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Abstract: From the information forensics point of view, it is important to correctly classify between
natural images (outputs of digital cameras) and computer-graphics images (outputs of advanced
graphics rendering engines), so as to know the source of the images and the authenticity of the scenes
described in the images. It is challenging to achieve good classification performance when the forensic
classifier is tested on computer-graphics images generated by unknown rendering engines and when
we have a limited number of training samples. In this paper, we propose two simple yet effective
methods to improve the classification performance under such challenging situations, respectively
based on data augmentation and the combination of local and global prediction results. Compared
with existing methods, our methods are conceptually simple and computationally efficient, while
achieving satisfying classification accuracy. Experimental results on datasets comprising computer-
graphics images generated by four popular and advanced graphics rendering engines demonstrate
the effectiveness of the proposed methods.

Keywords: image forensics; machine learning; computer-graphics image; neural network; data
augmentation; generalization

1. Introduction

The recent development of easy-to-access and highly efficient image-generation and
-modification tools has made it easy to obtain high-quality synthetic and manipulated im-
ages, which would create a safety concern about the authenticity of digital images. Accord-
ingly, this has given rise to the rapid development of the research on image forensics [1,2]
whose aim is to detect and analyze the source of images or the possible modifications made
to images. In this paper, we consider and study a specific image forensic problem, that
is, the classification between natural images (NIs) that are acquired by digital cameras
and computer-graphics (CG) images that are generated by advanced graphics rendering
engines. From an information forensics point of view, NIs describe what has happened in
the real world, while CG images depict fictive scenes. Therefore, it is important to correctly
classify between NIs and CG images, so as to faithfully determine the source of images
and the authenticity of the scenes described in the images. More specifically, as CG images
reach a level of photorealism that makes them in many cases indistinguishable to human
naked eyes from NIs (Figure 1 shows some examples), it has become necessary to develop
reliable forensic methods for detecting these synthetic CG images [3,4]. Hereafter and
following [5], we call this specific image forensic problem the CG forensics problem.

The main objective of our work is to improve the forensic classification of NIs and CG
images in two challenging situations, i.e., when a trained forensic classifier is tested on CG
images created by rendering engines that remain unknown during the training phase or
when we have a limited number of training samples. For the first situation, in an existing
state-of-the-art method [5], the classification performance on CG images from unknown
rendering engines, i.e., the so-called generalization performance, is improved by carrying
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out an additional enhanced training procedure with specifically created supplementary and
artificial samples. This method can be effective in improving the generalization capability,
but the additional enhanced training procedure remains computationally costly and com-
plicated. In this paper, we instead propose simple methods, based on data augmentation
and the combination of local and global prediction results, to boost the generalization per-
formance. Our methods are conceptually simple and computationally efficient compared to
the existing method, while achieving satisfying classification performance. For the second
situation of sample scarcity, to the best of our knowledge, we conduct in this paper the first
comprehensive experimental study in the literature on testing and improving the forensic
performance when we have a limited number of training samples. We show that our simple
methods mentioned above are also able to improve the forensic classification accuracy
between NIs and CG images in this challenging yet very practical situation.

Figure 1. Some examples of CG images and NIs of similar semantic contents. In the top row we show
two CG images created respectively by two advanced graphics rendering engines called VRay [6]
and Corona [7]. In the bottom row we show two NIs of similar semantic contents that are respectively
from the VISION [8] and RAISE [9] databases. The four sub-images (also used in our recent open-
access paper [10] with a Creative Commons Attribution license), from the top left to the bottom right,
are reproduced with permissions respectively from Qusay Abobaker, 2022; from P&M Studio, 2022;
from the authors of [8], 2017; and from the authors of [9], 2015.

Our contributions are summarized as follows:

• We have investigated a simple yet effective method of carefully designed data-
augmentation operations to improve the forensic classification performance between
NIs and CG images;

• We have studied the combination of local and global prediction results in order to
determine the loss function of a neural network and thus to make better use of the
information contained in each image for achieving better classification results for the
CG forensics problem;

• We have carried out experimental studies to test and validate the above two methods,
which achieved an improvement in terms of the generalization capability and the test
accuracy with reduced training sets, while remaining computationally efficient.
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The remainder of this paper is organized as follows. In Section 2, we provide a brief
overview of the related work in the CG forensics research. We introduce in Section 3 the
datasets and neural network used in our study. Section 4 presents the motivations and the
technical details of our proposed methods. In Section 5, we report and analyze the experi-
mental results. Finally, we draw conclusions and discuss possible future improvements
in Section 6.

2. Related Work

The traditional methods proposed for the classification of CG images and NIs were
based on the manual construction of carefully designed discriminative features. These fea-
tures could be extracted from either the spatial image data [11–13] or from a frequency-like
transformed domain [3,14,15]. The images’ spatial properties considered for the extraction
of discriminative features include texture details, geometric features, the color distribution,
edge statistics, a combination of such properties, etc. Transforming the image from the
spatial domain to a frequency-like domain has the potential to reveal features that are not
visually apparent in the image but that are discriminative to distinguish CG images from
NIs. For example, Lyu and Farid [3] combined the wavelet statistics of the first four orders
(i.e., mean, variance, skewness and kurtosis) as the feature to discriminate between NIs
and CG images.

While these hand-made features are easy to understand and explain, they are also
complicated to design, and the performance of feature-based detection remains experimen-
tally inferior to that of recent deep learning-based methods. Indeed, since the development
of the AlexNet neural network [16], deep learning [17] has demonstrated its superiority
for almost all image-processing and -analysis tasks, including image forensic analysis.
While the traditional methods work in two stages, a first stage of feature extraction and
a second stage of classification based on the extracted features, neural networks combine
these two stages and work as a whole in an end-to-end process. Due to their high learning
capacity, neural networks are able to automatically extract discriminative features that
distinguish CG images from NIs well, thus avoiding the time-consuming feature-design
stage. In general, recent deep learning-based methods [4,5,10,18,19], leveraging various
neural network architectures, deliver better forensic results than the traditional methods.

