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Simple Summary: Disturbances (so called single event upsets) in the operation of digital electronics
due to primary ionizing particles as well as to secondary products of nuclear reactions is a funda-
mental problem for space and industrial systems. The processes involved are very complex, and the
existing cumbersome software packages for circuits and nuclear interaction simulations are conceptu-
ally poorly compatible and not themselves designed to describe this type of upsets. For prediction
purposes, we have proposed a simple but rather general analytical computational scheme within
which the nuclear and circuit parts of the modeling can be consistently combined. The proposed
analytical approach uses only physics-based or circuit parameters that can be measured or refined
by simulations with standard software packages. Using this approach significantly simplifies and
speeds up the design of reliability of digital computing systems in hostile environments.

Abstract: A new physics-based compact model, which makes it possible to simulate in a unified
way the neutrons and protons of cosmic ray-induced SEU cross-sections, including the effects from
nuclear reaction products and from direct ionization by low-energy protons, has been proposed and
validated. The proposed approach is analytical and based on explicit analytical relationships and
approximations with physics-based fitting parameters. GEANT4 or SRIM numerical calculations
can be used as an aid to adjust or refine the phenomenological parameters or functions included
in the model, taking into account real geometrical configurations and chemical compositions of the
devices. In particular, explicit energy dependencies of the soft error cross-sections for protons and
neutrons over a wide range of nucleon energies were obtained and validated. The main application
areas of the developed model include space physics, accelerator studies high energy physics and
nuclear experiments.

Keywords: direct ionization; low-energy protons; modeling; neutrons; nuclear reactions; SEU
cross-sections; single-event upsets

1. Introduction

Soft errors (or single-event upsets, SEUs), i.e., the reversible changes in digital devices’
states caused by one single ionizing particle, are one of the main challenges of modern
digital electronics [1]. The main sources of such errors in space satellites and in avionics
are the nuclear interactions of protons and neutrons with atoms of the material of elec-
tronic circuits. The soft error rate (SER) or cross-section prediction of nucleon-induced
SEU faces great difficulties because the circuit and the nuclear interaction simulators are
poorly compatible technically and conceptually. Furthermore, aggressive scaling of the
microelectronics components leads to decreased immunity of the digital integrated circuits
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to external transients due to the reduction in the noise margin due to the lowering of
the supply voltage and the reduction in the element size. In particular, the commercial
highly-scaled digital memories become extremely susceptible to the single-event effects
(SEE). For example, the critical charge QC, i.e., the minimum charge to cause an upset of the
memory cell, reduces to the sub-femtocoulomb region. Such values of the collected charge
(of order 103–104 carriers) correspond to the mean deposited energy as small as a few keV
and average values of critical linear energy transfer (LET) less than 1 MeV-cm2/mg. For
example, the circuit critical charge εC can be mapped to the transferred critical energy
required to switch the digital element [2].

εC =
QC
q

εp = 22.5
(

QC
f C

)
keV, (1)

where εp ∼= 3.6 eV(Si) is the mean energy of electron–hole creation [2]. It is important to
emphasize that εC and QC are, as a rule, the purely circuit parameters that characterize the
immunity of a typical digital node to transient electrical disturbances of any origin. The
probability (cross-section) of a nucleon-induced error becomes noticeable when the local
energy release from the products of a nuclear reaction and linear energy transfer (LET) of
nuclear reaction products exceed a critical value Λsec > ΛC ∝ εC, where Λsec is a typical
LET of secondary particles. Since the LET of direct ionization from protons is small, it has
long been reasonably assumed that when exposed to protons, a necessary condition for soft
error generation is a proton-induced nuclear reaction. Nevertheless, the technologically
driven decrease in εC and QC leads to the fact that single-event upsets in digital circuits
can be caused by direct ionization of particles even with a very small LET value, such as by
low-energy protons [3–5].

