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Abstract: In structural health monitoring, determining the location and index of damage is a critical
task in order to ensure the safe operation of the construction project and to enable the early recovery
of losses. This paper presents a novel method for identifying damage location and damage index
in simply supported (SS) beams by analyzing deflection changes at the mid-span point. Theoretical
equations for mid-span deflection of simply supported beams with local damage are derived based
on the principle of Virtual Work. Utilizing mid-span deflection, formulas for deflection change (DC)
between two structural states, along with the first and second derivatives of DC at the mid-span point,
are developed. The method of determining the location and damage index is then extended from
intact beams to cases of beams with multiple damage zones and from damaged beams to beams with
new failures. The graphical analysis of these quantities facilitates the determination of the number,
location, and index of new damages. Various case studies on simply supported beams, involving one,
two, and four damage zones at different positions and with varying damage indexes, are examined.
The comparison of the theoretical method with the numerical simulations using Midas FEA NX 2020
(v1.1) software yields consistent results, affirming the accuracy and efficacy of the proposed approach
in identifying and determining the damage locations as well as the damage indices.
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1. Introduction

Damage to civil structures (including dams, bridges, and buildings, among others)
often do not initially result in serious consequences for the structures’ operation and use.
However, if left undetected and unrepaired, issues can escalate over time, leading to
significant structural harm, and in some cases, complete failure such as progressive collapse
or sudden collapse. Therefore, it is imperative to promptly identify structural damages,
preferably as soon as they occur. This proactive approach not only helps to mitigate losses
at a lower cost but also enables the continued use of structures during the repair process.

Structural damage encompasses more than just the appearance of cracks; it includes
issues such as metal corrosion, damage to connections, etc., which are often manifested by
decreased hardness and stiffness in certain structural components. When this reduction is
substantial, it can manifest in various structural responses. Traditionally, damage detection
involves physically sending engineers to meet the construction site engineers and visually
inspect defects. They use crack extension meters, employ ultrasonic equipment, and more.
Subsequently, the survey results are analyzed to assess the current levels of structural
health. While this method is straightforward and does not demand high levels of technical
expertise, it tends to be expensive, and accessing the structure is often challenging. In recent
years, structural health monitoring (SHM) systems have gained widespread adoption in
structural evaluation. These systems employ one or more sensor devices, mounted onto the
structure or onto moving vehicles, in order to assess and monitor structural health [1–4].
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Unlike traditional methods, SHM is non-destructive and diagnoses structural health by
comparing the structure’s different states. This approach has become a fundamental aspect
of numerous recent studies [5–14].

Regarding the SHM system, damage determination methods and their use can be
classified into three primary categories: (1) utilizing static measurements, (2) employing
dynamic measurements, and (3) combining static and dynamic measurements. The method
of determining damage based on dynamic measurement results has seen significant de-
velopment. In this approach, structural responses under dynamic loads are predicted
based on measurement data such as acceleration, velocity, deformation, dynamic deflection,
etc., in the time domain. These results are often transformed into the frequency domain
and combined with various data processing methods to ascertain natural frequencies and
possibly establish the shape modes of the structure [9,15–19]. However, several challenges
must be overcome when using dynamic measurement methods to assess structural damage.
Firstly, it is often not easy to determine the vibration mode shapes of real structures accu-
rately. Additionally, most damage detection methods based on dynamic measurements
assume the simplification of eliminating variation in mass and damping, while structural
dynamic behavior is highly dependent on factors such as structural stiffness, mass, connec-
tion stiffness, damping coefficient, etc. [20,21]. Notable publications relating to dynamic
measurement methods include Refs. [22–29].

On the other hand, the method of determining damage based on static measurement
results primarily depends on the stiffness of the structural system. When the stiffness of the
structure decreases, it may lead to damage. At this point, the static reactions of the system
also change accordingly and are observable externally, possibly through parameters such as
deflection, strain, etc., which can be measured. Static measurement results are independent
of time, mass variation, or damping factors, making this method simpler and more efficient
than dynamic measurement.

To measure the static deflection within a structure, it is often necessary to install
deflection-measuring devices, a task that can prove challenging, especially when these
devices need connections to both the structure and the ground. In recent years, non-contact
measurement techniques, typically utilizing light or lasers, have emerged, offering promis-
ing applications in static deflection measurement [17,20,30,31]. In these methods, static
deflection can be directly measured by applying static loads or estimated based on vibra-
tion test results [32]. With the advent of non-contact measurement techniques, numerous
publications have explored damage determination in beam structures based on structural
deflection under static loads. For instance, Ma et al. [33] employed wavelet analysis to
locate the damages in a simply supported beam using static deflection. The article of
Cao et al. [34] focused on the sensitivity of cantilever beam characteristics—fundamental
mode shape and static deflection—to identify damages. Results were corroborated using
a three-dimensional finite element model. Seyedpoor and Yazdanpanah [8] utilized a
static-strain energy-based index to locate the structural failures, established based on the
change in strain energy between intact and damaged beam states under static loads. Le
et al. [21] proposed a method in order to identify the damage position and index based on
deflection changes at all points on a simply supported beam when a unit load is applied at
the mid-span point, leveraging the Euler–Bernoulli beam theory. When beam stiffness is
reduced, specific alterations occur in its deflection compared to that of an intact beam. This
discrepancy enables diagnosis to pinpoint both the location and severity of the damage.
To assess beam deflection at various points along its length, which occurs due to a unit
load being positioned at the mid-span point, this study necessitates either (1) arranging
and installing multiple devices along the beam’s length and conducting one experimental
cycle, or (2) conducting multiple experimental cycles when there are insufficient measuring
devices. However, achieving this can be challenging due to inadequate equipment or
difficulties accessing all the points along the beam.