Very few existing works considered the two challenging yet practical situations men-
tioned in Section 1, i.e., the generalization capability on CG images created by unknown
rendering engines and the forensic performance in the case of training data scarcity. To the
best of our knowledge, the only dedicated research work on improving the generalization
capability was conducted by Quan et al. [5], who proposed to construct harder artificial
samples and to carry out an additional enhanced training procedure by using these supple-
mentary artificial samples. The generalization performance was improved with a relatively
high additional computational cost of the network training, because the enhanced training
in general lasts several hours on an advanced GPU (graphics processing unit). In this paper,
we propose much simpler and computationally much more efficient methods, which in the
meanwhile achieve a comparable or even slightly better generalization performance when
compared to the state-of-the-art method proposed in [5]. The data-scarcity situation was
partially considered in our recent paper [10] by leveraging self-supervised pre-training,
though with a very limited experimental setting. One drawback of the method of [10] is
the high computational cost of the self-supervised pre-training procedure, with more than
ten hours of parallel computation on two advanced GPUs. In this paper, to our knowledge,
we conduct and present a first comprehensive study in the literature on the CG forensics
problem in the case of training-data scarcity, by considering different numbers of available
training samples with CG images generated respectively by four popular graphics render-
ing engines. In this data-scarcity situation, by using our computationally efficient methods,
we are able to obtain good forensic performances on CG images generated by both known
and unknown rendering engines.
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3. Datasets and Network

Before presenting our proposed methods in the next section, in the following we
introduce the datasets (Section 3.1) and the backbone neural network (Section 3.2) utilized
in our study.

3.1. Datasets

The selected data for training and testing are crucial. In our study, we use the datasets
collected and shared by Quan et al. [5] because of the high visual quality and diversity of
the CG images included in the datasets. The datasets of [5] contain both CG images and
NIs, and the CG images are from four different rendering tools, which makes the datasets
very suitable for experimental studies on the evaluation of generalization performance.
More specifically, the CG images in the datasets were generated by the advanced graphics
rendering tools of Artlantis [20], Autodesk [21], Corona [7] and VRay [6], all chosen for their
very high degree of photorealism. It is difficult to know the exact techniques utilized in
these rendering engines because they are commercial products with restrictions. These tools
may share some common points, e.g., they are probably based on the effective solving of the
fundamental rendering equation and/or the concept of ray tracing, but differences should
exist for example in terms of technical details when handling light–material interactions,
light diffraction, shading, shadows, etc. This can result in a rather limited generalization
performance across CG images produced by different rendering engines. The CG images
in the datasets of [5] were downloaded from the respective websites of the four rendering
tools. The numbers of CG images from Artlantis, Autodesk, Corona and VRay tools are
1620, 1620, 1593 and 1579, respectively. For each dataset corresponding to a rendering tool,
360 CG images were randomly selected to form the test set, and the remaining CG images
were retained for the training set.

To maintain the diversity of natural images, NIs from two popular existing databases,
i.e., RAISE [9] and VISION [8], were combined. Out of the 8156 high-resolution images
contained in the RAISE database, 4700 were randomly selected. In order to simulate real-
world conditions, these images were randomly resized and compressed (details in [5]).
The VISION database comprises images captured by 35 mobile devices, with each device
contributing 100 NIs, and in total VISION has 3500 NIs. Additionally, these natural images
were exchanged via Facebook (in high and low quality) and WhatsApp, resulting in four
versions for each image [8]. A random selection was made from these four versions for each
image to maintain the total number of 3500 selected NIs. We note that the CG images as
downloaded from the websites of the four rendering tools are of different spatial sizes and
different compression qualities. By contrast, the NIs from RAISE [9] are never-compressed,
high-resolution images, and the NIs from VISION [8] (before being exchanged via Facebook
and WhatsApp) are of limited size and compression settings. Therefore, it is reasonable to
randomly resize and compress NIs from RAISE (following the same procedure as suggested
in [5]) and to exchange NIs from VISION via social network platforms (as carried out by
the original authors of VISION [8]). This would allow us to obtain CG images and NIs that
are overall quite comparable in terms of their spatial size and compression quality.

In the end, 8200 natural images were selected from RAISE and VISION, with 4700 from
RAISE and 3500 from VISION. Quan et al. [5] randomly chose 5040 NIs and duplicated
each CG image in a training set approximately four times to obtain 5040 CG images to
be included in the training set. In this way, four training sets, balanced between NIs and
CG images, were constructed, corresponding to the four graphics rendering tools. Each
training set comprises 10,080 images, i.e., 5040 CG images from a specific rendering tool
and 5040 NIs. In addition, 360 natural images were selected from the remaining NIs and
combined with corresponding CG images to constitute four test sets, each including 360 NIs
and 360 CG images from a specific rendering engine. For the sake of simplicity and with a
little abuse of the names, we hereafter use Artlantis, Autodesk, Corona and VRay to name
the four datasets, each comprising balanced (i.e., with an equal number of NIs and CG
images) training and test sets. Examples of CG images and NIs are illustrated in Figure 1.
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Reduced datasets. In addition to conducting an experimental study on the full datasets
detailed above, we aimed to carry out a comprehensive study of the forensic performance
on reduced datasets, corresponding to the challenging situation with training data scarcity.
Reducing the amount of data for training brings us closer to real-life application condi-
tions, where obtaining large quantities of data is often complicated. In order to prepare
experimental data for this challenging yet practical situation, we constructed different
versions of reduced datasets from the full datasets of [5], with different ratios of images
from the full datasets. More specifically, for each full training set with 10,080 images, we
used four reduction ratios of 50%, 20%, 10% and 5% to construct reduced training sets with
respectively 5040, 2016, 1008 and 504 images. For each ratio, we still had four training
sets corresponding to the four rendering engines, and all the reduced training sets still
remained balanced with an equal number of CG images and NIs. The test sets remained
unchanged when the training was carried out on reduced or full training sets, so that
we could fairly evaluate and compare the test classification performance under different
qualities of training samples. We report experimental results on both full and reduced
datasets in Section 5.

3.2. Neural Network

We base our study on the ENet neural network developed in [5], because it reached
state-of-the-art performance on the full datasets described above. ENet is a neural network
with ten layers and two branches at the beginning that takes the NcgNet [4] architecture as
the base network. It is designed to focus on learning diverse features. It has the purpose
to automatically combine kernel initialization with SRM (spatial rich model) [22] filters
and the conventional Gaussian random initialization in the beginning of the network. This
combination is useful for learning discriminative and diverse features for the CG forensics
problem. The architecture of ENet is illustrated in Figure 2. The first part, spanning from
layers L1 to L4 in Figure 2, features a novel two-branch design, while subsequent layers
maintain the NcgNet architecture. The input to ENet is an RGB image.

