water quality parameters
were checked daily in each aquarium (temperature, pH, and salinity). The animals were
randomly distributed by four aquariums containing 8 animals each. Then, for 28 days,
mussels were tested at different concentrations of TBBPA (0, 1, 10, and 100 µg·L−1) diluted
in seawater from the collection site. TBBPA concentrations selected for the exposure
tests were based on values determined in seawater elsewhere [7,8]. However, higher
concentrations were also assayed to better comprehend the effects on animals. In addition,
a control aquarium was also used with ≤0.01% methanol in seawater. The animals were
fed three times per week with Chlorella sp. (Shine superfood, Setúbal, Portugal).

Ethics

This work has been approved by the competent national authorities and has com-
plied with all applicable laws regarding animal welfare. The researchers hold a level C
certification from the European Federation for Laboratory Animal Science (FELASA) for
carrying out experiments on animals. The published results are consistent with the ARRIVE
recommendations, covering the 3 Rs of animal welfare.

2.3. Sample Treatment

Following the exposure period, the organisms were gathered, weighted, and the whole
organism was removed. Then, a tissue homogenizer (Tissue Master 125, Kennesaw, GA,
USA) was used to homogenize the samples in a solution of 3.0 mL phosphate-buffered
saline solution (PBS; comprising NaCl (140 mM; Panreac, Barcelona, Spain), Na2HPO4
(10 mM; Sigma-Aldrich, St. Louis, MO, USA), KCl (3 mM; Merck, Darmstatd, Germany),
and KH2PO4 (2 mM; Sigma-Aldrich, Steinheim, Germany)) at pH 7.3 ± 0.2. Subsequently,
the samples were centrifuged for 10 min at 4 ◦C at 15,000× g using a centrifuge (VWR,
model CT 15RE, Tokyo, Japan). The supernatant was transferred to microtubes (1.5 mL)
and kept at −45 ◦C until biomarkers were analyzed.
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2.4. Total Protein

Bradford method was used to determine the total cytosolic protein content [35]. Stan-
dards were prepared with Bovine Serum Albumin (BSA; Nzytech, Lisboa, Portugal) to
construct a calibration curve, ranging from 0 to 4 mg·mL−1. Then, in a 96-well microplate
(Greiner Bio-One, GmbH, Kremsmünster, Austria), 20 µL of each standard or sample and
180 µL of Bradford Reagent were pipetted into each well. A microplate reader (Synergy
HTX, Multi-Mode Reader, BioTek, Winooski, VT, USA) was used to read the absorbance in
each well at 595 nm. Total protein concentration in samples were obtained from the calibra-
tion curve, and the results were expressed as mg·mL−1. The cytosolic protein concentration
(PROT) was determined for normalization purposes.

2.5. Biomarkers Analyses
2.5.1. Glutathione S-Transferase (GST) Activity

A protocol that was first published by Habig et al. [36] but adapted and optimized for
96-well microplates was used. To determine the specific activity of GST, a molar extinction
coefficient of 5.3 mM−1·cm−1 for CDNB was utilized. Thus, 20 µL of the sample and
180 µL of the substrate solution (19.6 mL of PBS buffer, 200 µL of reduced L-Glutathione
(200 mM; GSH; Sigma-Aldrich, St. Louis, MO, USA), and 200 µL at 100 mM of 1-chloro-
2,4-dinitrobenzene (CDNB; Sigma-Aldrich, St. Louis, MO, USA)) were pipetted into each
well of the microplate. A microplate reader (Synergy HTX, BioTek) was used to read the
absorbance at 340 nm, every minute, for six minutes. GST activity results were expressed
relative to cytosolic protein content.