Addressing these limitations, this paper proposes a novel method in order to identify
the damage location and index based on beam deflection at the mid-span point under
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the influence of a quasi-static load moving along the beam. We explore the potential of
doing so using a slow-speed method. By analyzing the disparity in deflection influence
lines at the mid-span position of a simply supported beam under two structural states, this
study determines the location and index of damage (where this paper defines the deflection
influence line as the representation of the deflection at the mid-span position when a
quasi-static load is positioned at any point along the beam). Unlike Le et al.’s approach,
this method requires only one deflection-measuring device, making it more feasible and
practical, especially considering that the point with the greatest deflection typically lies at
the mid-span position. Furthermore, this research can extend to assessing offsets at any
point along the beam, acknowledging situations where accessing the mid-span position
may be challenging. Nonetheless, the mid-span point remains the primary focus due to
typically exhibiting the largest deflection. This article confines its scope to damage that
occurs between two beam bearings; damage outside this range (from beam end to bearing)
will be addressed in future studies.

2. Governing Equations of Mid-Span Deflection of Simply Supported Beams with
Local Damage

Damage to a simply supported (SS) beam can be due to the deterioration of the prop-
erties of the beam’s constituent material, metal corrosion, or the appearance of cracks,
etc. As the beam’s deflection under static load is inversely proportional to its structure
stiffness, the response of a damaged beam may deviate from that of an intact one. Rec-
ognizing and addressing this disparity can pinpoint the location and extent of damage
zones. Unlike previous studies, such as [21], this study focuses on evaluating the mid-span
deflection of the SS beam to assess its deflection change (DC) due to damage zones. To
achieve this objective, three case studies are considered, including scenarios with (1) a
single damaged location, (2) two damaged locations, and (3) multiple damaged locations.
The Euler–Bernoulli beam theory is applied, considering that the deflection of the beam
due to local damages is minimal. It is assumed that multiple damage zones do not overlap
and that when new damage occurs or develops, the superposition is linear.

2.1. Mid-Span Deflection of the Simply Supported Beam with a Single Damaged Location

An intact SS beam with the constant bending stiffness EI under a point load P at
coordinate x is considered, as depicted in Figure 1a. The deflection of the mid-span point is
calculated using the following equation based on the Virtual Work principle [21,35]:

yintact =

l∫
0

M(x1)m(x1)

EI
dx1 (1)

where yintact represents mid-span deflection; M(x1) is the bending moment of the beam
under point load P; m(x1) is the bending moment of the beam subjected to the virtual unit
point load at point x1; and l is the beam length. The diagrams of M(x1) and m(x1) are
presented in Figures 1b and 1c, respectively.
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Figure 1. Intact simply supported beam: (a) general layout; (b) real bending moment; (c) virtual
bending moment.

By applying the boundary conditions of the beam and the formulas of M(x1) and m(x1)
into Equation (1), the deflection of the mid-span point of the intact beam is given as follows
in Equation (2):

yintact =
P

48EI
×

{(
4x3 − 3xl2) if x ≤ l

2[
4(l − x)3 − 3(l − x)l2

]
if x > l

2
(2)

After establishing the formula of deflection at the mid-span point of an intact beam,
the SS beam with a single-damage zone is then considered. It is assumed that the damaged
zone, with a width of b, is distributed in the range [a; (a + b)] as shown in Figure 2. The
damage zone has a constant bending stiffness of EIf 1, where f 1 refers to the remaining
stiffness of the beam (0 ≤ f 1 ≤ 1). Three possible cases of damage locations on the SS
beam are illustrated in Figure 2. Similar to the case of an intact SS beam, the mid-span
deflection of the damaged beam under the point load P at position x can be calculated
using Equation (3):

ydamage1 =
a∫

0

M(x1)m(x1)
EI dx1 +

a+b∫
a

M(x1)m(x1)
EI f1

dx1 +
l∫

a+b

M(x1)m(x1)
EI dx1

=
l∫

0

M(x1)m(x1)
EI dx1 +

a+b∫
a

1− f1
f1

M(x1)m(x1)
EI dx1

= yintact +
a+b∫
a

1− f1
f1

M(x1)m(x1)
EI dx1

(3)

where ydamage1 represents the mid-span deflection of the beam with a single-damage zone.
The deflection change (DC) ∆y10 between the beam with a single-damage zone and the
intact SS beam is then determined using Equation (4):