Figure 2. Illustration of the architecture of ENet. Please refer to [5] for details.

4. Proposed Methods

In this section, we first explain the reasons and motivations that have led us to adopt
our research ideas to improve the forensic classification performance between NIs and CG
images (Section 4.1). Then, we propose and describe simple methods, based on suitable data-
augmentation operations (Section 4.2) and a slight modification of the network architecture
and loss function (Section 4.3), to achieve effective discrimination between NIs and CG
images, especially when the forensic classifier is tested on CG images created by unknown
graphics rendering engines and/or when we have a limited number of training samples.

4.1. Motivations

The existing studies in [5,10] show that methods based on additional enhanced train-
ing or self-supervised pre-training can be used to improve forensic classification capabilities
in some challenging situations. However, those methods are expensive in terms of compu-
tational cost, with several hours [5] or more than a dozen of hours [10] of extra training
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time. For this reason, in this paper we investigate simple and efficient methods based on data
augmentation and the combination of local and global predictions, as these methods are
much less expensive in terms of computational cost. As shown later in the experimental
studies in Section 5, the extra computation time induced by our methods is around 10 to
20 min, which is much less than the existing methods. As far as the data-augmentation
method is concerned, two categories of augmentation operations will be studied. The
first category consists in reducing the impact of subtle differences potentially related to
the processing history of the images that often reside in the high-frequency components.
The purpose is to encourage the neural network to learn discriminative and generalizable
features to distinguish between NIs and CG images, but not features that may pertain to
the minor differences in terms of the image processing history. The second category of
data-augmentation operations consists in increasing the diversity of the training data, in
order to enable the neural network to improve its ability to generalize and to decrease the
risk of overfitting. Lastly, the combination of local and global predictions encourages the
consistency of classification results over the whole image, and this would be beneficial to
obtain comprehensive features focusing not only on globally prominent clues but also on
diverse local clues for the forensic classification. With the proposed methods that promote
the better quality of the learned features, experimentally we are able to achieve better
forensic classification results when the classifier is trained and/or tested on the challenging
situations mentioned previously.

4.2. Data Augmentation

Data augmentation refers to methods used to produce new data from the basic training
data available for a machine learning problem. The produced new training data, if well
constructed, are likely to improve the learning therefore the performance of machine
learning algorithms. Data augmentation has received relatively little attention in the
research on CG forensics. Existing methods tend to use simple augmentation operations
like random cropping and horizontal flipping [4,5]. In this paper, we would like to carefully
study the effect of two categories of data-augmentation operations (as detailed later in this
subsection) on the forensic performance of the classification between NIs and CG images.

4.2.1. Reducing the Impact of Processing History

As mentioned above, the data-augmentation operations we consider can be divided
into two categories. By applying the first category of operations, our objective is to reduce
the impact of the processing history traces of images on the training of neural network.
These subtle yet minor traces generally reside in the high-frequency components of training
images and they would not reflect the intrinsic difference between NIs and CG images.
Intuitively, it would be beneficial to reduce the impact of such traces on our forensic
classification problem and to somewhat homogenize these traces for the NIs and CG
images used for training. This would make it more difficult to distinguish between them,
and encourage the neural network to focus on features that truly reflect the natural (NI) or
synthetic (CG) nature of the images.

In order to reduce the impact of such minor and high-frequency traces, we propose to
apply two data-augmentation operations of somewhat opposite ideas. The first operation
consists in random noise addition, in an attempt to “cover” existing traces by introducing
new and “consistent” high-frequency traces with the added noise. The second operation, by
contrast, consists in removing part of the existing traces via the augmentation operation of
Gaussian blurring. Gaussian blurring is a classical and popular image-processing method.
In our work, it enables us to attenuate the high-frequency elements in images where traces
of the image-processing history may reside. Technically and more precisely, for a given
training image, we apply, with a 50% probability, a convolution operation by using a k × k
kernel constructed with the following Gaussian function:



Forensic Sci. 2024, 4 170

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 , (1)

where x and y represent the distance on the x-axis and the y-axis, respectively, from the
kernel center. We apply this Gaussian blur augmentation with a σ value (which corresponds
to the standard deviation of the Gaussian function above) randomly drawn between 0.1
and 2, and with a kernel of the size 3 × 3. Figure 3 shows an example of an image before
and after applying Gaussian blurring. Experimentally, we found that the Gaussian blur
augmentation leads to better forensic performances than the noise-addition augmentation.
The results and analysis are provided in Section 5.

Figure 3. Example of images before (left, also illustrated in Figure 1, top left) and after (right)
applying Gaussian blurring.

4.2.2. Increasing the Diversity of Training Samples

The second category of data augmentation consists in enriching the diversity of the
images used for training, in order to obtain a trained network with a better generalization
capacity. The underlying idea is to have more diverse training samples by introducing
reasonable modifications to the available training images. Operations such as color jitter
and color transfer between images fall into this second category.

The color jitter operation brings random modification to the color-metric properties
of a given training image. In practice, random perturbations can be introduced to the
brightness, contrast, saturation and hue of the image, so as to have more diverse training
samples. Another advanced and alternative augmentation operation is the color transfer
between two images. Our implementation of this operation is based on the landmark work
of Reinhard et al. [23], in which the authors proposed a method for transferring low-order
color properties from a source image to a target image. The color transfer is realized in the
lαβ color space, which achieves better transfer performance than the conventional RGB
space, as shown in the original paper [23]. More precisely, first- and second-order statistics
of the means and standard deviations of the lαβ channels are considered and transferred.
In our study, within a balanced batch (i.e., an equal number of NIs and CG images) fed to
the neural network, we randomly pair NIs and CG images and then transfer, for randomly
selected 50% pairs, the color of the NI in a selected pair to the CG image in the pair. In
this way, the CG images used for training can have more diverse and also more realistic
(because of the color transferred from an NI) color properties. This is beneficial to achieving
a better forensic performance in the challenging situations considered in this paper. An
example of the result of this color transfer operation is shown in Figure 4, and the adopted
color-transfer algorithm is summarized in Algorithm 1.
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Algorithm 1 Color transfer from a source image to a target image.

1: We choose a source image that contains the color we want to transfer from and a target
image that is the one that will be modified; in the following the subscripts s and t
respectively represent channel values of the source and the target image.

2: As the colors of the source and target images are often saved in the RGB space, follow-
ing [23], we convert the images to the lαβ space.