2.5.2. Superoxide Dismutase (SOD) Activity

The NBT method described by Sun et al. [37] was performed to measure SOD activity,
with adaptations for a 96-well microplate. Quickly, 200 µL of potassium phosphate buffer
(50 mM; pH 8.0) was pipetted into each well, followed by 10 µL of EDTA (3 mM; Riedel-
Haën, Seelze, Germany), 10 µL of xanthine (3 mM; Sigma-Aldrich, China), 10 µL of sodium
chloride nitroblue tetrazolium (0.75 mM; NBT; Sigma-Aldrich, Germany), and 10 µL of
sample. Next, 10 µL of xanthine oxidase (XOD, Sigma-Aldrich, Germany) was added
to begin the reaction. The absorbance was monitored at 560 nm, every two minutes, for
20 min in a microplate reader (Synergy HTX, BioTek). Results were expressed in relation to
cytosolic protein content.

2.5.3. Catalase (CAT) Activity

The method described by Johansson and Borg [38] was used to determine CAT activity,
after being adapted for use in 96-well microplates. Thus, 20 µL of sample, 30 µL of methanol
(Honeywell), and 100 µL of potassium phosphate buffer (100 mM; pH 7.0; Sigma) were
pipetted to each microplate well. Next, 20 µL of hydrogen peroxide (0.035 M; Sigma-
Aldrich, Germany) was pipetted to each well to initiate the reaction. The microplate was
then continuously shaken in an orbital shaker (Optic Ivymen System, JP Selecta, Barcelona
Spain) for 20 min while incubating in the dark at room temperature. After adding 30 µL of
KOH (10 M; ChemLab, Zedelgem, Belgium) and 30 µL of 4-amino-3-hydrazino-5-mercapto-
1,2,4-triazole (32.4 mM in HCl 0.5 M; purpald; Aldrich, Germany), the microplate was
incubated again under the same conditions as mentioned previously but this time for ten
minutes. Finally, 10 µL of potassium periodate (65.2 mM in KOH 0.5 M; Sigma-Aldrich)
was pipetted into each well and incubated for 5 min in the dark at room temperature. Then,
the microplate was measured with a Synergy HTX microplate reader (BioTek) at 540 nm.
A calibration curve was built using formaldehyde (AppliChem, Darmstadt, Germany) as
standards, ranging from 0 to 150 µM. The CAT results were then presented in relation to
the cytosolic protein content.
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2.5.4. Acetylcholinesterase (AChE) Activity

AChE activity was quantified by following the Ellman et al. [39] method, adapted to
96-well microplates. Hence, 50 µL of sample and 250 µL of a mixture containing sodium
phosphate buffer (50 mM; pH 8.0; Sigma-Aldrich), 5,5′-dithio-bis-2-nitrobenzoic acid
(10 mM; DTNB; Sigma-Aldrich, St. Louis, MO, USA), and acetylcholine (75 mM; ACTI;
Sigma, UK) were pipetted into the microplate wells. Next, the microplate wells were
measured at 415 nm, each minute for ten minutes, with a microplate reader (Synergy HTX,
BioTek) and the results were plotted as a function of the amount of cytosolic protein in
each sample.

2.5.5. Lipid Peroxidation (LPO)

LPO assessment followed the thiobarbituric acid assay, as described by Madeira
et al. [40]. A calibration curve was plotted for concentrations between 0 and 0.1 µM
of Malondialdehyde (MDA, Merck, Germany) in Mili-Q ultrapure water. A volume of
5 µL of sample or standard, 45 µL of PBS buffer, 12.5 µL Sodium Dodecyl Sulfate (8.1%
(w/v); SDS; Sigma-Aldrich, Germany), 93.5 µL Trichloroacetic Acid (20% (w/v); TCA;
Panreac, Barcelona, Spain), 93.5 µL thiobarbituric acid (1% (w/v); TBA; Sigma-Aldrich,
Germany), and 50.5 µL of ultrapure water were pipetted into 1.5 mL microtubes. This
mixture was subjected to a brief centrifugation (3000× g rpm) for 30 s, followed by placing
the microtubes, with punctured caps, in a dry bath (Thermobloc Digital, Labnet, Dusseldorf,
Germany) for ten minutes at 100 ◦C. Next, samples were chilled on ice, 62.5 µL of ultrapure
water was added to each microtube and subsequently centrifugated (3000× g rpm) for 30 s.
Then, 150 µL of each sample was added to the wells of the microplate, and the absorbance
was measured at 530 nm in a Synergy HTX microplate reader (BioTek). The results were
then presented as a function of total cytosolic protein content.