∆y10 = ydamage1 − yintact =

a+b∫
a

1 − f1

f1

M(x1)m(x1)

EI
dx1 (4)
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The integral in Equation (4) is then calculated as follows in Equations (5)–(7):

• The damage zone is located on the left-half beam:

∆y10 =
P
EI

(1 − f1)

f1
×


b(6a2+6ab+2b2−6la−3lb)

12l x if 0 ≤ x < a
[2la3+(6a2b+6ab2+2b3−3l(a+b)2)x+lx3]

12l if a ≤ x < (a + b)

− b(3a2+3ab+b2)
6l (l − x) if (a + b) ≤ x

(5)

• The damage zone is located at the mid-span point:

∆y10 =
P
EI

(1 − f1)

f1
×



− (8(a+b−l)3+8a3−12a2l+3l3)
48l x if 0 ≤ x < a[

4lx3−(8(a+b−l)3+8a3+3l3)x+8a3l
48l

]
if a ≤ x < l

2[
4l(l−x)3−8x(a+b−l)3−8xa3−3l3(l−x)+8a3l

48l

]
if l

2 ≤ x < (a + b)

[8(a+b)3−12l(a+b)2+8a3+l3]
48l (l − x) if x > (a + b)

(6)

• The damage zone is located on the right-half beam:

∆y10 =
P
EI

(1 − f1)

f1
×



− b (3a2+3ab−6al+b2−3bl+3l2)
6 l x if x < a

−

 lx3 − 3l2x2 + a2l(2a − 3l)

+
(

2(a + b − l)3 − 2a3 + 3a2l + 2l3
)

x


12 l if a ≤ x < (a + b)

b (6a2+6ab+2b2−6la−3lb)
12l (l − x) if x ≥ (a + b)

(7)
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For simplicity, Equations (5)–(7) are condensed as Equation (8):

∆y10 =
P
EI

× (1 − f1)

f1
×

[
g3(x) in the damage zone
h1(x) outside the damage zone

(8)

where h1(x) and g3(x) are linear and cubic functions of x, respectively. These functions
depend only on the parameters a, b, and l, as shown in Equations (5)–(7). Figure 3 shows the
value of ∆y10 when the applied load P is “moving” on the beam. As depicted, the mid-span
deflection change equals zero at the two bearings, rises progressively as it approaches the
damage zone, and reaches its maximum value in this zone. Therefore, the damage zone
can be approximated around the extreme point of deflection change, ∆y10, or near the point
where two deflection change lines converge. Furthermore, Figure 3 illustrates how the
interval boundaries between the cubic function and two linear functions can be used to
identify the damage zone more accurately.
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In addition, the first and second derivatives of DC (details are shown in the Appendix A)
are obtained using Equations (9) and (10):

∂∆y10

∂x
=

P
EI

× (1 − f1)

f1
×

[
g2(x) in the damage zone
constant outside the damage zone

(9)

∂2∆y10

∂x2 =
P
EI

× (1 − f1)

f1
×

[
g1(x) in the damage zone
0 outside the damage zone

(10)

where g1(x) and g2(x) are the linear and quadratic functions of x, respectively. The first- and
second derivatives of DC are illustrated in Figures 4 and 5. As depicted in Figure 4, the first
derivative of DC is a quadratic curve in the damage zone that takes constant values on the
left and right sides of this zone. In the damage zone, the second derivative of DC provides
non-zero values (a linear function), but provides zero elsewhere, as shown in Figure 5.
These are also important indicators for identifying the location of the damage zones.
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2.2. Damage Index

If f 1 represents the remaining stiffness of the SS beam, the damage severity coefficient
is (1 − f 1). Thus, the damage index can be defined as β = (1 − f 1)/f 1. This damage index is
easily determined using Equations (8)–(10) if the damage location, the stiffness EI, and the
load P are known. However, in reality, beam stiffness is often unknown or not precisely
determined, especially for the structure in use. Therefore, it is necessary to find a method to
determine the damage index β when the stiffness EI is unknown and when the applied load
P is not constant. Equations (2), (8)–(10) can be written as Equations (11)–(14) as follows:

yintact =
P
EI

× k3(x) (11)

∆y10 =
P
EI

× β ×
[

g3(x) in the damage zone
h1(x) outside the damage zone

(12)

∂∆y10

∂x
=

P
EI

× β ×
[

g2(x) in the damage zone
constant outside the damage zone

(13)

∂2∆y10

∂x2 =
P
EI

× β ×
[

g1(x) in the damage zone
0 outside the damage zone

(14)

where k3(x) is the cubic function of x. As seen in these equations, P/EI can be eliminated by
dividing both sides of Equations (12)–(14) by Equation (11) leading to Equations (15)–(17).
This allows for the determination of the damage index as well as the remaining stiffness.