3: We subtract the average of the lαβ channels of the target image (in this algorithm ⟨.⟩
stands for the average operation on a given channel):

l∗t = lt − ⟨lt⟩, α∗t = αt − ⟨αt⟩, β∗
t = βt − ⟨βt⟩.

4: The obtained channel values of the target image after the average removal in the last
step are multiplied by the ratio of the standard deviation of the source channels to the
standard deviation of the target channels, as computed below (the superscripts l, α and
β mean that the standard deviation is computed on the corresponding channel):

l′t =
σl

s

σl
t

l∗t , α′t =
σα

s
σα

t
α∗t , β′

t =
σ

β
s

σ
β
t

β∗
t .

5: The average of the source lαβ channels is added to the obtained target channels values
at the previous step 4:

l′′t = l′t + ⟨ls⟩, α′′t = α′t + ⟨αs⟩, β′′
t = β′

t + ⟨βs⟩.

6: The obtained target channels values l′′t , α′′t and β′′
t at the previous step 5 are converted

back to the RGB space to obtain the color-transferred target image.

Figure 4. An example of the application of the color transfer operation: the color of the source NI in
the middle (also shown in Figure 1, bottom right) is transferred to the target CG image on the left
(also shown in Figure 1, top right), so as to obtain the color-transferred CG image on the right. The
obtained color-transferred image has the visual content of the CG image before the color transfer as
well as the color tone of the source NI.

It is worthwhile pointing out that these two operations of data augmentation, i.e., color
jitter and color transfer, both aim to increase data diversity but differ in the way they do
so. The color jitter operation augments the data in a rather random way, whereas the color
transfer operation consists in transferring statistical color properties from a natural image
to the virtual scene of a CG image. As far as we know, it is new in the literature of image
forensics research to make use of data augmentation based on color transfer for improving
the forensic performance. Experimentally, both color jitter and color transfer in general can
improve the CG forensics performances. In addition, we can gain further improvement
with the combination of color jitter or color transfer with the Gaussian blurring operation
from the first category. Detailed experimental results are presented in Section 5.
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4.3. Combining Local and Global Predictions

Another method aimed at improving the results obtained by our trained network is to
slightly modify its architecture in order to encourage it not only to predict a global binary
result over an entire image (i.e., an NI or CG image), but also to produce different local
prediction results, calculated from sub-divisions of the image. This is reasonable because
local parts of an NI or CG image still remain natural or computer-graphics sub-images,
without changing their forensic labels (NI or CG). The intuition and objective of combining
local and global prediction results is to encourage the network to not only focus on globally
prominent features for the forensic classification, but also to carefully check local sub-parts
of the image to hopefully derive comprehensive features that would still be useful in the
challenging forensic situations considered in this paper. More precisely and as illustrated
in Figure 5, at the output of the convolutional layer L7, we add a new branch where the
output feature maps of L7 are divided into P sub-parts of equal size (here as shown in
Figure 5 and in our implementation there are P = 4 sub-parts). We add a new FC layer
(denoted by FC_local) with a proper dimension to cope with the new input of a sub-part
of feature maps to further analyze the sub-part. In the other branch, the whole output
feature maps of L7 are analyzed with the FC layer at L8 (denoted by FC_global) as in the
original ENet. Afterwards, the output of FC_global, as well as the P outputs of FC_local,
are separately input to the remaining part of the network for further analysis by the FC
layers at L9 and L10. Therefore, finally we have P + 1 classification scores at the outputs of
the final L10 layer.

Figure 5. Modified architecture of ENet to take into account both P local predictions and one global
prediction. Here in the illustration, we have P = 4.

Accordingly, we modify the loss function so that it takes into account both the global
and the local predictions. In our implementation, the final loss for the training of the
modified network is the sum of the global prediction loss and the average of the P local
prediction losses. More precisely, the global prediction loss is calculated as the conventional
cross-entropy loss as follows:

Lglobal = − 1
N

N

∑
n=1

log
exp

(
xn,yn

)
∑1

c=0 exp(xn,c)
, (2)

where xn is an input, yn is the target label of xn, c represents the class index (here for a
binary classification problem we have c = 0 or c = 1 respectively representing the NI or
CG image classes), xn,c is the raw classification score of the sample xn being classified as of
class c, and N represents the number of training samples.

With a little abuse of notation, we can equivalently consider that the local loss is
computed on a sub-part of a training sample. Therefore, similar to the computation of the
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global prediction loss presented above, the local loss for a sub-part of sample x(i)n with the
sub-part index i (i ∈ {1, 2, ..., P}) is computed as follows:

L(i)
local = − 1

N

N

∑
n=1

log
exp

(
x(i)n,yn

)
∑1

c=0 exp
(

x(i)n,c

) . (3)

Finally, the final loss function of the modified network considering both local and
global predictions is calculated as follows:

L = Lglobal +
1
P

P

∑
i=1

L(i)
local . (4)

Experimental results of this modified network trained with the modified loss taking
into account both local and global predictions are presented in the next section. The
obtained results show the effectiveness of this new training strategy, especially when
combined with the data-augmentation operations presented in Section 4.2 and when there
are very few available training samples.

5. Experimental Results

Our methods were implemented by using PyTorch and tested on the datasets described
in Section 3.1. In the following, we present experimental results obtained on both full and
reduced datasets as well as some comparisons.

5.1. Results on Full Datasets

We first carried out experiments on the full datasets. As mentioned in Section 3.1, there
are four full datasets, with CG images created respectively by the four advanced rendering
engines Artlantis, Autodesk, Corona and VRay. We tested the forensic performance of the
neural network of various variants with data augmentation and/or modified loss function,
when it was trained on each of the four datasets. For each trained network on a specific
dataset (e.g., the training set of Autodesk), we tested and report its classification accuracy
on the four test sets, with CG images from the known rendering engine during the training
phase (e.g., in this case the test set of Autodesk), as well as from the other three unknown
rendering engines (e.g., in this case the test sets of Artlantis, Corona and VRay). In this
and the following subsections, we consider the average test accuracy on the four test sets
as the main performance metric, because it reflects both the conventional classification
accuracy on the known rendering engine and the generalization performances on the
unknown rendering engines. We also provide, in some cases, the detained accuracy results
on individual test sets.