2.5.6. Total Antioxidant Capacity (TAC)

Total antioxidant capacity assay was performed as described by Kambayashi et al. [41].
Standards of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox; Aldrich,
Russian Federation) were diluted in potassium phosphate buffer (potassium phosphate
monobasic (5mM; pH 7.4; Sigma), glucose (5.55 mM) and sodium chloride (154 mM; NaCl;
Panreac)), with concentrations between 0 and 0.330 mM to construct a calibration curve.
Afterwards, 10 µL of sample or standard, 10 µL of myoglobin (90 µM; Sigma, USA), and
150 µL of 2,2-azino-bis 3- ethylbenzothiazoline-6-sulphonic acid (600 µM; ABTS; Alfa Aesar,
Karlsruhe, Germany) were pipetted into the microplate wells (Greiner Bio-one, GmbH,
Kremsmünster, Austria). To start the reaction, 40 µL of hydrogen peroxide (500 µM; Sigma-
Aldrich) was pipetted into each well. The microplate was incubated for 5 min at room
temperature and the absorbance was read on a microplate reader Synergy HTX (BioTek).
Results were normalized to the total cytosolic protein content.

2.5.7. Caspase-3 (CASP-3)

Caspase-3 was determined by Enzyme-Linked Immunosorbent Assay (ELISA) [42].
Caspase-3 standards were prepared in PBS buffer (human caspase 3, recombinant human
active cc119; Merck, Rahway, NJ, USA) with concentrations between 0 and 5 µg·mL−1 to
obtain a calibration curve. A total of 50 µL of sample or standard was pipetted into each
microplate well (Greiner Bio-one, Microlon 600 High Binding, Frickenhausen, Germany
Germany), and the microplate was incubated at 4 ◦C for 24 h. Afterwards, a solution con-
taining PBS-Tween solution (0.05% v/v; Panreac; Spain) was used to wash the microplate
wells. Next, the microplate wells were blocked by pipetting 100 µL of BSA blocking
solution (1% (w/v) in PBS; Nzytech, Lisboa, Portugal) and incubated for 90 min at am-
bient temperature. The microplate was rewashed three times with the same washing
solution. Right away, a primary antibody (anti-caspase 3 antibody ab13847, Abcam, Ams-
terdam, the Netherlands) was prepared in 1% BSA (w/v) to obtain a final concentration of
1.5 µg·mL−1 and 50 µL was pipetted into the microplate wells. Then, the microplate was
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incubated at 4 ◦C for 24 h. Next, the microplate was rewashed three times and 50 µL
of secondary antibody (anti-mouse IgG Fc specific-alkaline phosphatase), diluted in PBS
(1% BSA w/v) to a concentration of 1.0 µg·mL−1, was pipetted into the microplate wells.
Then, the microplate was incubated for 90 min at 37 ◦C. The microplate was washed again
and 50 µL of substrate solution (157 mg of trizma hydrochloride (Tris-HCl; Sigma, USA),
58 mg NaCl (Panreac), 50 µL MgCl2 (5 mM; Fluka, BioChemika, Buchs, Switzerland),
and 10 mg of 4-nitrophenyl phosphate disodium salt hexahydrate (pNPP; Sigma-Aldrich,
Gillingham, UK) prepared in 10 mL of distillate water, pH 9) was added to microplate wells.
After the new incubation period (15 min) at ambient temperature, 50 µL of STOP solution
(3 M NaOH (Panreac, Spain)) was pipetted into the microplate wells and the absorbance was
read in a microplate reader Synergy HTX (BioTek) at 405 nm. The results were expressed as
a function of the total cytosolic protein content.