Another challenge is the neutron-induced soft error rate (SER), arising from the finite
value of the neutron flux in the atmosphere or even at the sea level (~13 cm−2 h−1) [6–9].
The physical processes involved in the failure mechanisms from neutrons and low-energy
protons are quite complex and strictly speaking require cumbersome computational ap-
proaches based on numerical simulations (e.g., GEANT4, TCAD or MRED) [10–12]. Such
systems are often inaccessible, inconvenient to use and require highly skilled users.

In this study, we propose a variant of a compact model for the calculation of the SEU
cross-sections induced by protons, neutrons and direct ionization (including by low-energy
protons) based on transparent physical models and controlled approximations. We will
demonstrate here that even such seemingly heterogeneous problems, such as modeling
of the SEU cross-sections caused by secondary products of nuclear reactions and by low-
energy proton direct ionization, can be readily simulated within the framework of a unified
approach. The main motivation of this study is to try to replace the cumbersome and
opaque GEANT4 numerical simulation with a simple and transparent analytical model
with physically measured and calculated parameters.

2. Methodology
2.1. A General Framework

The suggested model is intended to first analyze the SEU rate in regularly arranged
electronic devices such as memory circuits. There are two types of the single-event errors,
namely the errors due to direct ionization of primary particles and errors due to ionization
by the secondary products of elastic or non-elastic nuclear interactions formed upon
irradiation with the primary particles. Both types are determined ultimately by direct
ionization with heavy ions of either primary or secondary origin. The volume in which
charge separation and collection occurs is commonly referred to as the sensitive volume [13].
Due to the nonlocality of the ion impact, the concept of a sensitive volume for an individual
memory cell is violated, since the entire memory area is a single sensitive volume with an
effective thickness te f f [14]. This effective thickness turns out to be quite small (≥10 nm)
for ICs with sub-femtocoulomb QC. At the same time, the thickness of the region in which
nuclear reactions occur, affecting the ionization in the sensitive region, is of the order of the
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secondary particle range (LR ≥ 1 µm). Conceptually, these are two completely different
regions, one of which is determined by circuit factors (simulated with CAD or TCAD) and
the other by nuclear physics (GEANT4). The region of actual nuclear reactions will be
referred to below as the influencing region (see Figure 1).
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Figure 1. Conceptual view of influencing and sensitive volumes.

The influencing volume, where actual nuclear reactions take place, is typically much
larger than the sensitive volume where the charge is collected (LR >> te f f ). This allows us
to represent the sensitive region as being affected by a flow of secondary ions with its own
differential LET spectrum Φsec(Λ) (here, Λ is LET, for brevity). Then, the expected value
of the error number per memory cell with a fixed critical charge QC (or, similarly, the soft
error rate per bit (SER)) can be generally calculated as follows [15]:

N(QC) =
∫

σ(Λ|QC )Φsec(Λ)dΛ, (2)

where σ(Λ|QC ) is the LET-dependent direct ionization-induced cross-sections for sec-
ondary particles and Φsec(Λ) is a differential LET spectrum of secondary particles for a
given period of time. The spectrum Φsec(Λ) depends on the cross-sections of the nuclear
interactions, and also on the integrated circuit characteristics (layout, chemical composition,
overlayer structure, etc.) within the influencing volume with spatial scales ~LR significantly
exceeding the charge collection length.

The same value can be calculated as a result of the impact of primary nucleons
(neutrons or protons) using the nucleon cross-section concept σn( εn|QC ):

N(QC) =
∫

σn( εn|QC )Φn(εn)dεn, (3)

where Φn(εn) is the primary nucleon energy spectrum. The energy of each primary nucleon
corresponds to its own LET spectrum of secondary particles, which can be approximated
somehow or simulated with GEANT4. The LET spectrum of secondary particles from
nucleons of all energies can be written in this form:

Φsec(Λ) =
∫

α(Λ|εn )Φ(εn)dεn, (4)

where a conversion function α(Λ|εn ) transforms an energy spectrum of primary particles
to a LET spectrum of secondary particles.