We present in Tables 1–4 the results obtained respectively when we trained the net-
work on the four full datasets of Artlantis, Autodesk, Corona and VRay. We report the test
classification accuracy, individual ones and the average on the test sets. The generalization
performances on test sets with CG images from unknown rendering engines are shown
in italic in the tables. We present the results of normal training (the same as the baseline
method in [5]), training with noise addition (NA) augmentation, with Gaussian blurring
(GB) augmentation, with color jitter (CJ) augmentation, with color transfer (CT) augmenta-
tion, with the modified new loss taking into account both global and local predictions, with
the augmentation of GB + CJ, with the augmentation of GB + CT and with the combination
of the modified new loss and the augmentation of GB + CT.

We have several observations regarding the results presented in Tables 1–4. For the
first category of augmentation operations, Gaussian blurring (GB) worked much better than
noise addition (NA), with much higher average classification accuracies in the last column
of all four tables. GB consistently improved the average accuracy on all four datasets when
compared to the baseline normal training of [5], while NA could only cause improvement
when trained on Corona. This may imply that in order to reduce the impact of the processing
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history of training images, smoothing (i.e., partially removing high-frequency components)
is a much more effective way than noise addition (i.e., introducing new high-frequency
components in an attempt to “cover” old ones). For the second category of augmentation,
both color jitter (CJ) and color transfer (CT) improved the average test accuracy on the
four datasets compared to normal training, except for CJ with training on the VRay dataset
(Table 4). However, whereas CJ improved the average test accuracies in Tables 1–3, CJ
offered bigger improvements of the forensic performance than CT. The modified new loss
with a slightly modified network architecture led to a higher average test accuracy than
the normal training when trained on Autodesk, Corona and VRay, but it decreased the
accuracy when trained on Artlantis. As presented and analyzed later in this section, when
the new loss was combined with data-augmentation operations, we achieved a consistent
improvement of the forensic performance and in many cases a considerable boost of the
test accuracy, especially in the challenging situation of training data scarcity as considered
and studied in the next subsection.

Table 1. Experimental results of test accuracy on the four test sets and the average test accuracy (last
column, considered as the main performance metric), with networks trained on the full training set
of Artlantis. The generalization performances are shown in italic. Here, “aug.” means augmentation.
The best result of the average test accuracy is shown in bold.

Methods
Tested on

Artlantis Autodesk Corona VRay Average

Normal training [5] 98.69% 89.94% 85.42% 88.14% 90.55%
With aug. NA 98.75% 81.25% 79.31% 89.44% 87.19%
With aug. GB 98.75% 91.39% 90.00% 94.17% 93.58%
With aug. CJ 98.89% 88.06% 87.92% 92.36% 91.81%
With aug. CT 98.61% 87.64% 85.97% 90.97% 90.80%
With new loss 99.58% 80.56% 83.61% 86.11% 87.47%
With aug. GB + CJ 98.33% 89.58% 91.11% 95.00% 93.51%
With aug. GB + CT 97.64% 94.31% 93.75% 95.14% 95.21%
With new loss + GB + CT 99.44% 89.31% 89.31% 93.61% 92.92%

Table 2. Experimental results of test accuracy on the four test sets and the average test accuracy (last
column, considered as the main performance metric), with networks trained on the full training set
of Autodesk. The generalization performances are shown in italic. Here, “aug.” means augmentation.
The best result of the average test accuracy is shown in bold.

Methods
Tested on

Artlantis Autodesk Corona VRay Average

Normal training [5] 90.61% 98.44% 92.33% 86.61% 92.00%
With aug. NA 89.17% 98.33% 88.19% 87.50% 90.80%
With aug. GB 95.56% 98.33% 95.28% 93.89% 95.77%
With aug. CJ 90.69% 98.98% 95.14% 92.64% 94.36%
With aug. CT 90.28% 98.75% 95.28% 90.42% 93.68%
With new loss 91.25% 98.61% 95.83% 90.42% 94.03%
With aug. GB + CJ 94.73% 98.06% 96.25% 93.61% 95.66%
With aug. GB + CT 94.31% 97.92% 96.81% 94.17% 95.80%
With new loss + GB + CT 94.31% 98.61% 97.08% 92.78% 95.70%
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Table 3. Experimental results of test accuracy on the four test sets and the average test accuracy (last
column, considered as the main performance metric), with networks trained on the full training set
of Corona. The generalization performances are shown in italic. Here, “aug.” means augmentation.
The best result of the average test accuracy is shown in bold.

Methods
Tested on

Artlantis Autodesk Corona VRay Average

Normal training [5] 83.92% 92.08% 98.50% 92.22% 91.68%
With aug. NA 87.08% 91.81% 97.92% 95.56% 93.09%
With aug. GB 95.28% 94.58% 97.50% 96.67% 96.01%
With aug. CJ 88.19% 92.92% 98.89% 95.00% 93.75%
With aug. CT 84.44% 92.64% 98.89% 92.08% 92.01%
With new loss 89.31% 94.03% 99.17% 93.89% 94.10%
With aug. GB + CJ 94.31% 94.31% 96.94% 95.83% 95.35%
With aug. GB + CT 96.25% 95.56% 97.50% 95.56% 96.22%
With new loss + GB + CT 92.64% 94.86% 98.75% 94.31% 95.14%

Table 4. Experimental results of test accuracy on the four test sets and the average test accuracy (last
column, considered as the main performance metric), with networks trained on the full training set
of VRay. The generalization performances are shown in italic. Here, “aug.” means augmentation.
The best result of the average test accuracy is shown in bold.

Methods
Tested on

Artlantis Autodesk Corona VRay Average

Normal training [5] 88.42% 90.03% 95.47% 98.75% 93.17%
With aug. NA 90.97% 84.17% 93.75% 97.78% 91.67%
With aug. GB 95.97% 94.72% 94.17% 96.53% 95.35%
With aug. CJ 89.44% 87.92% 96.53% 97.64% 92.88%
With aug. CT 93.19% 91.39% 96.81% 98.33% 94.93%
With new loss 94.31% 92.64% 95.97% 98.61% 95.38%
With aug. GB + CJ 94.86% 93.06% 94.44% 95.69% 94.51%
With aug. GB + CT 97.08% 95.14% 96.25% 97.50% 96.49%
With new loss + GB + CT 97.64% 95.83% 96.94% 98.33% 97.19%