2.5.8. Total Ubiquitin (UBI)

To determine total ubiquitin, an ELISA assay was performed, following the same
procedure as described before [42]. The ubiquitin standards (UBPBio; Dallas, TX, USA)
were prepared in a range of concentrations between 0 and 0.8 µg·mL−1 to build a calibration
curve. A primary ubiquitin antibody (P4D1; Sc-8017; Santa Cruz Biotechnology, Dallas, TX,
USA) was diluted to 1.5 µg·mL−1 in 1% BSA (w/v) and pipetted into each microplate well.
Next, the same steps were followed as described above for the caspase-3 assay. Results
were expressed as a function of the total cytosolic protein content.

2.6. Statistical Analysis

Statistics were carried out with the software Prism 9 (GraphPad software; version 9.5.1).
Depending on whether parametric assumptions were satisfied, statistical comparisons were
carried out using either the Kruskal–Wallis or the one-way ANOVA test, which were both
found using Dunnett’s multiple comparison test. Whenever the parametric assumptions
were fulfilled, then the one-way ANOVA test was carried out, whereas if these assumptions
were not met, then the Kruskal–Wallis test was performed.

The non-parametric Spearman correlation was employed to measure the strength and
direction of linear relationships between pairs of variables.

For IBR, to normalize the different biomarkers in the various concentrations, the
difference between the mean of each group and the sample was calculated and divided
for the standard deviation of each treatment as described in Madeira et al. [40]. Then, an
integrated biomarker response (IBR) index was computed, and corresponding radar plots
were created to compare the different concentrations. IBR was computed using Excel and
the procedure was outlined by Beliaeff and Burgeot [43].

3. Results
3.1. Mortality Rate

No deaths were recorded during the exposure assays.

3.2. Biomarkers of Oxidative Stress
3.2.1. Glutathione-S-Transferase (GST)

GST activity results (mean ± standard deviation) are depicted in Figure 1A. Statistical
analysis showed a significant increase in enzyme activity when comparing the control
group with animals exposed to 100 µg·L−1 of TBBPA (p < 0.05) and between animals
exposed to 1 µg·L−1 and animals exposed to 100 µg·L−1 of TBBPA (p < 0.01).

3.2.2. Superoxide Dismutase (SOD)

SOD activity, mean ± standard deviation, for each group is shown in Figure 1B.
Statistics revealed a significant increase between mussels tested for 1 µg·L−1 and animals
tested for 100 µg·L−1 of TBBPA (p < 0.05).
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3.2.3. Catalase (CAT)

Figure 1C shows CAT activity results (mean ± standard deviation) in animals tested
to different tested TBBPA concentrations. A significant increase (p < 0.05) in this enzyme
activity can be seen between the animals tested to the highest concentration of TBBPA
(100 µg·L−1) and the other concentrations tested, as well as the control group.

3.2.4. Acetylcholinesterase (AChE)

AChE activity results (mean ± standard deviation) are shown in Figure 1D. Statis-
tical analysis revealed a noteworthy increase in enzyme activity, when comparing each
concentration (0, 1, and 10 µg·L−1) with the highest concentration (p < 0.05, p < 0.0001 and
p < 0.0001, respectively). On the contrary, a significant decrease was observed comparing
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the animals tested to 1 µg·L−1 and control animals (p < 0.05) and between animals tested to
10 µg·L−1 (p < 0.01) and control animals.

3.2.5. Lipid Peroxidation (LPO)

LPO results (mean ± standard deviation), expressed in terms of MDA concentrations,
are presented in Figure 1E. A notable increase in MDA concentration can be seen between
control animals (p < 0.05) and mussels exposed to 100 µg·L−1 and between animals tested
to 1 µg·L−1 and those tested to 100 µg·L−1 (p < 0.001) of TBBPA.

3.2.6. Total Antioxidant Capacity (TAC)

TAC values (mean ± standard deviation) determined in animals tested to the different
TBBPA concentrations are presented in Figure 1F. Statistical analysis detected a signifi-
cant increase in total antioxidant capacity between control animals and those tested to
100 µg·L−1 of TBBPA (p < 0.05) and between the animals tested to 1 µg·L−1 and those tested
to 100 µg·L−1 (p < 0.001) of TBBPA.

