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Abstract: The main objective of this paper is to solve state observation and external disturbances
estimation for a class of second-order nonlinear systems. The proposed method relies mainly on
the high gain observer as an estimator that tries to estimate the state vector and at the same time
identifies the system’s unknown combined structured and unstructured uncertainties. The efficiency
of the proposed method is demonstrated by estimating the flux and the speed of the induction motor
by simulation.
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1. Introduction

Dynamic systems are usually exposed to control signals that can be used to drive
them to achieve a given objective and solve regulation and tracking control problems
based on reliable models and in the presence of external perturbations and disturbances.
These disturbances are, generally speaking, unstructured, i.e., they may depend on internal
variables of the system in an either unknown or an ignored manner or else, they may also
depend on external phenomena affecting the system [1]. They are unknown, unpredictable,
or unmodeled. They can affect the controlled system response, its stability and closed-loop
performance if they are ignored in the control synthesis phase. Solving this problem is
still an open issue for control systems researchers. In the literature, many control methods
that rely on a reliable model that approximates the system to be controlled are proposed
feedback linearization and backstepping. In this case, some analytic robust terms are
included in the derivation of the controller to guarantee stability and performance in the
presence of uncertainties [2,3]. Sliding mode control techniques are among the robustifying
methods that derive the control law bead on two combined terms, the equivalent control
term based on the system model and a switching robustifying term [4]. High-gain observers
are first used in the context of linear feedback as a tool for robust observer design for loop
transfer recovery achieved by state feedback and in robust H∞ control in [5]. High-gain
observers integration in nonlinear feedback control started in the late 1980 [6–9], where
researchers in these papers have studied a wide range of nonlinear control issues, including
stabilization, regulation, tracking, and adaptive control. They also studied time-varying
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high-gain observers and related problems [5]. In any case, disturbances are classed into
two main categories and referred to as internal uncertainties and disturbances [10–14]. The
main idea of this short note is to simplify the prediction of disturbances acting on the plant
by grouping all external and internal dynamic disturbances into a single disturbance term
and proceed to estimate the effects of this disturbance using High-Gain observers. The rest
of the paper is organized as follows: in Section 2, we present the problem statement and
state observation scheme with active disturbance estimation (ADE) based on the high-gain
observer. The resulting ADE observer is applied to the induction motor system in Section 3
followed by the concluding remarks in Section 4.

2. State Observation Scheme with Active Disturbance Estimation (ADE)
2.1. Problem Statement

Active Disturbance Estimation ADE strategy is based on the possibility of online
estimating of unknown disturbance inputs affecting the plant. The feedback control law
usually requires full knowledge of the state which can be at the same time reconstructed
by the same designed observer. In this section, we consider the following endogenously
perturbed second-order system:{ ẋ1(t) = x2(t)

ẋ2(t) = u(t) + θTφ(x(t)) + ε(t)
(1)

where x(t) = [(x1(t)&x2(t))]T is the state vector and the first element x1(t) of x(t) is only
the measured state or output y(t) = x1(t) and θTφ(x(t)) known linearly parameterized
terms and ε(t) represents the unmodelled unknown uncertain terms. The system defined
in (1) can be used to derive an adaptive high-gain observer that reconstructs the state vector
with an adaptive law that estimates the unknown parameter vector θ the observer error is
bounded and is ensured to converge given some robustness conditions on the term ε(t) to
be verified. For more information on designing high-gain observers, the readers can refer
to reference [5]. In the context of Active Disturbance Estimation ADE disturbances and
nonlinearities may be combined in a single term that can be approximated online. This
suggests rewriting the second-order uncertain system in the following form:

This is an example of the equation:{ ẋ1(t) = x2(t)
ẋ2(t) = u(t) + ξ(t)

(2)

where ξ(t) = θTφ(x(t)) + ε(t).
The term ξ(t) combines all the unknown exogenous terms. It is assumed that ξ(t)

and its first-order time derivative are uniformly absolutely bounded. Note that many
mechanical electrically driven systems in robotics and mechatronics can be represented by
the system in Equation (1). The objective can then be stated as follows: to design a state
observer to estimate the state vector and actively estimates the unknown exogenous terms
with converging observation errors.

2.2. High-Gain Observer with Active Disturbance Estimator

Consider the following Extended State Observer (ADE):{ ˙̂x1(t) = x̂2 + λ1(x1(t)− x̂1(t))
˙̂x2(t) = u(t) + ξ̂(t) + λ2(x1(t)− x̂1(t))

˙̂x3(t) = λ3(x1(t)− x̂1(t))
(3)

where λ1,λ2 and λ3 are (ADE) observer gains and they are chosen to achieve convergence.

λ1 =
1
ε
× (p0 + 2ξ0ω0)

λ2 =
1
ε2 × (2p0ξ0ω0 + ω2

0)
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λ3 =
1
ε2 × (p0ω2

0)

with p0, ξ0,ω0 are positive constants and ε being a small parameter bestowing a high-gain
character to the ESO design. Here, the variable ξ̂ is supposed to estimate the total distur-
bance input to the system ξ(t), composed of the two terms; the endogenous perturbation
input θTφ(x(t)) and the exogenous perturbation input ε(t).