We also have in Tables 1–4 interesting results and observations regarding the combina-
tion of several methods, as listed in the last three rows of these four tables. First, when we
combine the two categories of augmentation operations, we find that the combination of
GB + CT works consistently better than the combination of GB + CJ. This is quite interest-
ing, because CJ alone can work better than CT (when trained on Artlantis, Autodesk and
Corona, but not on VRay). One possible explanation is that CJ, which introduces random
perturbations to images, may somewhat enhance the processing history traces that GB
aims to partially remove; therefore, the combination of GB + CJ might weaken the effect
of the individual augmentation operation of GB or CJ. By contrast, the combination of
GB + CT reached the highest average test accuracy among all methods when trained on
Artlantis, Autodesk and Corona, i.e., as shown by the average test accuracy values in bold
in the last column of Tables 1–3. More precisely, this combined augmentation of GB + CT
improved the average test accuracy from 90.55%, 92.00% and 91.68% for normal training [5],
respectively when trained on Artlantis, Autodesk and Corona, to 95.21%, 95.80% and
96.22%. It appears that with this combination, both GB and CT can achieve their respective
objective of reducing the impact of the processing history and increasing the diversity of
training samples, without interfering with each other. Finally, the combination of modified
loss, GB and CT also provides consistently good results in the four tables, in particular
achieving the highest average test accuracy of 97.19% when trained on VRay, as shown in
Table 4. As presented in the next subsection, we will see that this combination of modified
loss + GB + CT shows its big advantage and outperforms other methods in the challenging
situation where we have very few training samples.
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5.2. Results on Reduced Datasets

We also conducted experiments on reduced datasets. As mentioned at the end of
Section 3.1, we used four reduction ratios, i.e., 50%, 20%, 10% and 5%, to construct four
versions of reduced datasets. It is worthwhile pointing out that for each reduction ratio,
we still have four reduced datasets corresponding to the four rendering engines Artlantis,
Autodesk, Corona and VRay. The average test accuracy on all four test sets, as defined in
Section 5.1, is again used as the main performance evaluation metric, which considers the
test accuracy for both known and unknown rendering engines.

We first of all verified that the reduction of the number of training samples indeed led
to a decrease in forensic performance. To this end, we show in Figure 6 the comparison
between the average test accuracy of classifiers with normal training [5] on the full dataset
and the reduced datasets of four different ratios, when trained on the training set of
Artlantis, Autodesk, Corona and VRay. It can be observed that in general, the average test
accuracy decreased as the reduction ratio increased; there are two minor exceptions (the
Artlantis 5% reduced dataset and Corona 50% reduced dataset), which in our opinion are
mainly due to the randomness of the neural network initialization and training procedure.
It can be noticed from Figure 6 that when we have very little training data, say 5% of the
full training set, the average test accuracy can be as low as around 75%, as shown by the
purple bars in the figure.

Figure 6. Comparison of the average test accuracy (in %) of classifiers with normal training [5] on
the full training dataset and reduced training datasets of different reduction ratios, when trained on
Artlantis, Autodesk, Corona and VRay.

We present in Tables 5–8 the results of the average test accuracy of the different
methods when they were trained on reduced training sets of Artlantis, Autodesk, Corona
and VRay. In each table, we show the results under different reduction ratios of the training
set (i.e., 50%, 20%, 10% and 5%), and we also provide the corresponding results obtained
with full training sets for easy comparisons.

We have some interesting observations from these tables. First, with the reduced
training sets, the individual methods, i.e., with GB augmentation, with CJ augmentation,
with CT augmentation and with the modified new loss, were effective in improving the
forensic performance compared to the normal training in a majority of cases. Second, with
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the combination of several methods, i.e., with augmentation of GB + CT and with the
combination of the new loss and the augmentation of GB + CT (last two rows in Tables 5–8),
a consistent improvement was achieved in every column of these tables when compared
to normal training, as well as the best average test accuracy in almost every test scenario,
as highlighted by the value in bold in each column of Tables 5–8. Finally, if we take a
close look at the results with different reduction ratios, we can observe that for moderate
reduction ratios of 50% and 20%, the augmentation of GB + CT (second-last row) and
the combination of the new loss and the augmentation of GB + CT (last row) have rather
comparable overall results in the four tables, while it is clear that the combination of the
new loss and the augmentation of GB + CT (last row) has the highest average test accuracy
for very aggressive reduction ratios of 10% and 5% in the last two columns of the four
tables. More precisely, this combination of new loss + GB + CT achieved an improvement
of as high as 10.21% (from 78.79% to 89.00%) compared to normal training on the reduced
Corona training set of 10% (second-last column of Table 7), and a considerable improvement
of 9.83% (from 76.63% to 86.46%) for the reduced VRay training set of 5% (last column of
Table 8).

Table 5. The results of the average test accuracy of different methods when trained on the full and
reduced training sets of Artlantis. The best result in each column is shown in bold.

Methods
Trained on Full Reduced 50% Reduced 20% Reduced 10% Reduced 5%

Normal training [5] 90.55% 86.84% 79.61% 78.30% 79.41%

With aug. GB 93.58% 86.49% 83.12% 80.17% 84.41%
With aug. CJ 91.81% 87.47% 86.60% 80.77% 78.20%
With aug. CT 90.80% 89.41% 88.40% 84.37% 82.02%
With new loss 87.47% 86.11% 85.10% 80.52% 77.99%

With aug. GB + CT 95.21% 93.23% 89.55% 86.77% 83.48%
With new loss + GB + CT 92.92% 92.61% 91.32% 87.12% 86.81%

Table 6. The results of the average test accuracy of different methods when trained on the full and
reduced training sets of Autodesk. The best result in each column is shown in bold.

Methods
Trained on Full Reduced 50% Reduced 20% Reduced 10% Reduced 5%

Normal training [5] 92.00% 90.32% 84.06% 79.34% 73.20%

With aug. GB 95.77% 93.58% 89.83% 80.73% 75.35%
With aug. CJ 94.36% 91.35% 87.12% 82.33% 76.56%
With aug. CT 93.68% 92.92% 85.00% 84.38% 74.79%
With new loss 94.03% 92.12% 87.29% 81.74% 77.36%

With aug. GB + CT 95.80% 93.27% 88.68% 83.47% 81.39%
With new loss + GB + CT 95.70% 96.25% 87.61% 87.88% 82.33%

Table 7. The results of the average test accuracy of different methods when trained on the full and
reduced training sets of Corona. The best result in each column is shown in bold.

