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Abstract: Organophosphorus (OP) chemicals were broadly used as insecticides and in the treatment 
of human diseases such as malaria mosquitoes, parasitosis, myasthenia, and glaucoma. The OP tox-
icity is well known. They can cause environmental and health problems and have the possibility to 
accumulate in the food chain. The acceptable daily intake (ADI) can be considered as a measure of 
the effect of pesticide residues in food on human health. In this paper, the partial least squares (PLS) 
approach is used to evaluate the ADIs (expressed as pADIs) of a series of 46 structurally diverse 
OPs. OP structures were pre-optimized using the MMFF94s force field, and structural descriptors 
were calculated for the minimum energy conformers. This dataset was divided into 26 training com-
pounds, and 20 pesticides were included in the prediction set. Several criteria to check the model 
robustness, overfitting, and the potential outliers in the X and Y space were employed. The PLS 
results indicated that new experimental toxicological data would be needed for five out of the 46 
OPs, to improve their known ADI values, for qualitative and quantitative dietary long-term risk 
assessments. 
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1. Introduction 
Pesticides are generally used to prevent and control insects, pests, and diseases in 

the field crops, such as animal and bird repellents, food storage protectants, mold-killing 
substances, antifouling products, soil sterilants, and wood preservatives [1,2]. Initially, 
the main use of pesticides was to diminish pest attack. Simultaneously, increased use of 
chemical pesticides has resulted in pollution of the environment and also caused many 
long-term changes in society. Pesticides are necessary to the farmer in his fight against 
plant pests and diseases. Today, it is anticipated that as much as 45% of the world’s crops 
are damaged by plant pests and diseases. Thus, it is important to employ pesticides to 
protect the crops, both during their growth and their later storage and transport. However, 
the arbitrary and incautious use of pesticides generated extensive contamination in the 
food chain. 

The organophosphorus pesticides (OPs) were introduced as replacements for the or-
ganochlorine pesticides, after the tendency of DDT and its metabolites to bioaccumulate 
in ecosystems and cause adverse health effects, particularly in top predators, led to the 
legal prohibition or restraint of their use in the 1970s [3]. As a result of the increased use 
of OPs, even though they originally were considered to be less dangerous to the environ-
ment due to their low persistence, different ecotoxicological problems appeared related 
to their high acute toxicity. The unreasonable use of organophosphate pesticides can gen-
erate environmental pollution problems due to their stability, high toxicity, and capacity 
to accumulate in the food chain [4]. 
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The organophosphorus insecticides have a common mechanism in the inhibition of 
acetylcholinesterase enzyme. Their relative potential toxicity in humans, rodents, and in-
sects differ in their biotransformation and accumulation among these species [5]. The 
binding of OPs to carboxylesterases, cholinesterases, and other targets, which have been 
identified as receptors and enzymes involved in the hydrolysis of endobiotics, plays a key 
role in limiting the binding of OP compounds to acetylcholinesterase (AChE) [6]. Phos-
phorylation of AChE, which hydrolyzes acetylcholine and thus finishes its neurotransmit-
ter activity, is the principal mechanism of OP toxicity in mammals, insects, and nema-
todes, with 70% to 90% inhibition usually proving lethal. 

The risk assessment of chemicals is usually divided into similar but separate prac-
tices, depending on whether the evaluated chemical causes cancer (is a carcinogen) or not 
(is non-carcinogen) [7]. The major difference in the calculations of carcinogenic and non-
carcinogenic risks involves the method by which risks from low level exposures are de-
termined (Winter, 1992). For non-carcinogenic effects, it is assumed that a toxicity thresh-
old exists, and exposures at levels below this threshold should not cause any effects. This 
measured quantity is identified as the no-observed-adverse-effect level (NOAEL). The ex-
istence of a NOAEL suggests that a toxicity threshold exists, and this concept of a thresh-
old provides the basis for non-carcinogenic risk assessment [8]. 

The Joint FAO/WHO Expert Committee on Food Additives (JECFA) proposed, for 
the first time in 1958, the ‘acceptable daily intake’ (ADI) concept to assess the pesticide 
residue in food [9] with irrelevant modifications in 1962 [10,11], 1974, and 1987 [12]. Later, 
hundreds of food additives and pesticide residues were evaluated and reevaluated by 
these two international expert groups [13]. The ADIs, used nationally and internationally 
in the development of food standards, have proved adequate in allowing the careful use 
of agrochemicals and in protecting the health of the consumer [14]. 