Defining the estimation error vector as e1(t) = x1(t)− x̂1(t),e2(t) = x2(t)− x̂2(t) and
eξ(t) = ξ(t)− ξ̂(t), its dynamics evolve according to the linear perturbed dynamics{ ė1(t) = e2 − λ1e1(t)

ė2(t) = eξ(t)− λ1e1(t)
ė3(t) = ξ − λ3(x1(t)− x̂1(t))

(4)

The derivative term ξ̇ is given by:

ξ̇ = θT d(φ(x(t))
dt

+
d(ε(t))

dt

It is bounded given that the nonlinear terms are continuous and their derivatives are
continuous as well. Another methodology based on adaptive control can be used to
estimate the term θT(φ(x(t)) rather than ξ̂(t) Defining the error vector as eT = (e1, e2, eξ)
Equation (4) can be written as

ė =

−λ1 1 0
−λ2 0 1
−λ3 0 0

+

0
0
1

ξ̇(t) (5)

The right choice of the design parameters λi ensure the convergence of the observer
error dynamics in (4) for more details on the convergence readers may refer to the book
written by Hassan Khalil on High gain observers (5).

3. Ade Observer for the Induction Motor
3.1. Induction Motor System Modeling

The induction motor is one of the most complex dynamical systems due it is difficult
to control since this system is considered to be multivariate having properties such as
high coupling and high non-linearity. It is generally described by a fifth-order nonlinear
differential equation with two inputs. Moreover, the control and the parameters estimation
of an induction motor is very complex, because it is subject to unknown disturbances
and the variation of motor parameters due to heating and magnetic saturation. We used
field-oriented control (FOC) to perform a change of variables to bring the equations into
new coordinates that will be simple to work with, where the currents regulating the flux
and the speed are decoupled [15,16]. Thus, instead of working with (ψra,ψrb), one uses the
polar coordinate representation (ρ,ψd) [15,16]. IM is represented by the model [15–17].

dω
dt = µψdiq − f

J ω − 1
J τL

ψd
dt = −ηrnψd + ηrnLmid
did
dt = −γnid + ηrnβψd + npωid +

ηrn Lmi2d
ψd

+ f1 +
1

σLs
ud + δ1

diq
dt = −γniq − βnpωψd − npωid −

ηrn Lmidiq
ψd

+ f2 +
1

σLs
uq + δ2

dρ
dt = npω +

ηrn Lmiq
ψd

τe = Jµψdiq

(6)

In the above model, the angular speed of the rotor is denoted by ω, ψr is the flux in the stator
reference frame, and iS and uS denote the stator currents and voltages, np is the number
of pole pairs, Rs and Rr are the stator and rotor resistances, M is the mutual inductance,
Ls and Lr are the stator and rotor inductances, and the two mechanical parameters: J is
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the inertia of the rotor and f is the load torque. The resistances Rs, Rr and the inductances
Ls , Lr will be treated as uncertain parameters with Rsn, Rrn and Lsn, Lrn as their rated
values, respectively. ηrn = Rrn

Lrn
, ηsn = Rsn

Lsn
δ1 = δRrg1 + δSrg2 + δLrg3 + δLsg4, δ2 =

δRrg5 + δSrg6 + δLrg7 + δLsg8. Where f1 and f2 are continuous functions of δRr, δRs, δLr, δLs
are continuous functions of (ψd, id, iq). The electromagnetic torque τe = Jµψdiq is now just
proportional to the product of two state variables ψd and iq. That is the first four equations
of (6) may be written as two decoupled subsystems consisting of the flux subsystem model:{

dψd
dt = −ηrnψd + ηrn Mid

did
dt = fd + ud

(7)

and the speed subsystem model:{
dω
dt = µiqψd −

f
J ω − τL

J
diq
dt = fq + uq

(8)

where

fd = −γnid + ηrnβψd + npωiq +
ηrn Mi2q

ψd
+ f1 + δ1

and

fq = −γniq − npωβψd + npωiq −
ηrnidiq

ψd
+ f2 + δ2

fd and fq are perturbation terms. The field-oriented control consists of using ud to force ψd
to track the constant flux reference ψdn = Midn in the flux subsystem, and the control of
speed in the subsystem is done through the input uq. Consequently, the flux dynamics are
now decoupled from the speed dynamics. However, the differential equations for id and
iq still contain quite complicated nonlinearities in both flux (7) and speed subsystems (8).
To solve the problem of unknown variations in plant parameters and structure, in this paper
a robust ADE observer will be designed to eliminate the effect of unstructured uncertainties
in each subsystem of the decoupled dynamics of flux and speed subsystems of the IM .