∆y10

yintact =
β

k3(x)
×

[
g3(x) in the damage zone
h1(x) outside the damage zone

(15)

∂∆y10

∂x
× 1

yintact =
β

k3(x)
×

[
g2(x) in the damage zone
constant outside the damage zone

(16)

∂2∆y10

∂x2 × 1
yintact =

β

k3(x)
×

[
g1(x) in the damage zone
0 outside the damage zone

(17)

2.3. Mid-Span Deflection of the Simply Supported Beam with Two Damaged Locations

In the second case study, let us assume that there is an SS beam with two damage
zones, as depicted in Figure 6. The first damage zone mirrors the information from the first
case study. For the second damage zone, positioned at c from the left bearing, a width of
d is considered. This second damage zone maintains a constant bending stiffness of EIf 2,
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where f 2 represents the remaining beam stiffness within this zone. Mid-span deflection can
be represented as follows:

ydamage2 =
a∫

0

M(x1)m(x1)
EI dx1 +

a+b∫
a

M(x1)m(x1)
EI f1

dx1 +
c∫

a+b

M(x1)m(x1)
EI dx1

+
c+d∫
c

M(x1)m(x1)
EI f2

dx1 +
l∫

c+d

M(x1)m(x1)
EI dx1

=
a∫

0

M(x1)m(x1)
EI dx1 +

a+b∫
a

M(x1)m(x1)
EI f1

dx1 +
l∫

a+b

M(x1)m(x1)
EI dx1

+
c+d∫
c

1− f2
f2

M(x1)m(x1)
EI dx1

(18)

where ydamage2 is the mid-span deflection of the beam with two damage zones. Equation (18)
can be re-expressed using Equation (19) via combination with Equation (3):

ydamage2 = ydamage1 +

c+d∫
c

1 − f2

f2

M(x1)m(x1)

EI
dx1 (19)
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Therefore, the DC from one damage area to two damage zones can be written as 
shown in Equation (20): 

( ) ( )1 121 damage2 damage1 2
1

2

1c d

c

M x m xfy y y dx
f EI

+
−

Δ = − =   (20) 

Similar to the first case study in Section 2.1, it is possible to determine the location of 
the damage in this scenario. The results remain the same as those in Equations (5)–(7), 
except that the three parameters a, b, and f1 are replaced by c, d, and f2, respectively. 

The DC in this scenario can be expressed as the cubic function in the second damage 
zone, as shown in Figure 7, and as the linear function in the remaining zone, analogous to 
the description in Section 2.1. Consequently, the determination of the position of the sec-
ond damage can also be performed as explained in Section 2.1. The DC in the scenario 
from the intact beam to the beam with two damage zones can be expressed as shown in 
Figure 8 and Equation (21): 
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Figure 6. Simply supported beam with two damages.

Therefore, the DC from one damage area to two damage zones can be written as
shown in Equation (20):

∆y21 = ydamage2 − ydamage1 =

c+d∫
c

1 − f2

f2

M(x1)m(x1)

EI
dx1 (20)

Similar to the first case study in Section 2.1, it is possible to determine the location
of the damage in this scenario. The results remain the same as those in Equations (5)–(7),
except that the three parameters a, b, and f 1 are replaced by c, d, and f 2, respectively.

The DC in this scenario can be expressed as the cubic function in the second damage
zone, as shown in Figure 7, and as the linear function in the remaining zone, analogous
to the description in Section 2.1. Consequently, the determination of the position of the
second damage can also be performed as explained in Section 2.1. The DC in the scenario
from the intact beam to the beam with two damage zones can be expressed as shown in
Figure 8 and Equation (21):

∆y20 = ydamage2 − yintact =
(

ydamage2 − ydamage1
)
+

(
ydamage1 − yintact

)
= ∆y21 + ∆y10 (21)
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Figure 7. Deflection change ∆y21 between SS beams with one and two damage zones.
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2.4. Mid-Span Deflection of the Simply Supported Beam with Many Damaged Locations

Using this characteristic, the calculation for an SS beam with an N damage zones
follows the same procedure outlined in Section 2.3, utilizing Equation (22):

∆yN0 =
1

∑
N

∆yi(i−1)) = ∆yN(N−1) + . . . + ∆y21 + ∆y10 (22)

The pattern of the ∆yN0 diagram can be discerned from the ∆yi(i−1) diagrams. Similar
to the ∆y21 diagram presented in Section 2.3, the ∆yi(i−1) diagram comprises two compo-
nents: there is (1) a cubic line within the ith damage zone and there are (2) straight lines
in the remaining zones. It should be noted that combining two straight lines results in
another straight line while adding a straight line to a cubic curve will yield a cubic curve.
Consequently, the ∆yN0 diagram features cubic curves at N damage zones and straight
lines in the remaining zones, as depicted in Figure 9.
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2.5. The Proposed Framework of Identification of Damage Zones in SS Beam

Assuming that the first structural state is known, the proposed method outlined above
facilitates the identification of new existing damage zones from this state until the second
structural state. The procedure entails the following:

• Step 1: Calculate yN, representing the mid-span deflection at the second structural
state, by applying a static load P at various positions along the beam.

