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Abstract: The exploration of Pb-Zn mineralization in carbonate complexes during field campaign
is a challenging process that consumes high expenses and time to discover high prospective zones
for a detailed exploration stage. In this study, multi-sensor remote-sensing imagery from Landsat-
8, Sentinel-2, and ASTER were utilized for Pb-Zn mineralization prospectivity mapping in the
Akhlamad carbonate complex area, Razavi Khorasan, NE Iran. Due to the presence of carbonate
formations and various evidence of Pb-Zn mineralization, this area was selected. Band composition,
band ratio, principal component analysis (PCA), and SAM techniques for mapping alteration minerals
as well as lineament analysis were implemented. Subsequently, a fuzzy logic model for identifying
the prospective zones of Pb-Zn mineralization using multi-sensor remote-sensing satellite images
was designed. The weight of each exploratory layer was determined using the fuzzy hierarchical
method and the integration process of the information layers was performed using fuzzy operators.
Finally, the existing mineral indications were used to evaluate and validate the obtained mineral
potential map. The outcome of this investigation suggested several high-potential zones for Pb-Zn
exploration in the study area.

Keywords: ASTER; Landsat-8; Sentinel-2; PCA; SAM; fuzzy logic modeling; prospectivity mapping;
Pb-Zn mineralization

1. Introduction

The hydrothermal fluids associated with ore mineralization alter the mineralogy and
chemistry of the host rocks and generate typical mineral assemblages containing specific
spectral features, which can be detected using spectral remote-sensing sensors [1–3]. The
major types of alteration mineral zones such as phyllic, argillic, propylitic, and gossan are
typically found in most metallogenic provinces [3–5]. Remote-sensing satellite imagery can
play an effectual role in distinguishing the demonstrative minerals for the various alteration
zones. In recent decades, a new generation of advanced remote-sensing sensors has been
used for lithological mapping, mineral exploration, and environmental geology [5–7]. The
progress of remote-sensing image-processing techniques has made it possible to provide
comprehensive information about the mineralogy of the diverse types of rocks on the
Earth’s surface [8–10].
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Landsat sensors (e.g., Landset-7) were used to detect hydrothermal alteration zones
using image-processing methods such as false color composite (FCC), band ratio (BR), and
principal component analysis (PCA) [11]. Landsat-8 collects images for nine visible, near-
infrared (VNIR) and shortwave infrared (SWIR) bands (termed the Operational Land Imager
(OLI)) and two long-wave thermal bands (named the Thermal Infrared Sensor (TIRS). The
OLI images have been successfully utilized for many geological and mineral exploration
studies [12–20]. The use of ASTER datasets for detecting alteration minerals has successfully
continued owing to its broad coverage and unique integral bands, which are highly subtle
to alteration minerals [21–23]. The VNIR bands (0.52 to 0.86 µm; spatial resolution of 15 m)
can distinguish iron-bearing minerals (iron oxides/hydroxides) [24]. Six spectral bands in the
SWIR range (1.60 to 2.43 µm; ground resolution of 30 m) differentiate and map the alteration
of clay and carbonates, hydroxides, and hydrous minerals [25–27]. Various image-processing
algorithms such as relative absorption band depth (RBD), principal component analysis
(PCA), spectral angle mapping (SAM), band ratio (BR), Matched-Filter (MF), Mixture-
Tuned Matched-Filtering (MTMF), Linear Spectral Unmixing (LSU), and Constrained
Energy Minimization (CEM) were successfully implemented to ASTER bands to obtain
accurate mineralogical information from the lithological background [10,28–36]. Sentinel-2
contains 13 spectral bands in the VNIR and SWIR regions (0.433 to 2.2890 µm; spatial
resolution 10 to 60 m), which are suitable for identifying iron oxides/hydroxides and
minerals containing hydroxyl [37–39]. The band ratios of Sentinel 2 data were used for
mapping iron absorption features associated with gossan and dolomitization [26,39–41].
Accordingly, several processing procedures have been used for identifying the boundaries
of lithological units, weathered areas, and hydrothermally altered rocks. The application of
multispectral image-processing methods can be effective in detecting and tracing possible
mineralization around carbonate veins containing Pb-Zn mineralization [42,43].

The significant Pb-Zn metallogenic provinces in Iran, namely the Sanandaj–Sirjan
zone, Central Iran zone, and Alborz zone, showed the age of host rock mineralization
from upper Proterozoic to Oligocene–Miocene [44,45]. Some remote-sensing studies were
conducted in the Gujer non-sulfide Zn deposit in the west of the Ravar city in Kerman,
Pb–Zn SEDEX mineralization in the Behabad area in Central Iran, and carbonate-hosted
Pb-Zn deposits in the Kashmar–Kerman tectonic zone, which confirmed the application
of remote-sensing techniques for Pb-Zn exploration [12–14,26]. The study area selected
in this investigation is located in the Binalud zone, Razavi Khorasan, NE Iran (Figure 1),
which is a part of the Alborz collision belt. The Binalud zone is located in the south of the
contact line between Iran and Turan plates [46–48]. It was constructed during the closing
of the Paleo-Tethys besides the collision of the Turan plate and a lithospheric segment of
Iran [47,49]. The fold and thrust belt contains an NW-SE direction and comprises various
rocks and sediments detached from fault boundaries. The presence of carbonate formations
and various evidence of Pb-Zn mineralization was documented in this area [44,45]. The
accurate mapping of alteration mineral zones (e.g., gossan and dolomitization) associated
with Pb-Zn mineralization in carbonate host rock is one of the essential factors for Pb-
Zn exploration in the Binalud zone. However, there is still no inclusive remote-sensing
study to accurately identify and map alteration mineral zones, lithological units, and
structural features for Pb-Zn exploration in the Akhlamad area, the Binalud zone. In
this research, multi-sensor remote-sensing imagery, including Landsat-8, Sentinel-2, and
ASTER satellite remote-sensing data were used to map alteration mineral zones, lithological
units, and structural features associated with Pb-Zn exploration in the Akhlamad area,
the Binalud zone. Therefore, the main objectives of this study are: (i) to extract spectral
information from Landsat-8, Sentinel-2, and ASTER image spectra at the pixel level for
mapping alteration minerals and lithological units using band ratios, PCA, and SAM
image-processing algorithms; (ii) to extract lineament features from Landsat-8, Sentinel-2,
and ASTER image using edge detection models, and applying different filters; and (iii)
to fuse the alteration and lineament thematic layers for generating Pb-Zn mineralization
prospectivity map using fuzzy logic modeling.
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Figure 1. (a) The geographical location of the study area showing with star in north east of Iran. (b) A
simplified geologic map of the study area. Pb-Zn mineralization points in the study area are shown
using star symbols.