Equations (2) and (3) are fully consistent and equivalent under the linear integral relation:

σn( εn|QC ) =
∫

α(Λ|εn )σ(Λ|QC ) dΛ. (5)

This can be verified directly by substituting (5) into (3) and changing the order of
the integration. An incident flux of primary nucleons with energy εn produces the sec-
ondary ion flux with Φsec(Λ). The LET spectrum of secondary particles can be considered
to be good metrics when describing not only proton-induced but also neutron-induced
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SEUs. GEANT4 can be used as an appropriate tool to simulate the secondary particle LET
spectrum Φsec(Λ) at given proton or neutron energy spectra [16–18].

Each particle of nucleon energy corresponds to its own form of the LET spectrum
of secondary ions, which can be calculated using GEANT4. Such a procedure is very
time-consuming and therefore a simplified and flexible analytical model is highly desirable.

2.2. Cross-Section Modeling: Energy Dependence from LET Dependence

For mono-energetic nucleons with a fluence Φn, we have Φ(εn) = Φn δ(ε − εn) and
Φsec(Λ) = α(Λ|εn )Φn. Thus, the conversion function α(Λ|εn ) = Φsec(Λ)/Φn is simply
the LET spectrum of secondary particles normalized to a fluence of primary particles with
a given energy. The conversion function can be written in this form:

α(Λ|εn ) = αn(εn)p(Λ|εn ), (6)

where p(Λ|εn ) is normalized to unify the LET spectrum generated by the primary nucleons
with energy εn. The energy dependent efficacy αn(εn) can be approximated as follows [19,20]:

αn(εn) ∼= Σ(εn)NatLR(εn), (7)

where Nat is the atom density in material (~5 × 1022 cm−3 in silicon), Σ(εn) is the total
cross-section of neutron-nuclear interactions and LR(εn) is the mean range of secondary
particles. Strictly speaking, the secondary particle generation efficacy αn(εn) should also
include the average number of the products per nuclear reaction, but this uncertainty can
be absorbed by the uncertainty of the secondary particle range which can be considered a
fitting parameter. Assuming the maximum value Σ(εn) ∼10−24 cm2, (see, for example, [21])
and LR ≥ 1 µm, one obtains approximately αn ∼= 10−5 − 10−6. This is an order of magnitude
of a ratio of the maximal cross-sections conditioned by nuclear reaction (typically, of order
10−12–10−14 cm2 per bit) and heavy ion-induced direct ionization (~10−7–10−9 cm2).

Numerical Monte Carlo, analytical and SRIM (see, e.g., [22–24]) simulations have
shown that the LET of secondary particles are distributed approximately according to an
exponential law up to a certain maximum value Λmax~10–14 MeV-cm2/mg. Our GEANT4
calculation demonstrates the same picture (see Figure 2).
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Figure 2. GEANT4 simulations of the LET spectra of secondary particles at different proton energies [14].

All Monte Carlo simulations in the article were performed using GEANT4-10.3.0. The
LET spectra of secondary particles generally depend on many different factors: nucleon en-
ergies, IC layout, geometry, chemical composition of materials, etc. The uncertainty of these
factors complicates and reduces the reliability of formally more accurate results. Therefore,
we will focus in this study on simple analytical models with physically clear fitting pa-
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rameters that can be refined using numerical calculations. The key approximation, which
leads to a dramatic simplification of the simulation, is the effective LET approximation, in
which the LET spectrum is approximated by a delta function p(Λ|εn ) ∼= δ(Λ − Λe f f (εn)),
where Λe f f (εn) is an effective LET which is limited from above by some effective maximum
value Λmax ∼8–14 Mev-cm2/mg. The introduction of a fitting parameter Λe f f (εn) allows
us to avoid cumbersome numerical integration of ill-defined functions in (5). Indeed, the
conversion function takes the form

α(Λ|εn ) ∼= Σ(εn)NatLR(εn)δ(Λ − Λe f f (εn)), (8)

and integration in (5) yields an explicit relation for nuclear-induced SEU cross-section
through direct ionization cross-section from secondary heavy ions.