ADI represents an estimate of the amount of a food additive, expressed on a body-
weight basis that can be ingested daily over a lifetime without significant risk to health 
[11]. The World Health Organization (WHO) and the United States Environmental Pro-
tection Agency (U.S. EPA) have determined an ADI for an actual risk management deci-
sion in the regulatory process of pesticide safety standards. 

The determination of acceptable daily intake (ADI) for the toxicological assessment 
implies collection of all significant data, establishing the no-effect level using the most 
sensitive indicator of the toxicity, and applying an appropriate safety factor for humans 
[13]. The ADI is determined based on known data at one time. Therefore, it is impossible 
to be certain about the safety of a chemical, and the ADI may be revised for the new toxi-
cological data. 

ADI (considered as health-based control) values of some pesticides were modeled 
previously by Kim [14] using the multiple linear regression (MLR) approach. He con-
cluded that a robust QSAR approach would be helpful for identifying significant infor-
mation about the uncertainty of ADI values, as preliminary human health risk assessment 
for certain pesticides. 

This paper presents the application of the partial least squares (PLS) method to eval-
uate the accessible daily intake (pADIs) values of a series of 46 diverse organophosphorus 
pesticides (http://www.inchem.org/pages/pims.html (accessed on 6 April 2020)) based on 
their molecular structure. Molecular mechanics calculations based on the MMFF94s force 
field were employed to model the pesticide structures. Structural features were computed 
from the minimum energy structures and were related to the pADI values. Several criteria 
were checked to establish the model robustness and outliers in the X and Y space. 
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2. Methods 
2.1. Definition of Target Property and Structural Descriptors 

The pesticide residues in food expressed as the acceptable daily intake (ADI) (mg/kg 
bodyweight), molar converted to pADI (http://www.inchem.org/pages/pims.html (ac-
cessed on 6 April 2020)), was considered as the dependent variable for 46 organophos-
phorus pesticides (Table 1). 

Table 1. The organophosphorus pesticide structures, the experimental (pADIexp) pesticide residues in food, and PmodXPS 
+ [2] values derived from the PLS model. 

No Structure pADIexp PmodXPS + [2] No Structure pADIexp PmodXPS + [2] 

1 * 

 

6.79 0.424 24 
 

7.11 0.593 

2 * 

 

7.8 0.292 25 

 

8.54 0.657 

3 
 

6.96 0.729 26* 7.22 0.183 

4 * 

N

O
O

O

P
S

Cl

Cl

Cl

 

6.99 0.138 27 

 

8.22 0.903 

5 * 

 

8.84 0.084 28 

 

7.6 0.607 

6 
 

8.25 0.181 29 * 
 

7.55 0.055 

7 * 

 

7.54 0.676 30 * 

 

8.48 0.739 

8 
 

7.51 0.962 31 

 

8.17 0.093 

9 *,** 

 

6.46 0.039 32 

 

8.57 0.894 
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10 
 

8.89 0.129 33 * 
 

8.85 0.368 

11 
 

8.18 0.245 34 

 

7.77 0.658 

12 
 

7.74 0.519 35 

 

7.12 0.999 

13 

 

7.36 0.139 36 

 

8.03 0.853 

14 *,** 

 

8.96 0.016 37 
 

9.11 0.764 

15 * 

 

8.01 0.561 38 * 

 

8.57 0.981 

16 
 

8.28 0.625 39 * N
O

OH

O

O

P
S

 

7.2 0.400 

17 

 

8.91 0.808 40 

 

8.78 0.741 

18 

 

7.99 0.162 41 

 

8.47 0.112 

19 *,** 

 

8.78 0.001 42 *,** 

 

7.01 0.006 
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20 
 

7.51 0.882 43 * 

 

7.91 0.409 

21 
 

7.74 0.996 44 

 

8.5 0.122 

22 

 

9.01 0.166 45 *,** 
 

7.41 0.000 

23 * 
 

8.44 0.408 46 * 

 

7.56 0.081 

* Test compounds included in the partial least squares (PLS) model. ** Outliers in the X space. 

The OP structures were pre-optimized using the MMFF94 molecular mechanics force 
field included in the Omega (Omega v.2.5.1.4, OpenEye Scientific Software, Santa Fe, NM, 
USA. http://www.eyesopen.com (accessed on 20 April 2020)) software [15,16]. For con-
former generation, the maximum number of conformers per compound set of 400 and an 
RMSD value of 0.5 Å were used during the conformer ensemble generation. 