2. Geological Setting

The Binalud mountains split Central Iran from eastern Kopeh Dagh as an asymmetric
antiformal range. The geological structures generated from Paleo-Tethys closure experi-
enced ductile and brittle tectonic deformation stages [48]. The mountains experienced
contractional deformation during the Cenozoic together with the adjacent regions (the
Kopeh Dagh and AllahDagh mountains) [50]. The Akhlamad basin is located in the north-
ern part of the heights of Binalud in the Khorasan Razavi province (Figure 1a). It is situated
about 45 km NE of Mashhad city. In terms of basin divisions, Akhlamad is considered one
of the sub-basins of the Kashf Roud watershed. The studied area was limited from the east
to the watershed area of the Frizi River, from the west to the Baze Sarhesar River, and from
the south to the heights of Marghzar and Kalate Dargah. The Akhlamad region is located
between latitudes 36◦30′0′′ and 36◦40′0′′ north and longitudes 58◦51′0′′ and 59◦2′25′′ east.
A simplified geologic map of the Akhlamad region is shown in Figure 1b.

The formations exposed in the study area are owned by the middle Jurassic to late
Jurassic, including Jmd (equivalent Dalichay formation), Jl and Jl1 (equivalent Lar formation),
and limestones. The Jmd rock units consist of dark coaly shales, gray thin-bedded micritic
limestone with the intercalation of green to gray shale. The Jl and Jl1 rock units consist
of thick-bedded limestone with the intercalation of light gray to green shale. Faults with
NW-SE and NE-SW trends and folds with NW-SE trends are the major structural features
in the area. In this area, the limestone and dolomite masses are mostly stony and form
high to low altitudes that are enclosed by recent covenant alluviums. Pb-Zn deposits
occurred in Cretaceous carbonate host rocks in this area, which are classified as Mississippi
Valley-Type (MVT) deposits. Pb-Zn deposits are hosted with various types of Cretaceous
dolostone and limestone. Dolostones typically contain the replacement of dolomite with
minor dolomite cements. The Pb-Zn deposits are associated with tensional faults and
fractures as strata-bound veins and breccia type in karstic and tectonic breccias. Galena
with minor sphalerite and pyrite are hypogene minerals. Fe-oxide, cerussite, anglesite,
plattnerite, minium, and mimetite are supergene minerals. Calcite, quartz, and dolomite
are considered gangue minerals [51].
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3. Materials and Methods
3.1. Remote-Sensing Data Characteristics

In this study, Landsat-8, Sentinel-2, and ASTER were utilized. The technical charac-
teristics of ASTER, Landsat-8, and Sentinel-2 datasets are shown in Table 1. The datasets
were processed to identify lithological units and alteration zones; structural features;
and the mapping of carbonate, clay, dolomitization, and iron oxide/hydroxide minerals.
A Landsat-8 scene (LC08_L1TP_160035_20130718_20200912_02_T1, Path/Raw: 160/035)
and an ASTER scene (AST_L1B_00310062003073157_20080708131228_1829) covering the
study area were obtained from the U.S. Geological Survey Earth Resources Observation
and Science (EROS) Center (https://www.usgs.gov/centers/eros (accessed on 18 July
2023). A Sentinel-2A scene (S2B_MSIL1C_20220831T064629_N0400_R020) covering the
study area was acquired from the European Space Agency (Copernicus Open Access Hub;
https://scihub.copernicus.eu/ (accessed on 18 July 2023).

Table 1. The technical characteristics of ASTER, Landsat-8, and Sentinel-2 datasets.

ASTER Landsat 8 Sentinel 2

Band Spectrum
Covered

Wave Length
(µm)

Resolution
(m) Band Spectrum

Covered
Wave Length

(µm)
Resolution

(m) Band Spectrum
Covered

Wave Length
(µm)

Resolution
(m)

1 VNIR 0.520–0.600 15 1 Ultra-Blue
(Coastal/Aerosol) 0.433–0.453 30 1 Coastal

aerosol 0.443 60
2 VNIR 0.630–0.690 15 2 Blue 0.450–0.515 30 2 Blue 0.490 10

3N VNIR 0.760–0.86 15 3 Green 0.525–0.600 30 3 Green 0.560 10
3 VNIR 0.760–0.86 15 4 Red 0.630–0.680 30 4 Red 0.665 10