σn(εn) ∼= Σ(εn)NatLR(εn)σ(Λe f f (εn)
∣∣∣QC ) (9)

The next paragraph will be devoted to the parametrization of SEU cross-sections from
direct ionization.

2.3. Direct Ionization SEU Cross-Section Parametrization

With a decrease in the technological nodes, the threshold energy decreases and the
single-event mechanisms begin to play an ever-smaller role. Independence from the
mechanism means an increase in the role of statistics, describing the processes without
internal correlation. Particularly, the process of ionization and the transfer of energy from
radiation to material becomes quantized and is determined more by general statistics.
Based on statistical consideration, we found that the SEU cross-section (probability) per bit
can be explicitly estimated by the value of the collected charge ∆Q during the passage of
one ionizing particle [25]:

σ(∆Q) =
aC

exp ( QC
∆Q )− 1

, (10)

where aC is the area of the memory cell. Generally, this is in the form of a geometrical or
Bose–Einstein distribution. In practice, the only thing that a researcher can experimentally
set is the particle’s LET at the input, which is linearly related with ∆Q. This makes it
possible to rewrite (10) in an approximate form, allowing for direct comparison with the
test results:

σ(Λ) =
aC

exp ( 2ΛC
Λ )− 1

∼=
{

Kd(Λ − ΛC), Λ > ΛC,

aCe−
2ΛC

Λ , Λ < ΛC,
, (11)

where the slope and threshold of the quasi-linear part of the curve are directly measured
experimental parameters connected with the circuit parameters through the relations

Kd =
aC

2ΛC
and ΛC =

εC
ρSite f f

. (12)

Here, the silicon mass density is ρSi
∼= 2.3 g/cm3 and te f f is the effective charge

collection length. The “above-threshold case” (Λ > ΛC) in (11) describes the multiple-cell
upset cross-sections (σ ≥ aC) [26]. The “sub-threshold case” Λ < ΛC corresponds with
the Hazucha–Svensson approximation [27]. It should be emphasized that, hereinafter, the
critical LET ΛC will always be understood as the result of an unambiguous interpolation of
the linear part of the ion cross-sections σ(Λ) (not a Weibull curve parameter) related to εC
and QC by (1) and (11) (see Figure 3).
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Figure 3. Typical SEU cross-section vs. LET dependence in a linear scale [13].

3. Results
3.1. Nucleon-Induced SEU Cross-Sections

The probability of soft errors is proportional to ionization energy deposition and Λe f f
in the sensitive region. Experimental data and simulations indicate that zero nucleon
energy corresponds to zero Λe f f and, at high εn, the effective LET Λe f f will tend to its
maximum value Λmax ∼8–14 MeV-cm2/mg (see Figure 2). Therefore, it seems reasonable
to parameterize Λe f f (εn) as a monotonically increasing function of the nucleon energy with
saturation at Λmax, such as follows:

Λe f f (εn) ∼=
1
2

(
1

Λ max
+

LRρSi
εn

)−1
∼=

{
εn

2ρSi LR
, εn < ΛmaxρSiLR,

Λmax/2, εn > ΛmaxρSiLR,
(13)

where LR (of order of micrometers) is an effective range of secondary ions which can be
used as a fitting parameter.

The average LET of secondary ions will increase only up to some threshold neutron
energy εn ≤ εnT = ΛmaxρLR ∼= 3.2 (LR/µm) MeV ≤ 10 MeV and then saturates at the
value Λmax/2. In fact, GEANT4 calculations show that the values Λmax themselves are
increasing functions of the energy of primary particles (see, Figure 2) and we will consider
Λmax as a fitting parameter. Figure 4 shows rough approximations for the effective LET of
secondary particle as functions of neutron energies.
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Figure 4. Approximate dependencies of the effective LET on neutron energy Λe f f (εn) simulated with
(13) at Λmax = 15 MeV-cm2/mg for three ion ranges: LR = 1, 3 and 5 µm.

