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Abstract: This paper introduces a probabilistic assessment of steel column damage caused by blast
loads, utilizing simulation reliability methods and gene expression programming. The research
focuses on an H-section steel column and incorporates uncertainties associated with input loads
(axial and blast loads) and geometric factors (i.e., maximum slenderness) under various boundary
conditions (pinned and fixed supports). The reliability analysis employs three different methods:
the point estimate method (PEM), the Monte Carlo simulation (MCS) method, and the Monte Carlo
simulation with Latin hypercube sampling method (MCS-LHS). To perform the reliability analysis,
formulas derived from a previous study conducted by the authors using gene expression program-
ming (GEP) were employed. Damage assessment was carried out based on a damage index criterion,
considering the post-blast residual axial load-bearing capacity of the steel column. The research
results are presented in terms of damage probability, considering the different reliability analysis
methods and boundary conditions. The findings demonstrate that the PEM effectively estimates the
probabilistic response of the steel column with acceptable accuracy and less effort compared with
the MCS and MCS-LHS. Furthermore, the MCS-LHS demonstrates higher accuracy in estimating
the probability distribution function by utilizing the Latin hypercube sampling (LHS) method, as
compared to the MCS. These findings emphasize the importance of considering uncertainties in
calculating the column response under extreme dynamic blast loading.

Keywords: probabilistic evaluation; steel column; Monte Carlo simulation; Latin hypercube sampling;
point estimate method; blast load; damage index

1. Introduction

Significant structural failures often result from damage to columns, necessitating
their resilience against diverse dynamic loads, ranging from explosions and impacts to
seismic forces and gravity. Comprehending how columns respond under these dynamic
conditions is crucial for predicting overall structural performance. Extensive research
on dynamic loads, including explosions, has been carried out by military organizations
since World War II, with classified findings shaping guidelines for designing structures
to withstand such loads [1,2]. These guidelines have relied on simplified methods like
single degree of freedom (SDOF) analysis [3,4], but currently, complicated finite element
modeling using advanced commercial software tools like LS-DYNA [5], ABAQUS [6], etc.,
is being incorporated into the blast design of structures. From an analytical perspective, two
main approaches exist for analyzing structural elements or members subjected to sudden
dynamic loads: (1) deterministic methods, which employ single values for parameters

Eng. Proc. 2023, 53, 20. https://doi.org/10.3390/IOCBD2023-15200 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/IOCBD2023-15200
https://doi.org/10.3390/IOCBD2023-15200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-3875-2817
https://orcid.org/0000-0002-6686-7016
https://iocbd2023.sciforum.net/
https://doi.org/10.3390/IOCBD2023-15200
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/IOCBD2023-15200?type=check_update&version=1


Eng. Proc. 2023, 53, 20 2 of 7

while disregarding uncertainties, and (2) probabilistic methods, which consider probability
density functions for uncertain parameters, offering insights into safety levels and failure
mode predictions. The contemporary trend in structural design emphasizes reliability to
build cost-effective and safe structures that are resilient to uncertainties. Consequently, the
adoption of reliability methods in designing structures subjected to dynamic loads holds
great significance [7–13]. This study aims to perform a probabilistic evaluation of steel
columns under blast loads by employing various reliability methods, namely the Monte
Carlo simulation (MCS) method; the point estimate method (PEM); and the MCS method
combined with the Latin hypercube sampling (LHS) method, known as MCS-LHS. The
study concludes by estimating the probability density function of steel column failure based
on approximate relationships derived from artificial intelligence-based gene expression
programming (GEP) [14].

2. Blast Loading

An explosion is the rapid release of energy from an explosive source, generating
high-pressure, high-temperature gases. This gas expansion immediately elevates ambient
pressure to the incident level. Following the explosion, ambient pressure rapidly rises
to its peak reflective point and then exponentially decreases until it returns to ambient
pressure. This sequence includes the positive phase (initial rise) and, over a longer period,
the negative phase (gradual decrease). An idealized blast loading is defined as a pressure
time history according to Friedlander’s equation as follows [15]:

P(t) = P0 + Pso

(
1 − t − ta

t+

)
exp

(
−α

t − ta

t+

)
(1)

where Pso represents the peak overpressure recorded at t = 0; P0 denotes the ambient
atmospheric pressure (approximately 101.3 kPa); t+ indicates the duration of the positive
phase; and t− represents the negative phase duration. Additionally, ta is the arrival time,
and α serves as a shape parameter. It is worth mentioning that various formulas from the
literature [16] are available to compute these parameters, relying on the scaled distance
parameter of the explosion, denoted as Z, defined as Z = R/W1/3, where R represents the
detonation distance from the structure or structural member, and W signifies the explosive
weight. Once the blast load parameter is computed, its impact should be regarded as a
pressure distribution along the height of the steel column, allowing for the subsequent
calculation of the structural response in the case of maximum midspan displacement,
post-blast residual axial capacity, and so on. Subsequently, the column response can be
used to determine the damage state of the column under blast loading according to the
damage criteria established based on support rotation, residual axial capacity, and so on.
Further details can be found in [14].