3.2.7. Caspase-3 (CASP-3)

The levels of CASP-3 (mean ± standard deviation) determined in the animals exposed
to TBBPA are shown in Figure 1G. A significant increase (p < 0.05) is evident when compar-
ing the highest concentration (100 µg·L−1) with the other tested concentrations (0 µg·L−1,
1 µg·L−1, and 10 µg·L−1 of TBBPA).

3.2.8. Total Ubiquitin (UBI)

The results of the total UBI concentration (mean ± standard deviation) are presented
in Figure 1H, where a significant increase (p < 0.05) can be observed between animals tested
to 100 µg·L−1 of TBBPA and control animals.

3.3. IBR Index

The radar plot of IBR index is presented in Figure 2. Differences are only observed
when comparing animals tested to the highest concentration (100 µg·L−1) with all other
tested animals. Thus, a decrease in MDA concentrations and in AChE activities can be
observed, along with a slight decrease in UBI concentrations. GST showed no differences
among all tested animals. For SOD, CAT, CASP-3, and TAC, there was a slight increase, as
shown by the IBR radar plot.
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3.4. Correlation Analyses

The results of correlation analysis (Spearman) are presented in Table 1. GST shows
a statistically significant moderate positive correlation with LPO (p < 0.001), while SOD
exhibits a significant moderate positive correlation with TAC (p < 0.0001). Moreover, results
indicate a strong significant correlation between LPO and TAC (p < 0.0001) and a significant
moderate positive correlation with LPO and UBI (p < 0.001).

Table 1. Spearman correlation matrix, with relevant correlations highlighted in bold. Significant
differences are marked with asterisks. *—p < 0.05, **—p < 0.01, ***—p < 0.001 and ****—p < 0.0001.

SOD CAT LPO AChE TAC CASP-3 UBI

GST 0.26 0.37 0.71 *** 0.27 0.59 *** 0.52 * 0.10

SOD 0.14 0.60 ** 0.33 0.78 **** 0.41 0.44 *

CAT 0.65 ** −0.05 0.55 * 0.40 0.31

LPO 0.48 * 0.87 **** 0.64 ** 0.75 ***

AChE 0.50 * 0.20 0.18

TAC 0.69 **** 0.59 **

CASP-3 0.64 **

4. Discussion

Numerous research studies have focused on the detection of TBBPA and its effects on
humans and other animals, including aquatic biota [19,44–47]. However, to our knowledge,
no studies are available on TBBPA effects in marine organisms combining the response of
antioxidant enzymes, acetylcholinesterase, caspase-3, and ubiquitin, which are key markers
of neurotoxicity [48], apoptosis [49], and the degradation of damaged proteins via the
proteasome [50], respectively.

The evaluation of biomarker responses, such as enzymes involved in the biotransfor-
mation process (e.g., CYP1A, GST), antioxidant enzymes, and other specific biomarkers, is
essential for assessing xenobiotic toxicity in biota and evaluating ecosystem health [51,52].
Therefore, utilizing biomarkers to study the impact of xenobiotics in living organisms is a
useful tool, as they provide an early indication on the presence of stressors [53].

The TBBPA concentrations selected for this study include previously reported envi-
ronmentally relevant concentrations found in water (up to 4.87 µg·L−1) [54]. Still, higher
concentrations were also tested to help us assess toxicity in mussels.

GST, an enzyme mainly linked to the detoxification of xenobiotics, increased only in
mussels tested to the most elevated concentration (100 µg·L−1 of TBBPA). This suggests
that animals can detoxify TBBA at the lower concentrations tested. In a study by Hu
et al. [55], who exposed scallops (Chlamys farreri) for ten days followed by another ten
days of depuration, it was demonstrated that TBBPA bioaccumulated in mussels’ gills
and digestive glands. Furthermore, GST increased in both organs analyzed, suggesting
a detoxification response. However, the scallops were exposed to much higher levels
than in the current work. Another study by the same author who exposed microalgae to
400 µg·L−1 of TBBPA, which was then used to feed scallops [56], also showed increased
GST and SOD and suggested oxidative stress.