• Step 2: Determine ∆yN0 = yN − y0 where y0 denotes the mid-span deflection at the
first structural state.

• Step 3: Plot the ∆yN0 diagram.
• Step 4: Identify the new damage zones following these fundamental principles:

1. New damage zones exhibit cubic curve shapes, while the remaining zones display
straight-line shapes.
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2. New damaged positions are typically found near the intersection of two consecutive
first-order lines on the diagram, and new damage zones are discerned through the
two consecutive intersection points between the first-order line and the cubic curve.

3. The first and second derivatives of DC can also aid in determining the damage location
and the damage index.

3. Description of Case Studies

In this study, an SS beam with a length of 24,000 mm is considered. The two supports
(bearings) are positioned at the beam’s ends. The beam’s cross-section is a wide flange
section comprising a compression flange and a tension flange of 250 × 25 mm, along with
a web of 550 × 14 mm, as illustrated in Figure 10. The Poisson’s ratio is set at 0.3 and
the density of steel is 7850 kg/m3. Additionally, the elastic modulus of steel is 200 GPa.
To estimate the beam responses, a static point load P of 5 tons (49.05 kN) is applied
in a downward direction at various points along the beam. Three numerical models,
implemented in Midas FEA NX 2020 (v1.1) software [36], are employed to validate the
proposed theoretical method. The first model utilizes beam elements to describe the I-beam,
the next model employs plate elements to describe the compression flange, tension flange,
and beam web, and the final model uses solid elements to describe the I-beam, as depicted
in Figure 11. Unlike the proposed theoretical method, these numerical models apply the
Timoshenko–Ehrenfest beam theory, which converges towards the Euler–Bernoulli beam
theory. Figure 12 illustrates the mid-span deflection curves in the intact SS beam obtained
by using the proposed method with Equation (2) and numerical models.
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Figure 11. Finite element model: (a) beam element, (b) plate element, (c) solid element. 
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Figure 10. Cross-section of beam.
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250

250

14

55
0

25
25

Figure 11. Finite element model: (a) beam element, (b) plate element, (c) solid element.
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Figure 12. Mid-span deflection of the intact SS beam.

As evident from the figure, the curves derived from both the theoretical and numerical
methods exhibit minimal discrepancies. The mid-span deflection values obtained from the
proposed method and the numerical models, using beam, plate, and solid elements, are
as follows: −57.9364 mm, −56.7014 mm, −57.9528 mm, and −57.5064 mm, respectively.
The lowest deflection result from the plate element is attributed to material superposition
between the compression flange–beam web and the tension flange–beam web, as indi-
cated in the orange section in Figure 11b. In this scenario, a portion of the beam web is
calculated twice on the two flanges, increasing beam stiffness and consequently resulting
in a significant decrease in deflection. For the remaining three models, the deflection of
the proposed model is approximately 0.74% to 0.77% lower than that of the beam and
solid models, respectively. This variance arises from the inherent assumptions of the
Timoshenko–Ehrenfest beam theory compared to the Euler–Bernoulli beam theory. Sub-
sequently, several case studies of the damaged beam are considered using the following
information, while the results and discussions are presented in Section 4. The deflection val-
ues of the finite element (FE) beam and FE solid models are nearly identical. Consequently,
the subsequent sections will employ the FE beam model as the numerical representation.

3.1. Single-Damage Beams with Different Positions and the Same Remaining Stiffness

The first case study examines a beam with a single-damage zone at various positions
along its length. Specifically, five locations are investigated, including points at 1/8,
1/4, 3/8, 1/2, and 5/8 of the beam’s length. In all cases, the remaining stiffness of the
damage zone remains constant, set at 80% of the intact beam stiffness. These scenarios are
summarized in Table 1.

Table 1. Single-damage cases with different positions.

No Damage Case Damage Location Remaining Stiffness
of the Damage Zone Remarks

1-0 D0100% Intact beam

1-1 D1180% 2850–3150 mm 80% One new damage
zone

1-2 D1280% 5850–6150 mm 80% One new damage
zone

1-3 D1380% 8850–9150 mm 80% One new damage
zone

1-4 D1480% 11,850–12,150 mm 80% One new damage
zone

1-5 D1580% 14,850–15,150 mm 80% One new damage
zone
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3.2. Single-Damage Beam at the Same Positions with Different Remaining Stiffness

This case study focuses on a beam with a single-damage zone fixed at the 3/8 point of
the beam’s length. However, the remaining stiffness of the damage zone varies across cases,
ranging from 60% to 90% of the intact beam’s stiffness. Details of these cases are provided
in Table 2.

Table 2. Single-damage cases with different remaining stiffness.