Following (10) and (12), one can obtain an approximate expression for estimating the
energy dependence of the neutron-induced cross-sections:

σn(εn) =
αn(εn)aC

exp (2ΛC/Λe f f (εn))− 1
, (14)



Radiation 2024, 4 43

where αn can be estimated through (11). The neutron-induced nuclear reaction cross-
sections at relatively high energies (εn ≥ 10 MeV) are approximately constant, Σmax

n ~ 1–2
bn, whereas the low-energy (εn ≤ 2 MeV) cross-sections are usually much smaller, although
the behavior of the curve can be very complex [28].

We will roughly approximate the energy dependence of the cross-section for neutron
nuclear interactions by using the phenomenological formula

Σ(εn) ∼=
Σmax

n

1 + exp (− εn−εn0
δεn0

)
, (15)

where εn0 and δεn0 are fitting constants. Figures 5 and 6 show the neutron SEU cross-
sections as functions of εn and circuit parameter ΛC, analytically simulated with (13)–(15).
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The same Equations (13)–(15) were used to validate the model using the experimental 
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The same Equations (13)–(15) were used to validate the model using the experimental
data for proton cross-sections reported in [29] (see Figure 7).
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Figure 7. Comparison of experimental (points) and simulated (lines) data for proton-induced SEU
cross-sections (Lambert et al., 2009 [29]).

The data were simulated with fixed constants aC = 1 µm2, Λmax = 14 MeV-cm2/mg,
LR = 1 µm and Σmax

n = 2 × 10−24 cm2, while the logarithmic slope and the saturation onset
position of the proton cross-section curves in Figure 7 were adjusted by a small change in
the parameters δεn0 (from 1.5 to 3.5 MeV) and εn0 (from 14 to 20 MeV). The maximum cross-
sections were adjusted by the value of ΛC (from 1.5 to 7.8 MeV-cm2/mg). Any refinement
of input parameters (e.g., aC or Σmax

n(p)) will reduce the uncertainty of other fitting constants.
Thus, unlike the traditional Bendel’s and Weibull’s empirical interpolation [30], the relation
(14) is entirely based on transparent physical and circuit approximations and parameters
and therefore can be easily modified and recalculated for different IC nodes, chemical
compositions of the environment and radiation characteristics.

3.2. Proton-Induced SEU Cross-Sections

The total cross-section for proton induction as a function of proton energy can be
written as the sum of two cross-sections due to nuclear reactions and direct ionization:

σp ≡ σp,nucl + σp,dir =

=
αpaC

e
2ΛC/Λe f f (εp)−1

+ aC

e2ΛC/Λp(ε p)−1
(16)

where αp(εp) is the secondary particle generation efficacy which can be simulated with
GEANT4 for every specific configuration (see Figure 8 from [14]). The proton efficacy can
be parameterized in the same way as for neutrons αp(εp) = NatΣ(εp)LR(εp).
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Then, that the efficacy decreases with large proton energies can be explained by the
energy dependence of the elastic Rutherford scattering ΣRuther f ord(εp) ∝ 1/εp, which is the
dominant mechanism of nuclear interactions at moderate proton energies. This explains
the slight decrease in the SEU cross-section observed at high proton energies. The efficacy
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for low-energy protons grows due to an increase in the range of secondary particles LR(εp).
The low-energy nuclear reaction cross-sections for protons at low energies (<10 MeV) are
typically much smaller than for neutrons due to the presence of the Coulomb barrier. The
detailed behavior of nuclear reaction-induced SEU cross-sections for low-energy protons
is masked by the direct ionization-induced SEUs. For protons, we will use the same
approximation for the effective LET of secondary particles as for neutrons at low energies.
The results for the proton SEU cross-sections at high energies usually do not differ much
from the case of neutron-induced upsets [31].

The LET Λp(εp) of low-energy protons can be simulated using SRIM. A characteristic
feature of the proton LET is the presence of a sharp peak at εp~50 keV (see Figure 9).
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Figure 9. SRIM-calculated dependence of LET as a function of proton energy.