Yang et al. [57] conducted exposure tests on freshwater fish (Carassius auratus), finding
a significant increase in GST activity following an eight-day exposure assay to 0.5 mg·L−1

TBBPA. An alteration in the regulation of GST gene expression was reported by Gong
et al. [58], who observed a rise in GST expression in the gills of C. farreri exposed to TBBPA.
Furthermore, Hu et al. [59] exposed C. farreri to TBBPA (varying from 0.2 to 0.8 mg·L−1) and
found that GST activity and gene expression levels, but also UDP-glucuronosyltransferase
(UGT), increased accordingly with the time and concentration tested, demonstrating its
role on TBBPA detoxification. Thus, various studies performed in different aquatic species
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seem to indicate a consistent increase in GST activity in response to exposure to TBBPA,
suggesting activation of xenobiotic detoxification mechanisms. This is also corroborated by
the rapid metabolization of TBBPA into hydrophilic conjugates of sulfate and glucuronide,
which are easily eliminated by the organisms [60].

However, it should be emphasized that most studies in aquatic animals tested concen-
trations of TBBPA beyond the most elevated concentration tested in the current work.

The activities of SOD and CAT also support the GST results, as only the highest
concentration tested (100 µg·L−1) seems to increase the responses of both antioxidant
enzymes determined in exposed mussels, suggesting a response to oxidative stress by
eliminating the overproduction of reactive oxygen species (ROS) and neutralizing the
excess of H2O2, as these enzymes act together to defend cells against oxidative stress.
Indeed, oxidative stress occurs when ROS production exceeds the ability of cells to remove
them [61,62]. Noteworthily, TAC results followed the same pattern of antioxidant enzymes,
suggesting that GST and antioxidant mechanisms are sufficient to deal with the exposure
to lower TBBPA concentrations.

Antioxidant enzymes (e.g., SOD and CAT) act together to protect cells by converting
reactive radicals into non-reactive molecules [39] and, thus, avoid the establishment of
stress oxidative damage.

Studies by Hu et al. 2015 [55] also reported a substantial elevation in SOD activity in
C. farreri tested to higher levels (0.2 to 0.8 mg·L−1) of TBBPA, suggesting that the response
of SOD activity to TBBPA exposure may be concentration-dependent. The differences
observed in SOD activity in these studies, and the present study, may be attributed to the
different concentrations of TBBPA tested.

Studies by Wu et al. [45] on zebrafish (Danio rerio) embryos and larvae tested to 0.1 to
1.0 mg·L−1 of TBBPA revealed no significant alterations in oxidative stress enzymes (SOD,
CAT, and Glutathione Peroxidase—GPx), while animals tested at concentrations ranging
from 0.4 to 1.0 mg·L−1 showed decreased enzyme activities. Feng et al. [48] reported
developmental neurotoxicity in juvenile zebrafish exposed to different concentrations,
varying from 0.86 to 193.5 µg·L−1 of TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE).
Interestingly, they found that females were more susceptible than males. Likewise, a
proteomic and metabolomic study carried out in the gills of M. galloprovincialis exposed to
TBBPA (10 µg·L−1), for 30 days, showed different responses between males and females,
with females being more susceptible. They found changes in nine metabolites, mostly
related to energy metabolism and osmotic regulation in females, while in males, alterations
were related only to osmotic regulation. Proteomic analyses revealed higher levels of
proteins linked to energy metabolism and defense mechanisms in males [63].

Lipid peroxidation (LPO) results from the action of free radicals on cell biological
membranes [64]. Therefore, it can be used as a biomarker of cell damage upon exposure to
xenobiotics [65]. Oxidative damage following exposure to contaminants is often reported.
For instance, Emamnouil et al. [66] showed oxidative damage in Mytilus edulis collected
in a U.K. contaminated site. However, the mussels were able to recover after depuration.
In this work, LPO exhibited a trend to rise according to tested concentrations. However,
this was only statistically significant for mussels tested to 100 µg·L−1 of TBBPA, which is in
accordance with antioxidant enzyme levels and supports the hypothesis that cells’ antioxi-
dant mechanisms are enough to fight oxidative stress at the lower TBBPA concentrations
tested but can lead to oxidative stress in mussels tested to the most elevated concentration.
Our findings are consistent with previous research conducted on zebrafish embryos, where
an increase in LPO was observed, suggesting oxidative stress [67].