4 SWIR 1.600–1.700 30 5 NIR 0.845–0.885 30 5 Vegetation
red edge 0.705 20

5 SWIR 2.145–2.185 30 6 SWIR 1.560–1.660 30 6 Vegetation
red edge 0.740 20

6 SWIR 2.185–2.225 30 7 SWIR 2.100–2.300 30 7 Vegetation
red edge 0.783 20

7 SWIR 2.235–2.285 30 8 Panchromatic 0.500–0.680 15 8 NIR 0.842 10

8 SWIR 2.295–2.365 30 9 Cirrus 1.360–1.390 30 8a Vegetation
red edge 0.865 20

9 SWIR 2.360–2.430 30 10 TIR 10.60–11.20 100 9 Water
vapor 0.945 60

10 TIR 8.125–8.475 90 11 TIR 11.50–12.50 100 10 SWIR–
Cirrus 1.375 60

11 TIR 8.475–8.825 90 11 SWIR 1.610 20
12 TIR 8.925–9.275 90 12 SWIR 2.190 20
13 TIR 10.25–10.95 90
14 TIR 10.95–11.65 90

The Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER have been
already georeferenced to the UTM zone 40 north projection using the WGS84 datum.
The Sentinel-2A used in this analysis is a Level-1C top-of-atmosphere (TOA) reflectance
(100 km × 100 km tile) product, which contains radiometric and geometric corrections
(UTM zone 40 north projection with WGS84 datum) with orthorectification. Raw digital
satellite data typically contain geometric distortions due to sensor geometry, scanner,
platform instabilities, earth rotation, earth curvature, etc., and it is necessary to correct
and adapt them [52]. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube
(FLAASH) algorithm was applied for the atmospheric correction of the datasets [52]. In
this research, for image processing the remote-sensing data, ER-Mapper version 7, ENVI
5.3, and ArcGIS 10.8 software were used.

3.2. Methods

An overview of the methodological flowchart is illustrated in Figure 2. Image-
processing methods, namely false color composites (FCCs), band ratio (BR), principal
component analysis (PCA), and spectral angle mapping (SAM) were performed to extract
spectral information from atmospheric-corrected remote-sensing datasets. Directional filter-
ing was implemented to the Landsat-8 data for extracting lineament features. Subsequently,
to generate a mineral prospectivity map of the study area, the most logical layers related to
alteration zones and structural features were integrated using fuzzy logic modeling. The
accuracy of the results was verified by comparing the locations of the documented Pb-Zn
mineralization in the study area.

https://www.usgs.gov/centers/eros
https://scihub.copernicus.eu/
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3.2.1. False Color Composites (FCCs)

Digital images are usually displayed in 3 main colors, red, green, and blue (RGB) [53].
Each of these bands represents different parts of electromagnetic energy and each one is
black and white color alone, and a color image is created from the combination of the three
bands. The three colors red, green, and blue are used in multispectral images to show
the spectrum of the mineral index in the form of a color combination, which shows the
highest reflection in the spectrum of that mineral [54,55]. By knowing how the desired
phenomenon behaves in different wavelength bands, one can choose the appropriate bands
for combination and finally interpret the resulting colors. To create an overview of the
lithological units in the study area, the red–green–blue (RGB) false color combination of 2,
5, and 7 for Landsat-8 and 2, 8, and 12 bands for Sentinel-2 was developed, respectively.
The RGB images were selected to map lithological units based on spectral characteristics
related to iron oxides Fe3+ and Fe3+/Fe2+ and clay and carbonate minerals.

3.2.2. Band Ratio (BR)

Ratio images are obtained by dividing the values of the image elements in one spectral
band by the values of the image elements corresponding to the other band for each pixel. By
comparing the elements in the two images, a new digital image is generated. The main advan-
tage of the created image is that it conveys the image characteristics regardless of the exposure
conditions caused by topographical changes [56]. The band ratio images are acknowledged to
enhance spectral contrasts between the bands measured in the ratio operation and have effica-
ciously been used in identifying hydrothermal alteration zones [57–59]. By rationing bands
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with certain absorption and reflectance, the pixels corresponding to particular minerals are
highlighted [60].

VNIR spectral bands (0.45 to 1.2 µm) contain the most important information for the
identification of iron oxide/hydroxide (Fe3+/Fe2+) [61]. In this study, the 4/2 band ratio of
Landsat-8, Sentinel-2, and ASTER data was used to characterize iron oxide/hydroxide. Alter-
ation minerals, containing hydroxyl (Al-OH) and carbonates, contain absorption characteristics
in the 2.1–2.5, while the spectral reflectance usually occurs in the 1.55–1.75 µm. These fea-
tures are compatible with band 7 (2.11–2.29 µm) and band 6 (1.57–1.65 µm) of Landsat-8,
as well as band 12 (2.100–2.280 µm) and band 11 (1.565–1.655 µm) of Sentinel-2, respec-
tively [14,62]. Consequently, in this research, the 11/12 band ratio of Sentinel-2 and the 6/7
band ratio of Landsat-8 were utilized to identify hydroxyl-bearing alteration minerals and
carbonate minerals.

Several mathematical expressions are used to identify mineral groups that are called
relative absorption band depth (RBD). In this method, the numerator is the sum of the
bands indicating the shoulders for a particular absorption and the denominator is the
band that has the minimum absorption feature [33]. The Al-OH absorption features at
2.17 to 2.20 µm are matched with the bands 5 and 6 of ASTER, although Mg-Fe-OH
and CO3 absorption features are positioned in 2.30 to 2.35 µm corresponding with the
bands 7 and 8 of ASTER [14,39,63,64]. Carbonate minerals contain diagnostic CO3 spectral
absorptions of about 2.35 µm, which can be suggestively used to map carbonate-bearing
rocks [65,66]. The carbonate minerals (e.g., calcite and dolomite) display typical narrow
absorption features about 2.35 µm analogous to the band 8 (2.295–2.365 µm) of ASTER [67].
Furthermore, dolomite absorption features are normally focused at 2.20 to 2.30 µm, which
are coincident with the bands 6 and 7 of ASTER [57]. Thus, calcite and dolomite minerals
can be differentiated by different absorption features between 2.33 and 2.45 µm [67,68].
Accordingly, (i) to map Al/Fe-OH minerals the RBD of (5 + 7)/6, (ii) to identify Mg-Fe-
OH/CO3 minerals the RBD of (7 + 9)/8, and (iii) for detecting dolomite the RBD of (6 +
8)/7 were applied in this study.