For this reason, the calculated dependence of the cross-section on direct ionization
must also have a peak approximately at this energy. The SEU cross-sections are monotoni-
cally decreasing functions of the parameter ΛC (see Figure 10).
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Figure 10. Non-monotonic view of direct ionization SEU cross-sections for low-energy protons
simulated with Equation (16) for different ΛC; Λp(εp) was simulated using SRIM as in Figure 9.

The specific form of the dependence of the total cross-section on the proton energy,
including direct and indirect ionization, is determined by the circuit parameter Λc, as
shown in the illustrative simulation in Figure 11.
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Figure 11. Typical proton-induced SEU cross-sections as a function of energy, simulated with
Equation (16) for critical LETs: ΛC = 0.3, 0.4, 0.5 MeV-cm2/mg (top down).

In practice, there is a problem associated with the fact that the low-energy proton
energy spectra are formed by the specifics of local shielding, which makes it difficult to
simulate due to the difference in the energies of external protons and directly ionizing
internal protons. As the proton energy increases to about 10 MeV, the proton LET decreases
and the total SEU cross-section drops exponentially (see Equation (16)) to the level of
nuclear-induced effects. The results of the model validation are shown in Figure 12 where
the comparison of calculation results and recent experimental data (adopted from Figure 1
in [32]) is presented.
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Figure 12. A comparison of experimental total proton cross-sections vs. energy (different points) and
simulation with (16) (red solid line).

Simulated proton-induced SEU cross-sections are in reasonable agreement in expo-
nentially wide ranges of cross-sections at low-, intermediate- and high-energy protons
at 14 MeV neutrons. Fitting parameters were aC = 0.1 µm2, Λmax = 6 MeV-cm2/mg,
ΛC = 0.4 MeV-cm2/mg and LR = 1 µm, Σmax

n = 1 × 10−24 cm2.

4. Discussion

In this study, we proposed a general computational scheme for estimating the cross-sections
of SEU induced by direct ionization and nuclear interactions (Equations (2)–(5), (10) and (11))
and its simplified analytical implementation (Equations (8), (9), (13) and (15)). The weakest
point of the proposed simplified computational scheme is the method for roughly estimating
the effective LET (Equation (13)). A more rigorous approach involves averaging over the
exponential LET spectrum of secondary particles (see Equations (5) and (6)), which strictly
speaking can only be calculated using the GEANT4 simulation. Any advanced numerical
simulation makes sense in the presence of very detailed input data, which is not available in
practice. Therefore, such calculations require cumbersome additional calibration, which is not
much different from the simple fitting of one parameter within a simplified analytical model.
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The main conceptual differences of the proposed approach compared to existing ones
are as follows:

• Our proposed method consistently derives the nuclear-induced SEU cross-section as a
result of direct ionization by secondary particles. This allows the two failure mecha-
nisms to be described in a unified manner within the same mathematical formalism.

• The generalized relation (10) is used instead of the Hazucha–Svensson formula, which
is a special case of (10) for large values of the critical charge.

• This allows us to describe multiple-cell upsets and the SEUs at very low-energy
deposits during direct ionization of low-energy protons.

• Unlike our approach, the traditional burst generation rate (BGR) method proposed
by Ziegler and Lanford [33] is entirely based on the computation of nuclear effects
and does not include critically important technological parameters such as a memory
cell area aC. The BGR method is valid only when the sensitive volume is so large that
energy deposition can be taken locally.

A new physics-based compact model, which makes it possible to simulate in a unified
way the neutrons and protons of cosmic ray-induced SEU cross-sections, including the
effects from nuclear reaction products and from direct ionization by low-energy protons,
has been proposed and validated. To summarize, we list the main advantages of the
described unified approach in terms of simplicity and realism (analytical equations with
physical and circuit parameters):

• Universality (both for neutrons and protons);
• Generality (the same approach to direct ionization and nuclear reaction-induced effects);
• Compatibility with circuit simulations (critical charge/energy, cell area, etc.);
• Compatibility with radiation simulations (GEANT4, SRIM, etc.);
• Flexibility (can be refined by numerical simulations and adapted to suit different purposes.
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