Methods
Trained on Full Reduced 50% Reduced 20% Reduced 10% Reduced 5%

Normal training [5] 91.68% 92.33% 87.57% 78.79% 77.12%

With aug. GB 96.01% 93.85% 89.76% 85.63% 81.18%
With aug. CJ 93.75% 86.60% 85.84% 75.52% 73.78%
With aug. CT 92.01% 91.98% 88.96% 82.08% 79.65%
With new loss 94.10% 93.09% 90.38% 78.72% 78.02%

With aug. GB + CT 96.22% 94.65% 90.73% 88.33% 80.52%
With new loss + GB + CT 95.14% 95.00% 91.18% 89.00% 84.72%
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Table 8. The results of the average test accuracy of different methods when trained on the full and
reduced training sets of VRay. The best result in each column is shown in bold.

Methods
Trained on Full Reduced 50% Reduced 20% Reduced 10% Reduced 5%

Normal training [5] 93.17% 92.15% 85.80% 83.33% 76.63%

With aug. GB 95.35% 92.05% 87.78% 86.63% 82.64%
With aug. CJ 92.88% 93.37% 88.16% 81.01% 74.97%
With aug. CT 94.93% 92.22% 89.79% 84.97% 80.07%
With new loss 95.38% 92.95% 88.72% 83.54% 77.90%

With aug. GB + CT 96.49% 96.15% 93.06% 89.41% 82.15%
With new loss + GB + CT 97.19% 94.10% 90.38% 89.72% 86.46%

In our experiments, we have also noticed that for the reduced training set of the
extremely low reduction ratio of 5%, the method of the combination of the modified new
loss and the augmentation of GB + CT always led to an improvement of test accuracy in all
test cases on an individual test set. In total, there are 16 test cases, i.e., we have 4 reduced
(5% ratio) training sets of Artlantis, Autodesk, Corona and VRay and for each reduced
training set we have 4 test sets corresponding to the four rendering engines. For the sake of
brevity, in Figure 7 we show, as an example, the obtained improvement compared to the
normal training when trained on the reduced (5% ratio) training set of Artlantis. Concretely,
with the combination of new loss + GB + CT, we achieved a considerable improvement
in terms of the conventional test accuracy with the known rendering engine Artlantis
(from 86.94% to 91.53%, the first group of bars in the figure), as well as the generalization
performances on unknown rendering engines of Autodesk, Corona and VRay (respectively
from 77.64% to 88.33%, from 75.14% to 82.22%, and from 77.92% to 85.14%, the last three
groups of bars in the figure). We mention in this paragraph and show in Figure 7 the
detailed results on individual test sets to showcase the striking performance improvement
when we have an extremely low number of training samples with a very low reduction
ratio of 5%. Our method also showed good performances for other reduction ratios; for
example, with the 10% reduction ratio, the combination of the modified new loss and
the augmentation of GB + CT could improve the classification accuracy on 14 out of all
16 individual test cases, with a significant improvement in terms of the average test accuracy,
as shown in the second-last column of Tables 5–8. For the sake of brevity (all results of
the main evaluation metric of the average test accuracy are provided in Tables 5–8 for all
reduced datasets), we refrain from presenting detailed results for every reduction ratio.

Figure 7. Comparison of the test accuracy (in %) on the four test sets of Artlantis, Autodesk, Corona
and VRay, obtained by the baseline normal training [5] and by the combination of the modified new
loss and the augmentation of GB (Gaussian blurring) + CT (color transfer). The training was carried
out on the Artlantis reduced training set with a 5% reduction ratio.
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5.3. Comparisons in Terms of Test Accuracy and Training Time

We now compare our methods with two state-of-the-art methods [5,10] that also con-
sider the challenging situations of generalization performances and training data scarcity.
Comparisons are carried out in terms of the test accuracy and training computational cost.

We first compare with the method of Quan et al. [5], who proposed to improve the
generalization performance by carrying out an additional enhanced training procedure.
Table 9 compares the training computational cost of the enhanced training method in [5]
and the different variants of our method when trained on the full Artlantis training set.
All the experiments were carried out on the same NVIDIA RTX A6000 GPU. We can see
from Table 9 that our different methods result in a slight increase of around 10 or 20 min of
training time, when compared to the baseline normal training (also from Quan et al. [5]).
The additional training time is slightly lower than 10 min for the augmentation methods
and the proposed modified network architecture and loss function. The combination of
data augmentation and the modified new loss leads to an increase in training time of
about 20 min. This remains acceptable and seems to confirm that our methods provide
a real improvement in forensic performance without inducing an excessive increase in
the computation time of network training. By contrast, the enhanced training proposed
in [5] led to an additional training time of more than 5 h, which is significantly more costly
than our methods. It is important to note that our focus in this paper is on reducing the
computational cost of the training phase, which lasts a much longer time and thus has a
much higher energy consumption footprint when compared to the test (inference) phase.
Our proposed methods have practically no impact on the inference time during the testing
phase. More precisely, for all trained networks of different variants, i.e., with normal
training, with additional enhanced training [5], our various data-augmentation operations,
and our new loss or combination of our proposed methods, the inference time on each
test image is about 23 milliseconds. This ensures a high test speed with about 43 test
images processed every second. Table 10 presents a comparison of the test accuracy results
between the enhanced training method of [5] and our method of the combination of the
augmentation of GB + CT, when trained on the four full datasets. We limit the comparison
to the full datasets because the method in [5] only considered these full datasets, and the
extension to reduced datasets remains quite complicated because some key parameters
need to be properly adjusted. In Table 10, the results are presented in pairs of test accuracy
values separated by a slash sign “/”, with the former being the result of [5] and the latter
the result of our method. It can be observed from Table 10 that our method has comparable
or even slightly better forensic test performance than the state-of-the-art method of [5],
with consistently higher average test accuracies for all four experimental scenarios. In
addition, it is worthwhile mentioning that our method achieves this level of performance
with much less training computational cost compared to the enhanced training method
of [5], as shown by the results in Table 9.

Table 9. Comparison of network training times (in minutes) of different methods when trained on
the full Artlantis training set.

Methods Training Time Additional Time Compared to Normal Training

Normal training 347 -

With additional enhanced training [5] 672 +325

With aug. GB 356 +9
With aug. GB + CT 356 +9
With new loss 355 +8
With new loss and aug. of GB + CT 368 +21
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Table 10. Comparison in terms of test accuracy (in %) between the state-of-the-art enhanced training
method of Quan et al. [5] and our method of the combination of the augmentation of GB + CT, when
trained on full training sets. In each pair of results separated by “/”, the former is the result of the
method of [5] and the latter is the result of our method. The generalization performances are shown
in italic. The best result of the average test accuracy in each row is shown in bold.