AChE has a central role in the proper functioning of neurotransmission and muscle
contraction, and is used as a marker of neurotoxicity [68]. In the current work, mussels
tested at lower levels of TBBPA (1 and 10 µg·L−1) displayed a reduction in AChE activity.
However, after the animals were tested to 100 µg·L−1 of TBBPA, there was a significant
increase in AChE activity. This behavior is not clear, but may suggest that exposure to
different levels of TBBPA can have different effects on enzyme activity. The elevation in
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AChE noticed in animals tested to the highest TBBPA concentration is consistent with
findings by Zhu et al. [69] in zebrafish and with Liu et al. [70], who reported increased
AChE in rat pheochromocytoma cells exposed to TBBPA. The rise in AChE activities was
associated with ROS and apoptosis [71], which is consistent with our results in mussels
exposed to the highest TBBPA concentration. Interestingly, some studies reported increased
AChE activity and lipid peroxidation in fish containing microplastics, which authors
attributed to the disruption of vesicles containing acetylcholine [72,73].

Caspase-3 holds a critical role in the regulation of apoptosis or programmed cell death,
being activated during the apoptotic process, which is essential for removing unwanted
or damaged cells from the body [74], while ubiquitin plays an important role in marking
proteins for degradation [75]. In addition, the imbalance of the ubiquitin-proteasome system
has been associated with various diseases (e.g., tumors, neurodegenerative disorders, and
inflammation) [76].

Research conducted in zebrafish larvae and embryos exposed to TBBPA showed
developmental toxicity due to oxidative stress and apoptosis [45]. Moreover, Han et al. [77]
reported that TBBPA also caused apoptosis, mitochondrial dysfunction, and increased ROS
in carp hepatocytes after exposure. Interestingly, it was also shown that degraded TBBPA
(e.g., monoBr-BPA, diBr-BPA, and triBr-BPA) presented stronger toxicity to HeLa cells than
parent TBBPA, leading to apoptosis [78]. Our results suggest that exposing mussels to
100 µg·L−1 of TBBPA raised the production of both caspase-3 and ubiquitin, suggesting that
this concentration can lead to apoptosis and increased damaged proteins. No-significant
changes were observed for caspase-3 and ubiquitin in mussels exposed to 1 and 10 µg·L−1,
which may suggest that these concentrations are not enough to cause significant apoptosis
and protein damaging.

Overall, the results suggest that when considering environmentally relevant concen-
trations, significant oxidative stress it is not expected to occur in mussels. Nonetheless, we
must consider TBBPA bioaccumulation in the marine biota. While some authors reported
moderate TBBPA bioaccumulation [79], others stated that this compound is rapidly ab-
sorbed and accumulates in several aquatic species [80]. The potential for trophic transfer
and bioamplification should also be emphasised as a risk to the aquatic ecosystem [13]. Fi-
nally, there should be greater concern about the consumption of fishery products, as several
studies have unequivocally shown levels of TBBPA that could impact human health [3,81].

5. Conclusions

The strong positive correlation between TAC and some biomarkers (SOD and LPO)
indicates that the organism’s global antioxidant capacity is linked to the response of these
biomarkers, suggesting that when faced with oxidative stress, antioxidant mechanisms are
activated to neutralize oxidative stress and its adverse effects. The biomarker responses
of animals tested at 1 and 10 µg·L−1 are low or moderate and no noteworthy effects
were detected at these concentrations. However, animals tested to the most elevated
concentration of TBBPA (100 µg·L−1) showed more pronounced responses that can lead
to oxidative stress and concomitant cellular damage. Although the higher concentrations
tested are not considered environmentally relevant, they help to understand the effect on
biota exposed to TBBPA and the risk if higher quantities of this compound are discharged
into the environment.
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