No Damage Case Damage Location Remaining Stiffness
of the Damage Zone Remarks

2-1 D2160% 8850–9150 mm 60% One new damage
zone

2-2 D2270% 8850–9150 mm 70% One new damage
zone

2-3 D2380% 8850–9150 mm 80% One damage zone,
same case of D1380%

2-4 D2490% 8850–9150 mm 90% One new damage
zone

3.3. Beam with Multiple Damage Zones Compared to Intact Beam

In this case study, the effects of multiple damage zones on the mid-span deflection
are taken into account by comparing them with the intact beam. Various scenarios with
two and four damage zones are considered, including cases with identical and differing
remaining stiffness values. These are presented in Table 3.

Table 3. Multiple damage cases compared to intact beam.

No Damage Case Damage Location Remaining Stiffness of
the Damage Zone Remarks

3-1 D311
90%.D312

90%

D311: 8850–9150 mm 90%
Two new damage zones

D314: 14,850–15,150 mm 90%

3-2 D321
80%.D322

90%

D321: 8850–9150 mm 80%
Two new damage zones

D322: 11,850–12,150 mm 90%

3-3 D331
80%.D332

80%

D331: 8850–9150 mm 80%
Two new damage zones

D332: 11,850–12,150 mm 80%

3-4 D341
70%.D342

75%

D341: 8850–9150 mm 70%
Two new damage zones

D342: 11,850–12,150 mm 75%

3-5 D351
75%.D352

70%.D353
70%.D354

75%

D351: 5850–6150 mm 75%

Four new damage zones
D352: 8850–9150 mm 70%

D353: 11,850–12,150 mm 70%

D354: 14,850–15,150 mm 75%

3.4. Beam with Multiple Damage Zones Considering New Damages and Development of
Existing Damage

This case study extends the previous scenarios in Sections 3.1–3.3 to investigate the
effects of developing new damage zones or the continued growth of existing ones. Five
specific cases are examined, detailed in Table 4. These include scenarios where existing
damages continue to develop, new damage zones emerge, or a combination of both occurs.
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Table 4. Multiple damage beam with new damages and development of existing damages.

No Damage Case Damage Location

Remaining Stiffness

Remarks1st Structural
State

2nd Structural
State

4-1 D4180% → D4160% D41: 8850–9150 mm 80% 60% One existing damage zone
is developing.

4-2 D421
80%.D422

90% → D421
70%.D422

75%

D421: 8850–9150 mm 80% 70% Two existing damage zones
are developed
simultaneously.D422: 11,850–12,150 mm 90% 75%

4-3 D431
80%.D432

100% → D431
80%.D432

90%

D431: 8850–9150 mm 80% 80% The existing damage is not
developed, but new

damage appears.D432: 11,850–12,150 mm 100% 90%

4-4 D441
90%.D442

100% → D441
70%.D442

75%

D441: 8850–9150 mm 90% 70% The existing damage is
developing, while new

damage appears.D442: 11,850–12,150 mm 100% 75%

4-5 D451
100%.D452

70%.D453
75%.D454

100% →
D451

75%.D452
70%.D453

70%.D454
75%

D451: 5850–6150 mm 100% 75%
One existing damage zone
is developing and one other

is not, while two new
damage zones appear.

D452: 8850–9150 mm 70% 70%

D453: 11,850–12,150 mm 75% 70%

D454: 14,850–15,150 mm 100% 75%

4. Results and Discussion
4.1. Single-Damage Beams with Different Positions and Same Remaining Stiffness

The DCs at mid-span points between beams with single damage zones and intact
beams in five cases of 1-1 to 1-5 are depicted in Figure 13. Furthermore, Figures 14 and 15
illustrate the first and second derivatives of these DCs, respectively. It is evident from
these figures that the results obtained from the proposed method align perfectly with
those obtained via the numerical method when using Midas FEA across all case studies,
underscoring the accuracy of the theoretical equations developed in this study.
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Moreover, considering the same damage index, the change in mid-span deflection
increases as the damage zone approaches the mid-span point, as shown in Figure 13.
Notably, the case of damage occurring at the mid-span point (case 1-4) yields the maximum
DC value (−0.5325 mm), whereas the damage case at L/8 of the beam (case 1-1) results in
the smallest DC value (−0.0587 mm), as depicted in Figure 13. This implies that the values
of the first and second derivatives of the DC are greatest when the damage zone is at the
mid-span point, as illustrated in Figures 14 and 15.

Furthermore, Figure 14 demonstrates that the first derivative of DC remains constant
on the left and right sides of the damage position, albeit with differing values. For instance,
in case 1-4 with the damage zone at the mid-span point, the first derivative of DC is
−4.466 × 10−5 on the left side and 4.466 × 10−5 on the right side. Conversely, within the
damaged beam section, the value of the first derivative of DC varies. This observation is
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more apparent in Figure 15, where the second derivative of DC is zero on the left and right
sides but non-zero within the damaged beam section.

As described in Section 2.2, the DC, along with its first or second derivatives, as well
as the deflection of the intact beam, can be utilized to calculate the damage index and
the remaining stiffness. For example, in cases 1-3, where the deflection at the location of
8850 mm equals −52.468 mm and the DC is −0.3728 mm, these values aid in determining
the damage index (0.25) and the remaining stiffness (80%), given that the parameters a and
b are equal to 8850 mm and 300 mm, respectively, as mentioned in Section 2.5.