3.2.3. Principal Component Analysis (PCA)

In satellite images, there is usually a correlation between multispectral bands, espe-
cially adjacent bands. The PCA method is related to multivariate analysis, which can be
used to transfer a series of multispectral images in such a way that the new components are
not correlated with each other and are arranged in a way that can describe the differences
in the images [69]. These components show the inherent differences of the main bands
in a statistical and compact way. The principal components can be used to condense the
information available in a number of bands, for example, the seven bands of Landsat are
converted into two or three bands. With this work, we will have maps with complete
and summary information, and the analysis of these new images will be more accurate
than the analysis of raw images. Usually, the first image obtained by this method contains
80 percent of the information and is the most accurate image, the subsequent images have
less information. Considering the variance of the information in the components and the
uniqueness of the information in each component, this method can be used to recognize
changes [69].

The PCA process uses the principal component transformation method to diminish
correlated multispectral data [70,71]. This method is usually applied to a square symmetric
matrix. It is based on the covariance matrix or correlation matrix [71]. Selective PCA could
be utilized to decrease the dimensionality of a dataset while diminishing the loss of data in
addition to improving and identifying the spectral contrast between two different spectral
regions [72]. The PCA is used to detect hydrothermal alteration zones and lithological units
using the various spectral bands of remote-sensing datasets [30,73].

The eigenvector loadings have characteristic information akin to the spectral features
of alteration minerals that could be predictable from the definite spectral bands in the
VNIR and SWIR regions [70]. Accordingly, a PC comprises the reflective and absorptive
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bands of a mineral group with reverse marks that improve that mineral group as bright
or dark pixels in the PC image. A positive mark in a reflective band reveals the alteration
mineral as bright pixels, whereas a negative mark in a reflective band depicts the alteration
mineral as dark pixels [70]. In this analysis, the PCA method was applied based on the
covariance matrix for the selected bands of Landsat-8 (bands 1–7), Sentinel-2 (bands 2, 3, 4,
8, 11, and 12), and ASTER (VNIR + SWIR bands) to identify alteration mineral assemblages.
Tables 2–4 show the eigenvector matrix for the selected bands of the datasets.

Table 2. Eigenvector matrix of principal component analysis for selected Landsat-8 bands (bands 1 to
7) used in this study.

Eigenvectors Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

PC 1 0.22 0.24 0.30 0.39 0.42 0.52 0.45

PC 2 0.08 0.08 0.06 −0.01 0.78 −0.28 −0.54

PC 3 −0.48 −0.46 −0.38 −0.27 0.37 0.44 0.12

PC 4 0.47 0.25 −0.09 −0.80 0.10 0.04 0.24

PC 5 0.12 0.16 0.06 −0.09 −0.25 0.68 −0.66

PC 6 −0.47 0.01 0.81 −0.36 −0.01 −0.02 0.03

PC 7 0.51 −0.80 0.31 0.00 −0.02 0.03 −0.04

Table 3. Eigenvector matrix of principal component analysis for selected Sentinel-2 bands (bands 2, 3,
4, 8, 11, and 12) used in this study.

Eigenvectors Band 2 Band 3 Band 4 Band 8 Band 11 Band 12

PC 1 −0.22 −0.29 −0.41 −0.39 −0.54 −0.51

PC 2 −0.12 −0.13 −0.02 −0.82 0.29 0.46

PC 3 0.46 0.45 0.49 −0.36 −0.45 −0.09

PC 4 −0.53 −0.28 0.51 0.15 −0.47 0.37

PC 5 0.30 0.08 −0.54 0.14 −0.45 0.63

PC 6 0.59 −0.78 0.20 0.03 0.01 −0.01

Table 4. Eigenvector matrix of principal component analysis for selected ASTER bands (VNIR +
SWIR) used in this study.

Eigenvectors Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PC 1 0.41 0.43 0.26 0.33 0.31 0.34 0.30 0.30 0.28

PC 2 −0.51 −0.40 −0.40 0.29 0.30 0.35 0.19 0.17 0.24

PC 3 0.28 0.37 −0.86 −0.19 −0.05 −0.04 0.03 0.11 0.02

PC 4 0.04 0.20 −0.12 0.46 0.15 0.26 −0.46 −0.65 −0.08

PC 5 0.65 −0.64 −0.13 0.29 0.00 −0.20 0.09 −0.07 0.03

PC 6 −0.23 0.22 −0.04 0.52 −0.33 −0.58 0.11 −0.01 0.40

PC 7 −0.09 0.10 −0.06 0.40 −0.05 −0.05 0.29 0.20 −0.83

PC 8 0.06 −0.07 −0.00 0.09 −0.82 0.55 0.03 0.04 0.07

PC 9 0.04 −0.05 0.01 0.19 0.00 −0.04 −0.75 0.63 −0.03

3.2.4. Spectral Angle Mapping

Spectral angle mapping (SAM) is a supervised spectral classification method [74,75].
In this method, the similarity between the reference spectrum and the pixel spectrum
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is determined by computing the angle between the spectra in such a way that they are
considered vectors in a multi-dimensional space [76]. This method is insensitive to the
spectra when run on calibrated reflectance data. Bright pixels show the least distortion and
pixels with a lower degree of brightness show the highest distortion with the reference
spectrum [74]. To identify the altered areas, some of the alteration minerals in these areas
were highlighted by the SAM applied to the ASTER VNIR + SWIR bands. In this analysis,
the reference spectra of hematite, kaolinite, calcite, and dolomite were extracted from the
USGS spectral library. A number of rule images and a classified image are the output of the
SAM algorithm. The spectral angle in radians from the reference spectrum for each class is
estimated based on the pixel values of the rule images. Good matches to the endmember
spectra are attained by lower spectral angles [77].