The conformers of minimum energy were further employed to derive the structural 
parameters, using the DRAGON (Dragon Professional 5.5, 2007, Talete S.R.L., Milano, It-
aly) and InstantJChem (Instant JChem (2020) version 20.15.0, Chemaxon, Budapest, Hun-
gary, http://www.chemaxon.com (accessed on 27 April 2020)) softwares. 

2.2. Partial Least Squares (PLS) Method 
The partial least squares (PLS) approach [17] was employed to relate the pADI values 

to the calculated OP structural descriptors, using the SIMCA (SIMCA P+12 12.0.0.0 2008, 
Umetrics, Sweden, www.umetrics.com (accessed on 27 April 2020)) program. Stable, cor-
rect, and highly predictive models can be obtained by the PLS approach. The model qual-
ity was verified using the squared correlation regression coefficient R2(CUM) and the 
squared cross-validated correlation coefficient, Q2(CUM). The variables importance in the 
projection (VIP) values and the sign of the variables’ coefficients were used to explain the 
descriptor influence on the pADIs. The leave-7-out cross-validation procedure was em-
ployed to select the most significant principal components and to check the internal model 
validation. 

The Y-randomization test was employed to test the model robustness and overfitting. 
In this procedure, the Y-variable is randomly shuffled using the same structural de-
scriptors. The obtained PLS models (after 999 randomizations) must have minimal r2 and 
q2 values [18]. 

Several criteria to check the potential outliers in the X and Y space were employed in 
the training and prediction sets: the score scatter plot, at the significance level of 0.05; the 
distance to the model in X space (for the selected dimension), for the observations used to 
fit the model (DmodX, with a significance level of 0.05); and the probability of belonging 
to the model in the X space, for new observations in the prediction set combined with 
Hotelling’s T2 when the latter is outside the critical limit (PmodXPS+), The Hotelling’s T2 

Range plot (which displays the distance from the origin in the score space for each selected 
observation, with a significance limit of 0.01). 
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3. Results and Discussion 
The X matrix of OP descriptors were analyzed using the PCA approach. A model 

with six significant components (N = 46 and X = 1733) was obtained; the first three com-
ponents explain 51.5% of the information content. 

The following PLS statistical results: R2X(CUM) = 0.21, R2Y(CUM) = 0.365, and 
Q2(CUM) = 0.141 were obtained for one principal component for the entire set of com-
pounds. They demonstrated the model’s low fitting results ( 2

)CUM(XR  and 2
)CUM(YR  are 

the cumulative sum of squares of all the X and Y values). Therefore, the noise variables 
(e.g., coefficient values insignificantly different from 0) were excluded from this model. 

The dataset was divided randomly into training and validation (43% of the total num-
ber of compounds) sets. The compounds 1, 2, 4, 5, 7, 9, 14, 15, 19, 23, 26, 29, 30, 33, 38, 39, 
43, 46, 42, and 45 were included in the prediction set (Table 1). 

A robust and stable model with two significant principal components, which ex-
plains 88% of the information content of the descriptor matrix (for 16 structural de-
scriptors), with R2Y(CUM) = 0.81 and Q2(CUM) = 0.77, was obtained. The descriptor co-
efficients and the VIP values included in the final PLS model are presented in Table 2. 

Table 2. The PLS coefficients in descending order of the variables importance in the projection 
(VIP values *). 

No Variable ID * CoefCS [2] VIP [2] 
1 CIC0 0.052 0.976 
2 GATS1m 0.133 0.860 
3 MATS2e 0.131 0.872 
4 Mor04p 0.125 0.818 
5 Mor19e 0.123 1.205 
6 Mor19m 0.139 1.057 
7 Mor19p 0.101 1.139 
8 Mor19u 0.107 1.156 
9 Mor19v 0.089 1.093 

10 nH 0.036 0.961 
11 R2u 0.075 0.985 
12 RDF010e 0.031 0.951 
13 RDF010m 0.031 0.953 
14 RDF010p 0.036 0.963 
15 RDF010u 0.033 0.957 
16 RDF010v 0.036 0.963 