4.2. Single-Damage Beam with the Same Positions and Different Remaining Stiffness

Figure 16 shows the deflection changes between beams with single damage zones and
intact beam across four cases, denoted as 2-1 to 2-4. The first and second derivatives of
these DCs are illustrated in Figures 17 and 18, respectively. Case 2-1, characterized by the
smallest remaining stiffness of 60%, exhibits the highest DC value, recorded at −1.005 mm,
as evident in Figure 16. Conversely, as the remaining stiffness of the damage zone increases,
the deflection change diminishes, reaching −0.1675 mm in cases 2-4. Notably, dividing
each DC function (of the above four cases) by the expression (1 − f )/f (of each case) yields
a unique function independent of f, but it is solely dependent on the parameters a, b, and
l, as mentioned in Section 2.1. Furthermore, it is noteworthy that in these four cases, the
intersection zone between the two first-order lines of the DC function in Figure 16 remains
consistent. This zone corresponds to the section where the value of the first derivative of
DC varies, as illustrated in Figure 17, and the region where the second derivative of DC
values is non-zero, as shown in Figure 18. The results obtained for DC, and the 1st and 2nd
derivatives of DC from both the proposed model and the numerical model, are very close
to each other. Therefore, the following sections will only refer to the proposed model.
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Figure 18. The second derivative of mid-span deflection changes with one damage zone at the same
position and different remaining stiffness.

4.3. Beam with Multiple Damage Zones Compared to Intact Beam

Figures 19–21 present the deflection changes and their first and second derivatives
in scenarios involving beams with two or four damage zones compared to intact beams,
respectively. Similar to the preceding scenarios, the damage zone is identified at the
intersection between the first-order lines of DC, as shown in Figure 19. This intersection
also corresponds to the zone of value change for the first derivative of DC in Figure 20, or the
section with non-zero values of the second derivative of DC in Figure 21. Furthermore, the
number of damage zones equals the number of first-order lines of DC in Figure 19, minus
one. It also corresponds to the number of value change segments of the first derivative
of DC in Figure 20 or the number of non-zero zones of the second derivative of DC in
Figure 21.



Eng 2024, 5 911
Eng 2024, 5, FOR PEER REVIEW 17 
 

 

 
Figure 19. Mid-span deflection changes with multiple damage zones compared to an intact beam. 

 
Figure 20. The first derivative of mid-span deflection changes with multiple damage zones com-
pared to an intact beam. 
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Figure 20. The first derivative of mid-span deflection changes with multiple damage zones compared
to an intact beam.

As described in Section 2.2, the remaining stiffness or damage index can be calculated
by using the ratio of the DC, the first or second derivatives of DC, and the deflection of
the intact beam. This calculation is performed using Equations (15)–(17). The remaining
stiffness values are illustrated in Figure 21. Additionally, the figures demonstrate that in
case 3-1 (D311

90%.D312
90%), where the two damages are symmetric across the mid-span

point, the diagram of DC, and its first and or second derivatives are all symmetric. The DC
value at the location of the damage zones is equal to −0.2696 mm. In case 3-3, with the
same remaining stiffness (scenario D331

80%.D332
80%), the maximum DC value is found at

the damage location closest to the mid-span point.
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When the two new damage zones appear, as considered in cases 3-1 (D311
90%.D312

90%),
3-2 (D321

80%.D322
90%), 3-3 (D331

80%.D332
80%), and 3-4 (D341

70%.D342
75%), the maximum

DC values gradually increase, rising in an inversely proportional manner to the remain-
ing stiffness. These four cases reach the greatest values of −0.2696 mm, −0.5571 mm,
−0.8370 mm, and −1.2324 mm, respectively, as illustrated in Figure 19. Additionally, in
case 3-5 (D351

75%.D352
70%.D353

70%.D354
75%), with four damage zones, the second deriva-

tive of DC exhibits four non-zero values zones corresponding to four damage zones, as
presented in Figure 21.

4.4. Beam with Multiple Damage Zones Considering New Damages and Development of
Existing Damages

Figures 22–24 illustrate the deflection changes and their first and second derivatives,
considering new damages and the development of existing damage, respectively. In
Figure 22, the DC in case 4-1 (D4180% → D4160%) demonstrates the ongoing deterioration
process of this beam, as the remaining stiffness decreases from 80% to 60%, represented by
a “new” failure at the original damage location. The value of f = 70.6% in Figure 24 is the
solution of the equation: (1 − 80%)/80% + (1 − f )/f = (1 − 60%)/60%. In case 4-2, initially,
there were two failures at 3/8 and 4/8 length of the beam, with remaining stiffness equal
to 80% and 90%, respectively. Later, the remaining stiffness of the first failure was reduced
from 80% to 70%, and fell from 90% to 75% for the second one, represented by two “new”
failures on the second derivative of DC, as illustrated in Figure 24. The values of f 1 = 84.8%
and f 2 = 81.8% in Figure 24 are the solution of the following equations: (1 − 80%)/80%
+ (1 − f 1)/f 1 = (1 − 70%)/70% and (1 − 90%)/90% + (1 − f 2)/f 2 = (1 − 75%)/75%. In
case 4-3 (D431