3.2.5. Lineament Extraction

The use of remote-sensing methods for the detection and extraction of geological
lineaments, including faults, fractures, and dykes due to the high speed of work and low
costs is very crucial [78]. The main data used for mapping structural lineaments in the study
area were Landsat-8. The extraction of lineaments was obtained using PCA and directional
filtering. The PC5 image was selected for applying the directional filtering, because it
shows the geological features better compared to other PC images. A directional filter
is an edge detector that is typically utilized to calculate the first derivatives of an image.
The first derivatives are most obvious when a great change arises among adjoining pixel
values. Directional filters could be premeditated for any direction within a fixed space [79].
Hence, directional filters can detect roads, waterways, faults, etc. An edge-detection filter
is one that improves those linear features in an image that are preoccupied with a specific
direction. A 7 × 7 kernel matrix was selected here to boost semi-smooth and smooth/rough
features. Four principal directional filters N–S, E–W, NE–SW, and NW–SE with a 7 × 7
kernel size were applied to the PC5 image of Landsat-8 (Table 5). Regarding the geology
map of the study area, duplicate lines using overlapping prepared layers such as roads and
artificial complications were removed.

Table 5. Directional filters with 7 × 7 kernel matrix.

N–S: 0◦

−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000
−1.000000 −1.000000 −1.000000 0.000000 1.000000 1.000000 1.000000

NE–SW: 45◦

−1.414214 −1.414214 −1.414214 −0.707107 0.000000 0.000000 0.000000
−1.414214 −1.414214 −1.414214 −0.707107 0.000000 0.000000 0.000000
−1.414214 −1.414214 −1.414214 −0.707107 0.000000 0.000000 0.000000
−0.707107 −0.707107 −0.707107 0.000000 0.707107 0.707107 0.707107
0.000000 0.000000 0.000000 0.707107 1.414214 1.414214 1.414214
0.000000 0.000000 0.000000 0.707107 1.414214 1.414214 1.414214
0.000000 0.000000 0.000000 0.707107 1.414214 1.414214 1.414214

E–W: 90◦

−1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000
−1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000
−1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000
0.000000 0.000000 0.000000 0.000000 −0.000000 −0.000000 −0.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Table 5. Cont.

NW–SE: 135◦

0.000000 0.000000 0.000000 −0.707107 −1.414214 −1.414214 −1.414214
0.000000 0.000000 0.000000 −0.707107 −1.414214 −1.414214 −1.414214
0.000000 0.000000 0.000000 −0.707107 −1.414214 −1.414214 −1.414214
0.707107 0.707107 0.707107 0.000000 −0.707107 −0.707107 −0.707107
1.414214 1.414214 1.414214 0.707107 0.000000 0.000000 0.000000
1.414214 1.414214 1.414214 0.707107 0.000000 0.000000 0.000000
1.414214 1.414214 1.414214 0.707107 0.000000 0.000000 0.000000

3.2.6. Fuzzy Gamma Methods

The fuzzy set theory, presented by [80], affords a mathematical outline for investigating
natural singularities. It characterizes an object categorized by the sorted classifications of
membership. Membership rates are allocated between 0 and 1, representing the level of
inevitability or the grade of affinity of an object to a specific group [81]. Furthermore, it
allows for a more elastic illustration of doubt and vagueness in data analysis. A fuzzy set
of A is a set of methodical pairs:

A = { (x,µA(x))|xϵX} (1)

where µ_A (x) is named the membership function or membership grade of x in A. µ_A (x)
maps x to the membership space (M), once M contains only the two points 0 and 1. The
range of µ_A (x) is [0, 1], where zero expresses non-membership and one expresses full
membership [80].

Fuzzy logic modeling was efficaciously used for mineral potential mapping [14,82–84]. A
set of fuzzy membership rates is articulated in a constant sequence from 0 to 1. Function–
member rates are known for each evidence layer that will be combined. A whole of
sheet maps (fuzzy membership) constructed on the consequence distance of features are
weighted (between 0 and 1) [84]. A fuzzy gamma operator was applied to combine multiple
indicator maps with fuzzy membership functions to generate a mineral potential map in
this analysis. The membership weights were assigned using expert knowledge of the study
area. The gamma value, controlling the degree of influence of each membership function,
was estimated through a trial-and-error approach [84]. Therefore, in this analysis, the
gamma value of 0.8 was selected. Note that the selection of fuzzy membership weights and
the gamma value necessitates expert knowledge and could be personalized to a particular
study area and the purposes of the study. Table 6 shows the fuzzification parameters for
the input layers used in this analysis.

Table 6. Fuzzification parameters for the input layers used in this analysis.