Trained on
Tested on

Artlantis Autodesk Corona VRay Average

Artlantis (full) 97.25/97.64 95.69/94.31 92.72/93.75 94.50/95.14 95.04/95.21
Autodesk (full) 94.42/94.31 97.61/97.92 95.14/96.81 91.78/94.17 94.74/95.80
Corona (full) 93.61/96.25 92.97/95.56 97.86/97.50 95.61/95.56 95.01/96.22
VRay (full) 94.61/97.08 93.92/95.14 96.83/96.25 98.28/97.50 95.91/96.49

We then carried out comparisons with our recent method in [10], which partially
considered the situation of training data scarcity though with a quite limited experimental
setting. Table 11 presents a comparison of test accuracy results between the method of [10]
and our method of the combination of new loss + GB + CT, when trained on reduced
training sets with a reduction ratio of 20% (this is the only data scarcity setting considered
in [10], with a self-supervised pre-training and then a fine-tuning on the reduced training
set). Results are still presented in pairs with a slash sign separating the result of [10] and
that of our method. The results in Table 11 show that our method achieves an improvement
of the test accuracy when compared with [10] in the vast majority of individual test cases.
In addition, the average test accuracy of our method is higher that that of [10] for all four
reduced training sets (last column of Table 11), with an improvement of at least 2.15%
(trained on 20% VRay) and of at most 4.90% (trained on 20% Artlantis). This better forensic
performance is achieved by our method with much less training computational cost than
the method of [10]. Our method only needs an additional training time of about 20 min
compared to normal training on a single GPU of NVIDIA RTX A6000, while the method
of [10] required a self-supervised pre-training that lasted as long as 14 h with parallel
computation on two GPUs (one NVIDIA RTX A6000 and one NVIDIA Quadro P6000).

Table 11. Comparison in terms of test accuracy (in %) between the method of [10] and our method of
the combination of the new loss and the augmentation of GB + CT, when trained on reduced training
sets with a reduction ratio of 20%. In each pair of results separated by “/”, the former is the result of
the method of [10] and the latter is the result of our method. The generalization performances are
shown in italic. The best result of the average test accuracy in each row is shown in bold.

Trained on
Tested on

Artlantis Autodesk Corona VRay Average

Reduced Artlantis (20%) 96.25/95.00 81.39/90.14 83.19/87.22 84.86/92.92 86.42/91.32
Reduced Autodesk (20%) 82.36/83.89 94.31/96.67 82.36/86.39 80.56/83.47 84.90/87.61
Reduced Corona (20%) 80.97/89.17 85.00/89.86 93.06/93.33 87.50/92.36 86.63/91.18
Reduced VRay (20%) 87.78/89.58 82.50/89.86 90.00/90.00 92.64/92.08 88.23/90.38

5.4. Discussion

From the experimental results presented above we can see that our proposed methods
of data augmentation and the modified new loss function, when applied separately, are
able to improve the performance for the CG forensics problem in many test scenarios.
When we combine these methods of different categories, better forensic performances can
be achieved. In particular, by using the combination of the modified new loss and the
augmentation operations of Gaussian blurring (GB) and color transfer (CT), we can safely
obtain the highest average test accuracy in the challenging situations with very few training
samples, i.e., with the reduction ratios of 10% and 5% of the training sets as shown in the
last two columns of Tables 5–8. On the full datasets, both the augmentation of GB + CT
and the combination of the new loss + GB + CT can consistently improve the average test
accuracy when compared to the baseline normal training (cf. the results in the second
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column of Tables 5–8), with the former achieving slightly better overall performance. It
appears that our proposed methods, which are designed to realize different objectives
(i.e., reducing the impact of the data processing history, increasing the data diversity and
learning comprehensive features with the combination of local and global predictions),
can be complementary to each other. In addition, our methods are conceptually simple
and computationally efficient, as shown by the comparison results with existing methods.
Our proposed methods induce an additional training time of about 10 to 20 min, while
the existing methods, based on enhanced training or self-supervised pre-training, require
respectively more than 5 h or 14 h of additional computation time of training.

6. Conclusions and Future Work

In this paper, we carried out studies to improve the forensic performance for distin-
guishing between NIs and CG images, in the challenging situations of tests on CG images
produced by unknown rendering engines and of training data scarcity. Differently from
existing methods that remain computational costly for the training phase, we proposed
to leverage efficient yet effective solutions of appropriate augmentation operations and of
slightly modified network architecture and loss function, with the objective to learn more
useful features to cope with the considered challenging situations. A series of experiments
were conducted on datasets comprising CG images created by four advanced graphics ren-
dering engines. The experimental results demonstrate the utility of our proposed methods
in improving the forensic performance, especially the generalization capability and the
classification performance when there are very few available training samples. These good
properties are desired for a potential real-world deployment of image forensic methods, in
which we are likely to encounter the aforementioned challenging situations. The experi-
mental comparisons show that our methods outperform the state-of-the-art methods, in
terms of classification accuracy and computation efficiency for the training phase.

Our work could be improved in different aspects in the future. First, for the research
on the augmentation operation to reduce the impact of the data processing history, it
would be interesting to derive a customized operation, instead of relying on the classical
Gaussian blurring operation; we also plan to carefully analyze the spectral and statistical
properties of NIs and CG images to deeply understand their difference and to gain insights
about what type of augmentation operation would be helpful to improve the forensic
performance. Second, in order to increase the diversity of training data, we would like to
study the possibility of transferring higher-order color properties between images, therefore
extending the adopted color transfer operation that now considers the first- and second-
order properties. Third, for the combination of local and global predictions, it would be
interesting to study the effect of the number of local predictions and the possibility of
an advanced combination approach of global and local results. If possible, in the future
it would also be helpful to gain knowledge about the similarity and difference between
different rendering tools, in an attempt to understand and explain the performance drops,
usually of different extents, in terms of the forensic generalization capability across CG
images created by different tools. We also plan to make efforts to extend our methods to
solving other multimedia security problems. Another promising future work direction is to
study and combine both active methods, e.g., based on watermarking [24,25], and passive
methods of multimedia forensics [26,27] to address the image authenticity issues.
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