80%.D432
100% → D431

80%.D432
90%), the number of first-order lines of DC in

Figure 22, the number of value change segments of the first derivative of DC in Figure 23,
and the number of non-zero zones of the second derivative of DC in Figure 24 indicate that
new damage occurs between the first and second structural states, although the beam had
two damage zones at the second structural state. This occurs because a damage zone is
not developed further. Contrarily, in cases 4-4, one new damage occurs while the existing
damage continues developing. Therefore, based on the DC and the first or the second
derivative, as illustrated from Figure 22 to Figure 24, there are two new damage zones
between the two structural states. In the last case, 4-5, one existing damage zone is not
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developed further, while the other existing damage zone continues developing and two
new damage zones occur. Thus, between two structural states, it can be considered that the
beam experiences three new damage zones (represented by the number of first-order lines
of DC in Figure 22, which equals four, and the number of value change segments of the first
derivative of DC in Figure 23 and the number of non-zero zones of the second derivative of
DC in Figure 24, all equal three).
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5. Conclusions

This paper introduces a novel method for detecting damages in a simply supported
beam. The approach hinges on assessing the changes in deflection values at the mid-span
point between two structural states. These alterations, along with the first- or the deriva-
tives of DC, aid in pinpointing damages and determining the damage index. The validation
of the proposed theoretical method is achieved through numerical modeling using three
numerical models with beam elements, plate elements, and solid elements. Various case
studies are conducted, encompassing scenarios like (1) single-damage beams with differ-
ent positions but identical remaining stiffness, (2) single-damage beams with consistent
positions but varying remaining stiffness, (3) multiple damage zones in comparison to an
intact beam, and (4) multiple damage zones with consideration of new damage zones and
the progression of existing damage. The results from these case studies confirm the effec-
tiveness of the method in accurately identifying damage locations and calculating damage
indices. Furthermore, this method can be extended to locate damage and calculate damage
indices using the deflection of any point, not just the mid-span location. However, the
comments provided in this study are solely reliant on the proposed method and numerical
simulations, excluding experimental data. In practical scenarios, noises may occur and
potentially influence measurement outcomes, consequently impacting the identification
of the damage location and damage index. Further research should incorporate beam
networks (that include both longitudinal and cross beams), examine essential experiments,
and analyze the impact of random measurement noise.
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Appendix A

The first derivative of deflection change:

• Case of a single damage zone located on the left half of the SS beam:

∂∆y10

∂x
=

P
EI

(1 − f1)

f1
×


b(6a2+6ab+2b2−6la−3lb)

12l if 0 ≤ x < a
[(6a2b+6ab2+2b3−3l(a+b)2)+3lx2]

12l if a ≤ x < (a + b)
b(3a2+3ab+b2)

6l if (a + b) ≤ x

(A1)

• Case of a single damage zone located at the mid-span point of the SS beam:

∂∆y10

∂x
=

P
EI

(1 − f1)

f1
×



− (8(a+b−l)3+8a3−12a2l+3l3)
48l if 0 ≤ x < a[

12lx2−(8(a+b−l)3+8a3+3l3)
48l

]
if a ≤ x < l

2[
−12l(l−x)2−8(a+b−l)3−8a3+3l3

48l

]
if l

2 ≤ x < (a + b)

− [8(a+b)3−12l(a+b)2+8a3+l3]
48l if x > (a + b)

(A2)

• Case of a single damage zone located on the right half of the SS beam:

∂∆y10

∂x
=

P
EI

(1 − f1)

f1
×


− b(3a2+3ab−6al+b2−3bl+3 l2)

6l if x < a

− [3lx2−6l2x+(2(a+b−l)3−2a3+3a2l+2l3)]
12l if a ≤ x < (a + b)

− b(6a2+6ab+2b2−6la−3lb)
12l if x ≥ (a + b)

(A3)

The second derivative of deflection change:

• Case of a single damage zone located on the left half of the SS beam:

∂2∆y10

∂x2 =
P
EI

(1 − f1)

f1
×


0 if 0 ≤ x < a
x
2 if a ≤ x < (a + b)
0 if (a + b) ≤ x

(A4)

• Case of a single damage zone located at the mid-span point of the SS beam:

∂2∆y10

∂x2 =
P
EI

(1 − f1)

f1
×


0 if 0 ≤ x < a
x
2 if a ≤ x < l

2
(l−x)

2 if l
2 ≤ x < (a + b)

0 if x > (a + b)

(A5)

• Case of a single damage zone located on the right half of the SS beam:

∂2∆y10

∂x2 =
P
EI

(1 − f1)

f1
×


0 if x < a
l−x

2 if a ≤ x < (a + b)
0 if x ≥ (a + b)

(A6)
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