Data Origin Input Layer Detection Membership Type Fuzzy Operator

LANDSAT-8 PC4
PC5

Iron Oxides
OH-minerals and Carbonates Linear 0.8

SENTINEL-2 PC4
PC5

Iron Oxides
OH-minerals Linear 0.8

ASTER

PC4
PC5
PC6
SAM

Mg-Fe-OH/CO3-bearing
minerals

Iron oxide/hydroxides
Al-OH-bearing minerals

Hematite, kaolinite, calcite,
and dolomite

Linear 0.8

FAULTS AND
LINEAMENTS

The intersection point of
Faults and Lineaments Faults and lineaments Linear 0.95
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4. Results and Discussion
4.1. Lithological and Alteration Mineral Mapping

To overview the lithological units in the study area, the red–green–blue (RGB) false
color combination of the bands 2, 5, and 7 and 2, 8, and 12 were developed for Landsat-8
and Sentinel-2, respectively (Figure 3a,b). The RGB images could discriminate some of the
lithological units with spectral characteristics related to iron oxides Fe3+ and Fe3+/Fe2+ and
clay and carbonate minerals. The lithological units of the study area are mainly composed
of the thick carbonate rocks of the middle and upper Jurassic ages. The main units of this
region are thick-layered limestones with interlayers of light gray to green shales (equivalent
to Lar formation) (J1) and medium to thick limestone, light to dark gray, that is partially
dolomitic (equivalent to Lar formation) (J1l) that appeared purple in the satellite image
maps (Figure 3a,b) due to the presence of Al, Fe, and OH compounds that are slightly
mixed with Mg and Fe ions. The western part of unit J1, due to the presence of iron oxides
Fe+2 in carbonates, has appeared in green and turquoise colors. Very thin gray micritic
limestone with interlayers of gray to green shale (equivalent to Delichai formation) (Jmd)
can be seen as magenta and with some green interlayers in the image maps, probably due
to having Fe+3 and Fe+2 irons in the carbonates (Figure 3a,b). According to the geological
map of the study area (see Figure 1), the differentiation of the lithological units in the
image maps obtained from Landsat-8 and Sentinel-2 were almost similar. However, iron
oxide/hydroxides were better mapped and discriminated in the carbonate background of
the study area using Sentinel-2 RGB image map (Figure 3b).

An RGB false color composite of ASTER using the bands 6, 2, and 8 was developed to
distinguish the lithological units containing Al/Fe-OH, Fe+2/Fe3+, and Mg/Fe/OH-CO3
absorption properties (Figure 4). The thin-layer limestone unit with shale interlayer (Jmd)
and parts of the Jl1 unit, due to the presence of Al/Fe-OH minerals mixed with Mg-Fe,
OH, and CO3 ions, appear purple. The western part of the Jl1 unit and a limited part of
the Jl unit in the image, due to the combination of Mg/Fe/OH-CO3, Al/Fe-OH minerals
with Fe2+/Fe3+ ions, appear in yellow color. The Ec unit is seen in dark purple due to the
presence of Al/Fe-OH and Mg/Fe/OH-CO3 minerals. The southern parts of the Jmd units
appear green due to the presence of Fe+2/Fe3+ ions.

Figure 5 shows the results of the band ratio method in order to highlight iron ox-
ides and hydroxides, and clay minerals and carbonates derived from the Landsat-8 and
Sentinel-2 spectral bands. The band ratio 4/2 of Landsat-8 and Sentinel-2 show the spatial
distribution of iron oxide and hydroxide minerals (as red and green pixels, respectively)
that are mostly located in the J1 and Jl1 units and some in the Jmd units (Figure 5a,b). The
Landsat-8 band ratio 6/7 and Sentinel-2 band ratio 11/12 show the surface distribution
of alteration minerals containing hydroxyl and carbonates (as magenta and turquoise
pixels, respectively) (Figure 5c,d). Band ratio images used for the Landsat-8 data show a
higher abundance of clay and carbonate minerals than the Sentinel-2 band ratio images
(Figure 5c,d). This is because the band 12 (2.100–2.280 µm) of Sentinel 2 covers the ab-
sorption characteristics of minerals containing hydroxyl, while carbonates have absorption
characteristics in the wavelength of 2.350 to 2.450 µm. Therefore, carbonates cannot be
identified appropriately using the 11/12 band ratio of Sentinel-2.
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Figure 5. Band ratio image maps showing the spatial distribution of the iron oxide/hydroxides
and clay and carbonate minerals. (a) The 4/2 band ratio image map of Landsat-8 showing the iron
oxide/hydroxide minerals as red pixels; (b) the 4/2 band ratio image map of Sentinel-2 showing
the iron oxide/hydroxide minerals as green pixels; (c) the 6/7 band ratio image map of Landsat-8
showing the clay minerals and carbonates as magenta pixels; (d) the 11/12 band ratio image map of
Sentinel-2 showing the hydroxyl-bearing minerals as turquoise pixels.
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The band ratio 4/2 of ASTER shows that iron oxide and hydroxide minerals are mapped
in the J1 and J11 units (magenta pixels in Figure 6a). However, the surface abundance of
iron oxide and hydroxides is also mapped in some parts of the Jmd units (Figure 6a). Using
the ASTER RBD of (5 + 7)/6, Al/Fe-OH minerals are highlighted as red pixels (Figure 6b).
Comparing the results with the geological map of the studied area shows that the high
abundance of the Al/Fe-OH minerals is related to the Jmd lithological unit (Figure 6b). The
northwestern part of the J11 units and the central part of the J1 units also showed the spatial
distribution of the Al/Fe-OH minerals (Figure 6b). Figure 6c shows the RBD of (7 + 9)/8
for mapping the surface abundance of the Mg/Fe/OH-CO3 minerals (green pixels). These
minerals are mapped in the E1, Ec, Jl, Jl1, and Jmd geological units. The dolomite units
are also exposed in the form of turquoise pixels in the Jl, Jl1, and Jmd units using the RBD
of (6 + 8)/7 (Figure 6d). The surface distribution of dolomite units is less compared to
Mg/Fe/OH-CO3 minerals. However, sub-pixel mapping techniques will help for the better
differentiation of the dolomite units and Mg/Fe/OH-CO3 minerals.
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Figure 6. ASTER band ratio image maps showing the spatial distribution of the iron oxide/hydroxides
Al/Fe-OH and Mg-Fe-OH/CO3 minerals and dolomite. (a) The 4/2 band ratio image map showing
the iron oxide/hydroxide minerals as magenta pixels; (b) the RBD of (5 + 7)/6 image map showing the
Al/Fe-OH minerals as red pixels; (c) the RBD of (7 + 9)/8 image map showing the Mg-Fe-OH/CO3