3. GEP Formulas

Artificial intelligence techniques are widely used to predict how a system will behave
in different situations, exploiting previously gathered information about the same sys-
tem [17,18]. These methods create intelligent connections between the inputs and outputs
of a system. One popular artificial intelligence method is GEP, which uses a genetic evo-
lutionary algorithm similar to genetic algorithms and genetic programming for problem
solving [19]. In previous research conducted by the authors of this paper [14], numerous
finite element models of H-section steel columns subjected to various blast-loading scenar-
ios were analyzed. The results of these analyses were then used as a database to determine
the relationships using GEP for calculating the axial capacity, both initial and post-blast, of
H-section steel columns with pinned and fixed-end conditions. To perform probabilistic
analysis in this study, the GEP1P and GEP1F models were adopted from [14] to calculate
the post-blast residual capacity for pinned and fixed-end conditions, respectively, and are
represented in Equations (2) and (3). Additionally, Equations (4) and (5) are also utilized
to determine the axial capacity of the member in the reliability analysis, respectively, for
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pinned and fixed conditions, enabling the calculation of the damage index (DI) based on
Equation (6).

Presidual−Pinned =
0.094(7.66 + R)(R − We f f )

7.09−R + AFy + 0.46R3(R − λmax)
(

We f f − AFy

)
AFy

+ 2
(

We f f − 0.32
)

λ2
max AF3

y − 0.33We f f λ2
max AFy

(
3.56 + We f f − 2Pd

) (2)

Presidual−Fixed =− 0.036
(

1.31 + We f f

)(
We f f − R

)
+ AFy +

RAFy

R − 5.78 + 4.82We f f (AFy − 2.34)
· · ·

+ 0.102
2.43 − R + 0.5λmax − 0.5Pd

+ λ2
max AFy

(
0.2Pd −

0.48We f f
We f f + R

) (3)

Pinitial−Pinned =A − A2λ2
max + 0.177Fy + 0.388A

(
Aλmax + Fy − 1.575

)
+0.0176(A − λmax)

(
0.0535 − A + Fy + F2

y

) (4)

Pinitial−Fixed = A +
Fy

5.089 − 2.605A + Fy
+

4A
(

Fy − 2.018
)

12.878 − λmax + Fy
(5)

DI = 1 − Presidual
Pinitial

(6)

In the above equations, the parameters Weff, R, λmax, A, Fy, and Pd represent, respec-
tively, the effective weight of the explosive charge in kilograms of TNT, the distance of the
structural member from the center of the explosion in meters, the maximum slenderness
ratio, the cross-sectional area in mm2, the yield stress in MPa, and the initial axial load
(i.e., dead load) in kPa. It should be noted that Weff equals WSurface_burst times 1.8, and
WSurface_burst is the actual charge weight (in kg of TNT) detonated at the ground surface
or near it. Furthermore, Presidual represents the residual axial load-carrying capacity of the
column after explosion, and Pinitial signifies the axial load capacity of the column in its
undamaged state. Degrees of damage are also categorized into four levels [20]: (i) low
damage (DI = 0–0.2), (ii) medium damage (DI = 0.2–0.5), (iii) high damage (DI = 0.5–0.8),
and (iv) collapse (DI = 0.8–1.0).

4. Reliability Methods and Uncertainties

In this study, probabilistic analysis was conducted using both MCS and PEM to in-
vestigate the impact of the sampling approach on probabilistic outcomes based on LHS.
The MCS is employed for reliability analyses, recognized for its simplicity and relatively
high accuracy in estimating the probability of failure in general systems. This method has
been extensively utilized in studies related to structural reliability under blast loading. On
the other hand, the PEM, proposed by Rosenblueth [21], offers a probabilistic estimation
technique. It calculates the mean and standard deviation of the desired output by consid-
ering a specific number of input points as estimation points. While suitable for problems
with a low number of random variables, it becomes less efficient as the number of random
variables increases, leading to exponential growth in required input points and compu-
tational costs. MCS, despite demanding a significant number of iterations for accuracy,
can leverage parallel analyses and the power of modern computing machines to mitigate
computational time and cost. Furthermore, to enhance the effectiveness of MCS, researchers
have introduced techniques designed to improve the precision of the method like LHS, etc.
These methods offer advantages over standard sampling, enabling comparable accuracy
with fewer samples or higher accuracy with the same number of samples.