3.2. High-Gain Observer with Active Disturbance Estimator

Noting that in applying the feedback (6), there is some uncertainty in the knowledge
of the motor parameters and the state variables. Furthermore, the motor parameters Rr
and Rs can vary significantly due to Ohmic heating while Lr and Ls can also vary due to
magnetic saturation [15]. For that, assuming that all neglected terms for each subsystem
as an error signal ∆i (∆d and ∆q) consequently, the dynamics of the output (yd = x1 = ψd)
(yq = ξ1 = ω). Defined by (7) and (8), respectively, will be expressed as:

Flux expressed: {
ẋ1(t) = x2(t)
ẋ2(t) = fd(t) + ud(t)

(9)

Speed expressed: {
ξ̇1(t) = ξ2(t)
ξ̇2(t) = fq(t) + uq(t)

(10)

Our objective is to develop a high-gain observer with an active disturbance estimator
that is capable of estimating the flux and speed of an induction motor and eliminating
the uncertainties effect in the observer law in order to achieve a good estimation of the
desired trajectory and to solve the problem of unknown variations in plant parameters
and the load torque. In designing an observer law for speed estimation and torque load
generation based on a given flux reference signal, for each subsystem, a simpler strategy
is followed in this paper where two ADE observers are used to overcome the effects of
nonlinear uncertainties and neglected terms in the accuracy of the estimation. The desired
torque τ∗

e = µψ∗
d iq to be generated with the corresponding reference flux ψ∗

d . In order to
the flux tracking, we introduce the state variables (x1 = ψd), (x2 = ẋ1) and (ζd = fd) the
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state space model (6) and for the tracking problem of the speed we define the new state
vector (ξ1 = ω),

(
ξ2 = ξ̇1

)
and

(
ζq = fω

)
the speed subsystem dynamics given in (9) can

be written as follows: 
ẋ1(t) = x2(t)
ẋ2(t) = ζd(t) + u(t)
ζ̇d(t) = ḟd(t)

(11)

where
ζd(t) = fd(t) = η2

rnψd − η2
rn + ηrn MFd, bd =

ηrn M
σLs

and
u(t) = ud(t)


ξ̇1(t) = ξ2(t)
ξ̇2(t) = ζq(t) + u(t)
ζ̇q(t) = ḟq(t)

(12)

where
fq(t) = µψd

(
−γniq − βnpωϕd − npωid −

ηrn Lmidiq
ϕd

)
− f

J ω̇ − τL
J

and
u(t) = uq(t)

Note that the objective of the ADE strategy is to obtain proper estimation, minimize
the total disturbance and obtain a good estimation of the flux and the speed. The ADE
observer law is given by (7) and (8), where λi are design parameters chosen as described
in Section 2. The observer uses the error between the actual measured flux ψ and the
estimated flux ψ̂ for correcting the estimated vector.

4. Results

The performance of the high-gain observer with an active disturbance estimator
is tested by a differential simulation model under Matlab/Simulink environment. The
simulated motor is a six-pole (np = 3), 1/12 horsepower two-phase IM and the rated
parameters of the motor were taken from [15] as Rs = 1.7 Ω, Rr = 3.9 Ω, Ls = 0.0014 H,
Lr = 0.0014 H, M = 0.0117 H , J = 0.00011 K·gm2, f = 0.00014 N·m/rad/s.

The speed and flux estimation performance of ADE is illustrated in graphs (a) and
(b) in Figure 1, respectively, which shows that the ADE observer is robust to parametric
uncertainties and external disturbance variation. Although the references peed is changed
from 100 rad/s to 20 rad/s and the torque load is kept constant with variations. The ADE
observer has not encountered a tracking problem to follow the reference speed and flux as
illustrated in Figure 1 This result shows the achieved performance of the ADE strategy for
the perfect speed and flux esteeming.

For the last simulation scenario, a highly varying load torque is applied with para-
metric uncertainty to show the power of ADE to achieve perfect speed tracking for highly
varying load illustrated in the Figure 2. Obviously, the ADE observer can estimate the speed,
flux and disturbance despite a change in the torque simulation scenario as demonstrated in
Figure 3.

Figure 4 illustrates the ADE observer system’s UABC and d, q-axes control voltage
waveform, respectively.

The external and internal disturbances are grouped in a single term and estimated by
the observer it is highlighted in Figure 5. This signal can be usefull in designing feedback
controllers for induction motor. The above shows the power and robustness of the observer
to estimate the speed and flux in spite of the highly varying load torque and parametric
uncertainty.
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Figure 1. Simulation results with constant load and variation of parametric uncertainties with
ADE Observer.

Figure 2. The applied of varying load.

Figure 3. Simulation results with varying load and parametric uncertainties with ADE Observer.
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Figure 4. Simulation results with varying load and parametric uncertainties with ADE Observer.

Figure 5. Simulation results with varying load and parametric uncertainties with ADE Observer.

5. Conclusions

An active disturbance estimator combined with a high gain state observer is presented
in this paper to address the problem of unmodelled and external disturbances for a second-
order nonlinear system. The convergence of the state estimation disturbances is guaranteed
by the right choice of observer gains. We have applied this method to an induction motor
to show the design choices and the achieved performance although we have assumed a
partly known model of the system to be estimated. In future research, we will try to include
the ADE in designing robust observers to compensate for the unknown terms.
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