* CIC0—complementary information content (neighborhood symmetry of 0-order) (topological 
descriptors), GATS1m—Geary autocorrelation—lag 1/weighted by atomic masses (2D autocorrela-
tions), MATS2e—Moran autocorrelation—lag 2/weighted by atomic Sanderson electronegativities 
(2D autocorrelations), Mor04p—3D-MoRSE—signal 04/weighted by atomic polarizabilities (3D-
MoRSE descriptors), Mor19e—D-MoRSE—signal 19/weighted by atomic Sanderson electronega-
tivities (3D-MoRSE descriptors), Mor19m—3D-MoRSE—signal 19/weighted by atomic masses 
(3D-MoRSE descriptors), Mor19p—3D-MoRSE—signal 19/weighted by atomic polarizabilities (3D-
MoRSE descriptors), Mor19u—3D-MoRSE—signal 19/unweighted (3D-MoRSE descriptors), 
Mor19v—3D-MoRSE—signal 19/weighted by atomic van der Waals volumes (3D-MoRSE de-
scriptors), nH—number of Hydrogen atoms (constitutional descriptors), R2u—R autocorrelation 
of lag 2/unweighted (GETAWAY descriptors), RDF010e—Radial Distribution Function—
1.0/weighted by atomic Sanderson electronegativities (RDF descriptors), RDF010m—Radial Distri-
bution Function—1.0/weighted by atomic masses (RDF descriptors), RDF010p—Radial Distribu-
tion Function—1.0/weighted by atomic polarizabilities (RDF descriptors), RDF010u—Radial Dis-
tribution Function—1.0/unweighted (RDF descriptors), and RDF010v—Radial Distribution Func-
tion—1.0/weighted by atomic van der Waals volumes (RDF descriptors). 
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The normal distribution pattern of descriptors [19] of the training and prediction sets 
were checked with a probability of 90% to find the X-outliers (for the training set) and the 
prediction compounds residing outside the AD, using the descriptor pool of the training 
and prediction set (included in the best PLS model). According to this criterion, com-
pound 25 was found as a potential outlier for the training set. This assumption was not 
confirmed by the PModXPS+ criterion (Table 3), according to which compounds 9, 14, 19, 
42, and 45 do not belong to the prediction X space. 

The distance to the X model plot is presented in Figure 1, the score scatter plot for the 
best PLS model in Figure 2, and The Hotelling’s T2 range plot of the best PLS model is 
presented in Figure 3. 

 
Figure 1. DmodX plot of the final PLS model. 

 
Figure 2. Score scatter plot of the final PLS model. 
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Figure 3. The Hotelling’s T2 range plot of the final PLS model. 

The Hotelling’s T2 range plot confirms the absence of leverage compounds and out-
liers. The coefficient and VIP plots are presented in Figures 4 and 5, respectively. 

 
Figure 4. The coefficient plot of the final PLS model. 

In the y-scrambling test performed for the PLS model, a significant low scrambled r2 
( 2

scrr ) and cross-validated q2 ( 2
scrq ) values were obtained for 999 trials. Figure 6 shows that 

in the case of all the randomized models, the values of 2
scrr  and 2

scrq  for the PLS model 

were <0.5 ( 2
scrr / 2

scrq of 0.113/−0.428). The low calculated 2
scrr  and 2

scrq values indicate no 
chance correlation for the PLS chosen model. 

The experimental versus calculated pADIs plot is presented in Figure 7. 
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Figure 5. VIP plot for the final PLS model. 

 
Figure 6. Y-scramble plots for the PLS model. 

 
Figure 7. Experimental versus calculated pADIs plot for the final PLS model. 
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The final PLS model is robust and has good fitting results. All the criteria of this 
model used to check the presence of outliers in the X and Y space indicate that compounds 
9, 14, 19, 42, and 45 do not belong to the predicted X space. For these compounds, new 
experimental toxicological data would be needed, to revise their known ADI values, for 
qualitative and quantitative dietary long-term risk assessments. 

4. Conclusions 
The acceptable daily intake (ADI), considered to be a measure of qualitative and 

quantitative dietary long-term risk assessments, was modeled for a series of 46 organo-
phosphorus (OP) pesticides using the partial least squares approach. Molecular mechan-
ics calculations using the MMFF94s force field gave pesticide conformer ensembles. The 
calculated descriptors of the resulting structures of minimum energy were related to the 
pADIs using the PLS method. Several criteria to verify the model stability and the poten-
tial outliers in the X and Y space were applied to establish if new experimental toxicolog-
ical data would be needed for this dataset. Five OPs were found as potential outliers in 
the X and Y space, and new ADIs would be needed to be established for these compounds. 
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