The variables Weff, R, λmax, Fy, and Pd were treated as random variables in the reliability
analysis, while parameter A was regarded as a fixed, deterministic value. This is based on
the assumption that the steel column used in the reliability analysis is a hot-rolled steel
column with a uniform cross-sectional area at all points. Statistical characteristics and
uncertainties of these variables were determined using the normal distribution function.
For the reliability analysis, an IPB300 steel column measuring 3.6 m in length was utilized,



Eng. Proc. 2023, 53, 20 4 of 7

and both pinned and fixed-end conditions were investigated. Table 1 provides the statistical
properties of the input random variables considered for the reliability analysis.

Table 1. Statistical characteristics of random input parameters.

Random
Variable

Mean
Value (µ)

Coefficient
of Variation

(COV)

Standard
Deviation

(σ)

Minimum
Value

Maximum
Value

Weff (kg of TNT) 500 0.1 50.0 350.0 650.0
R (m) 10.0 0.1 1.0 7.0 13.0

λmax (Pin) 47.49 0.05 2.37 40.38 54.60
λmax (Fix) 23.74 0.05 1.18 20.20 27.28
Fy (MPa) 240.0 0.06 14.4 196.8 283.2
Pd (kN) 900.0 0.10 90.0 630.0 1170.0

5. Results and Discussion

After implementing the approximate PEM on the provided genetic relationships, the
obtained results were compared with those obtained using the MCS and MCS-LHS. The
aim of this comparison was to assess the accuracy of the approximate method compared
with simulation methods on the one hand and to investigate the impact of sampling
methods on the MCS output on the other hand. Using the PEM, the mean and standard
deviation of the damage index for pinned conditions were calculated as 0.21857 and
0.033164, respectively. For fixed-end conditions, the mean and standard deviation values of
the damage index were obtained as 0.05303 and 0.01188, respectively. After obtaining the
mean and standard deviation values of the damage index in both pinned and fixed-end
conditions using the PEM, the probability distribution function of the damage index was
determined. The probability distribution function of the damage index obtained using
the PEM was compared with the probability distribution functions obtained using the
MCS with 100 simulations and MCS-LHS with 100 simulations, and the results are shown
in Figure 1. It can be observed that the PEM provides very good accuracy in estimating
the probability distribution function of the damage index compared with the MCS and
MCS-LHS. It may be inferred that the PEM is superior; however, it is crucial to note that
the PEM is an approximate method and may offer less accuracy for complex problems
than MCS-based methods. Based on Figure 1, it is observed that the MCS-LHS provides
better accuracy in estimating the probability distribution function of the damage index
compared with the MCS and offers more accurate results while reducing computational
load. In other words, when using the MCS with 100 simulations and the MCS-LHS
with 100 random samples, the MCS exhibits more dispersion, whereas the MCS-LHS
accurately approximates the cumulative probability distribution function of the damage
index (compared with the PEM, which offers acceptable accuracy). Additionally, further
investigations were carried out (but not presented here), and it was found that using
the MCS-LHS with 100 simulations achieved almost the same accuracy as the MCS with
300 simulations. Thus, it can significantly contribute to reducing analysis times in reliability
analyses with high computational demands.
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Figure 1. Comparison of the probability density function and cumulative probability distribution
function obtained from the PEM and its comparison with the distribution obtained from the MCS
with 100 iterations and the MCS-LHS with 100 iterations for the IPB300 column under both (a) pinned
and (b) fixed conditions.

6. Conclusions

In this study, the response of steel columns to blast loads was explored, with a par-
ticular focus on the implementation of gene expression programming (GEP) formulas to
calculate axial capacities in both initial and post-blast conditions, as well as damage index
criterion. We further delved into the application of reliability methods, namely the Monte
Carlo simulation (MCS) method and the point estimate method (PEM), to assess the proba-
bilistic response of steel columns under blast loads. The MCS, known for its simplicity and
accuracy, provides valuable insights, while the PEM demonstrates its potential by offering
acceptable accuracy, particularly in scenarios with fewer random variables. The integration
of Latin hypercube sampling (LHS) within the MCS as the MCS-LHS method significantly
enhanced precision, enabling the estimation of probability distribution functions with
greater accuracy. These findings underscore the critical role of the MCS-LHS, especially
when precision is paramount, in achieving higher accuracy even with a reduced number
of samples. In other words, the MCS-LHS is able to achieve more accurate results with a
smaller number of calculations or simulations, making it a more efficient and reliable choice
for assessing structural reliability in scenarios where extreme dynamic forces are at play.
Our study advances knowledge of structural dynamics and provides a robust framework
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for assessing damage probability and enhancing the design of resilient structures that
consider uncertainties and dynamic forces.
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