minerals as green pixels; (d) the RBD of (6 + 8)/7 image map showing dolomite as turquoise pixels.

The analysis of eigenvector loadings obtained by the PCA method for Landsat-8 and
Sentinel-2 shows that PC4 and PC5 contain key information related to minerals containing
hydroxyl and carbonate and iron oxide/hydroxide. Table 2 shows the eigenvector matrix
for the selected Landsat-8 bands. Iron oxide/hydroxide minerals are characterized by
high absorption characteristics at about 0.40 to 1.10 µm and high reflectivity at about
1.60 µm [65]. The PC4 of Landsat-8 data has strong positive loadings in bands 1 (0.47) and
2 (0.25) and great negative loading in band 4 (−0.80). Therefore, according to the spectral
characteristics of iron oxide in the PC4 image, iron oxide/hydroxides appeared as dark
areas. In order to show the iron oxide as bright pixels, the PC4 image was inverted. The
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spatial distribution of iron oxide/hydroxides (red pixels) is mainly identified in the Jl, Jl1,
and Jmd units (Figure 7a).
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Figure 7. PC image maps showing the spatial distribution of the iron oxide/hydroxide minerals and
clay minerals and carbonates. (a) The PC4 image map of Landsat-8 showing the iron oxide/hydroxide
minerals as red pixels; (b) the PC5 image map of Landsat-8 showing the OH-bearing minerals as green
pixels; (c) the PC4 image map of Sentinel-2 showing the iron oxide/hydroxide minerals as magenta
pixels; (d) the PC5 image map of Sentinel-2 showing the OH-bearing minerals as turquoise pixels.

Examining PC5 shows that band 6 (0.68) has a positive and strong loading and band
7 (−0.66) has a great and negative loading. The band 6 of Landsat-8 covers the spectral
region (1.6 µm) where all OH-bearing minerals have maximum reflectance, while Al (OH)-
bearing minerals show major absorption in band 7. Therefore, OH-minerals are represented
as bright pixels in the PC5 image. Figure 7b shows the spatial distribution of OH-minerals
as green pixels in the study area. In the central part of the Jl1 units and Jmd units in the
southwestern of the study area, a high abundance of OH-minerals can be seen in the PC5
image (Figure 7b). A comparison of the PCA results and Landsat-8 band ratio shows
that the spatial distribution of the iron oxide/hydroxide minerals and hydroxyl-bearing
minerals is generally lower in PC images.

According to the eigenvector loading for Sentinel 2, PC4 has strong positive loading
in band 2 (−0.53) and great negative loading in band 4 (0.51) (Table 3). Thus, bright
pixels (magenta pixels in the image map) indicate areas prone to the mineralization of iron
oxide/hydroxide compounds. The results show the distribution of iron oxide/hydroxides
in the Jl, J11 and Jmd units (Figure 7c). Hydroxyl minerals can be mapped as dark pixels in
the PC5 image due to great negative loading in band 11 (0.68) and strong positive loading
in band 12 (0.63). Figure 7d shows an inverted PC5 image that highlights hydroxyl as bright
pixels (turquoise pixels in the image map), which are associated with the Jl, J11, and Jmd

units. The spatial distribution of iron oxide and hydroxyl iron mineralization in Sentinel-2
PC images is less revealed compared to Landsat 8 PC images (see Figure 7a–d).
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The PCA technique was also applied to the VNIR + SWIR bands of ASTER data to
highlight alteration minerals. According to the spectral responses of alteration minerals in
VNIR and SWIR bands of ASTER [63], the PC4 image contains spectral properties related
to Mg-Fe-OH/CO3 minerals because of the positive loading of band 4 (0.46) and negative
loadings of bands 7 (−0.46) and 8 (−0.65) (Table 4). Hence, the mineral groups such as
chlorite, epidote, calcite, and dolomite are represented as bright pixels (magenta pixels in
the image map) in the PC4 image (Figure 8a). Some areas of high abundance of Mg-Fe-
OH/CO3 minerals located in the Jl and Jmd units are recognizable. The PC5 has strong
positive loadings in band 4 (0.29), while it shows strong negative loading in band 2 (−0.64)
(Table 4). According to the spectral position of the ASTER bands 2 (0.63–0.69 µm) and 4
(1.60–1.70 µm), iron oxide/hydroxide minerals are mapped as bright pixels (red pixels in
the image map) in the PC5 image (Figure 8b). Some areas of the spatial distribution of iron
oxide/hydroxide minerals located in the Jl and Jmd units are recognizable.
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Figure 8. The PC image maps derived from VNIR + SWIR ASTER. (a) The PC4 image map show-
ing the Mg-Fe-OH/CO3 minerals as magenta pixels; (b) the PC5 image map showing the iron
oxide/hydroxide minerals as red pixels; (c) the PC6 image map showing the Al-OH-bearing minerals
as green pixels; (d) the PC7 image map showing the carbonate units as turquoise pixels.

The PC6 shows a strong positive contribution in band 4 (0.52) and negative great loadings
in bands 5 (−0.33) and band 6 (−0.58) (Table 4). Therefore, the minerals containing Al-OH
such as kaolinite, muscovite, and illite can detected as bright pixels in the PC6 image. The
spatial distribution of Al-OH-bearing minerals is clearly visible in the units Jmd and Jl (green
pixels) (Figure 8c). The PC7 contains a strong positive loading in band 4 (0.40) and a great
negative contribution in band 9 (−0.83) (Table 4). The band 9 (2.360–2.430 µm) of ASTER
contains CO3 spectral absorptions to identify carbonate-bearing rocks [65]. Accordingly,
the PC7 image can be used to map carbonate-bearing rocks as turquoise pixels in the study
area (Figure 8d). Most of the carbonate units such as Jmd, J11, E1, and Jl are mapped in
the PC7.
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The SAM classification method was applied to the ASTER VNIR + SWIR bands
for the detailed mapping of the spatial distribution of alteration minerals such as iron
oxide/hydroxide group (hematite,), Al-OH minerals (kaolinite), and carbonate (calcite and
dolomite). The outputs of the SAM are rule images for end members. The pixels that have
a smaller spectral angle are seen as darker in the rule images and show the highest overlap
with the reference spectrum. Figure 9 shows the SAM classification for the study area.
The surface distribution of hematite was mapped in the Jmd, J1, Ec, E1, and J11 lithological
units. kaolinite was mostly mapped in the Qt, J1, and J11 lithological units. The spatial
distribution of calcite and dolomite shows that the J11 and J1 lithological units have a high
abundance of calcite, while dolomite is typically mapped in the Jmd lithological unit.
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In the rock samples collected from the lithological units in the study area, the presence
of quartz, dolomite, calcite, muscovite, chlorite, hematite, limonite, illite, jarosite, pyrite,
galena, and sphalerite were recorded by an XRD analysis (Table 7). It shows that the
mineralogical information derived from the remote-sensing analysis was reliable and
accurate.

Table 7. Minerals detected in the collected rock using an XRD analysis.

XRD Results Lithological Units

Hematite, limonite, illite, and jarosite Jmd, J1, Ec, E1, and J11

Quartz, muscovite, chlorite, and kaolinite Qt, J1, and J11

Calcite, dolomite, pyrite, galena, and sphalerite Jmd

4.2. Structural Mapping

Figure 10 shows the lineament map extracted from the PC5 image of Landsat-8 for
the study area. NW–SE and NE–SW trends are the dominant directions for structural
features in this region. Most of the long lineaments trend NE–SW and NW–SE and some
short lineaments strike E–W. NE-SW-striking lineaments are often cut by shorter NW–
SE-trending lineaments, especially in the northern and northeastern parts of the study
area. NE–SW- and NW–SE-trending lineament systems are extensive in the eastern part
and less in the southwestern sectors. Most of the known Pb-Zn indices and abandoned
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mines are located along the intersection of NE–SW and NW–SE lineaments in the study
area. It is documented that structural features typically control carbonate-hosted Pb-Zn
mineralization locations. Pb-Zn-bearing fluids are normally concentrated in the fault zones
during regional compression and precipitated during hydraulic fracturing of carbonate
host rocks [82].
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4.3. Generating Prospectivity Map

The fuzzy logic model was used to produce the mineral prospectivity maps of poten-
tial zones for Pb-Zn mineralization in the study area using the most informative thematic
layers derived from image-processing techniques. In this analysis, PCA, SAM, and lin-
eament outputs were considered and weighted as the most informative thematic layers.
Therefore, (i) the PC4 and PC5 derived from Landsat-8 and Sentinel-2; (ii) PC4, PC5, PC6,
and PC7 derived from ASTER (iii) hematite, kaolinite, calcite, and dolomite rule images
derived from SAM (ASTER); and (iv) lineament extracted from the PC5 image of Landsat-8
were considered and integrated with fuzzy gamma operator (0.80 and 0.95) for generat-
ing the mineral prospectivity map of the study area (see Table 6). Figure 11 shows the
mineral prospectivity map of the study area. Fuzzy membership evaluation shows that a
high favorability index is associated with some lithological units and sectors in the study
area. The J1 and Jl1 units show a high value of 0.7 to 1.0, especially in the northern and
northeastern parts. Most of the Pb-Zn mineral indices and abandoned mines are located
in high-value zones (Figure 11). Some high-value zones can also be found in the central
parts and associated with the Jmd lithological units (Figure 11). The presence of mineral
indications and mines in the high-value zones validated the applicability of the Pb-Zn
mineral prospective map for detailed mineral exploration programs in the future.
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5. Conclusions

This investigation demonstrates the applicability of multi-sensor remote-sensing
imagery for Pb-Zn mineralization prospectivity mapping in a sedimentary background.
Landsat-8, Sentinel-2, and ASTER satellite data in the range of VNIR and SWIR bands were
used for lithological–alteration–structural mapping to generate the Pb-Zn prospectivity
map for the Akhlamad area, Razavi Khorasan, NE Iran. The results showed significant
information related to alteration minerals (gossan and dolomitization) and the intersection
of lineaments that can be obtained by processing the multi-sensor remote-sensing data.
Integrating thematic layers by fuzzy logic model helped to generate the Pb-Zn prospectiv-
ity map, which appropriately matched with mineral indices and abandoned mines. The
potential zones are mostly located in the J11, Jmd, and Jl lithological units. The results of this
study recommended several target points for future Pb-Zn exploration in the study area.
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