
Citation: Wang, Q. Towards

Real-Time 3D Terrain Reconstruction

from Aerial Imagery. Geographies 2024,

4, 66–82. https://doi.org/10.3390/

geographies4010005

Academic Editor: Eliseo Clementini

Received: 13 August 2023

Revised: 15 January 2024

Accepted: 23 January 2024

Published: 29 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Towards Real-Time 3D Terrain Reconstruction from
Aerial Imagery
Qiaosong Wang

Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA;
qiaosong@udel.edu

Abstract: We present a near real-time solution for 3D reconstruction from aerial images captured
by consumer UAVs. Our core idea is to simplify the multi-view stereo problem into a series of
two-view stereo matching problems. Our method applies to UAVs equipped with only one camera
and does not require special stereo-capturing setups. We found that the neighboring two video frames
taken by UAVs flying at a mid-to-high cruising altitude can be approximated as left and right views
from a virtual stereo camera. By leveraging GPU-accelerated real-time stereo estimation, efficient
PnP correspondence solving algorithms, and an extended Kalman filter, our system simultaneously
predicts scene geometry and camera position/orientation from the virtual stereo cameras. Also, this
method allows for the user selection of varying baseline lengths, which provides more flexibility
given the trade-off between camera resolution, effective measuring distance, flight altitude, and
mapping accuracy. Our method outputs dense point clouds at a constant speed of 25 frames per
second and is validated on a variety of real-world datasets with satisfactory results.

Keywords: 3D reconstruction; unmanned aerial vehicles; real-time systems

1. Introduction

Recent advances in chipmaking and imaging sensor technologies enabled micro un-
manned aerial vehicles (UAV) to reduce cost and quickly progress into consumer markets.
Micro UAVs are widely used in agriculture, construction, transportation, and film-making
because of their exceptional stability, mobility, and flexibility. Specifically, aerial remote
sensing provides a rapid, inexpensive, and highly automated approach to producing 3D
digital assets for easy measurement, inspection, planning, and management. Presently,
a significant portion of terrestrial scans are acquired using either ground-based or aerial-
based LiDAR systems. However, such systems are bulky, expensive, power-intensive, and
often unable to provide dense textured mesh. It is more desirable to enable real-time high-
resolution mapping capabilities for consumer-level camera drones. Compared to terrestrial
LiDARs, consumer UAVs capture high-quality data in less time and at a lower overall
cost. Also, the operational complexity is much less for drones compared to terrestrial
LiDAR workflows. The redundancy of overlapping images, together with georeferencing
and auto-alignment enforced by photogrammetry algorithms, translates to high accuracy
outputs even in non-ideal operational or imaging conditions.

However, current photogrammetry pipelines usually take hours to days to fully
process captured imagery data, which greatly limits their capability for real-time data
acquisition. Such an ability is essential in scenarios such as onsite scan and inspection,
emergency response, and planning. An ideal scanning pipeline should be able to map
the scene in real time as the drone travels along the flight path and gives inspectors the
ability to examine the partial scan even before the flight mission is finished. Currently,
it is difficult to achieve such goals using photogrammetry approaches, for a few reasons.
Firstly, photogrammetry approaches typically require global optimization for camera pose
estimation, dense multi-view stereo matching, meshing, and texture mapping. So, at the

Geographies 2024, 4, 66–82. https://doi.org/10.3390/geographies4010005 https://www.mdpi.com/journal/geographies

https://doi.org/10.3390/geographies4010005
https://doi.org/10.3390/geographies4010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geographies
https://www.mdpi.com
https://orcid.org/0000-0002-4309-4460
https://doi.org/10.3390/geographies4010005
https://www.mdpi.com/journal/geographies
https://www.mdpi.com/article/10.3390/geographies4010005?type=check_update&version=1

Geographies 2024, 4 67

framework level it prevents online real-time mapping in an incremental manner. Some
algorithms first load all feature points into memory, begin from the initial image pairs,
and then incrementally extend the scene by registering new images and new 3D points.
Our method is along the lines of performing incremental 3D reconstructions. However,
our method still has subtle differences compared to the aforementioned approaches. Our
method performs feature extraction, verification, camera pose estimation/refinement, and
dense stereo all at the same time on a frame-by-frame basis, whereas other approaches still
separate the whole process into stages. For example, in most competitor approaches the
dense multi-view stereo matching step cannot begin without the camera pose estimation (or
SfM/sparse reconstruction) process completed for all images. In such cases, although the
camera pose estimation or sparse point cloud reconstruction step is performed incremen-
tally, the whole pipeline still requires the entire dataset as input and is thus not applicable
for online or real-time reconstruction. Secondly, for most of the prior work the structure
from motion (SfM) and multi-view stereo (MVS) components used in their pipelines are
typically computationally intensive and time-consuming. SfM algorithms typically densely
scan the input images and extract feature points in order to find correspondences between
these images in different views. Thirdly, a few failures or mismatches of images may break
the entire photogrammetry pipeline. Imaging issues such as reflection, lack of texture,
strong lighting, and moving objects may also result in poorly reconstructed scenes.

To tackle this problem, we propose an alternative approach. At the core of our design,
we use high-efficiency algorithms with the lowest computational cost at each and every
step of the pipeline. Therefore, we choose to use Harris corner [1] instead of SIFT [2] or
SURF descriptors [3] for feature extraction. We adopt real-time Belief Propagation (BP)
stereo matching on downsampled images instead of running large-scale full-resolution
MVS matching. We also use the very fast EPnP [4] algorithm instead of performing Bundle
Adjustment (BA) [5,6] as in many SfM pipelines. Finally, we employ the EKF filter [7] to
ensure reconstruction accuracy. The resulting system outputs an accurate dense point cloud
in near real-time at a constant speed of 25 frames per second. The overall pipeline is shown
in Figure 1.

UAV Platform Aerial Scanning

Virtual Stereo
Camera

Camera Pose Estimation

Feature
Detection

Pose
Estimation

Point Cloud StitchingTwo-view Stereo Matching Rendering

Meshing

Texture Mapping and Rendering

Figure 1. The processing pipeline of our system. We decompose the multi-view reconstruction
problem into pair-wise two-view stereo-matching problems. We perform fast camera pose estimation
to stitch point clouds together and achieve near real-time speed at producing dense point clouds.
Finally, we perform a meshing and texture mapping routine to obtain the final scanned model and
visualize it in a web environment.

2. Related Work

Global vs. Local Stereo Matching Because of computing efficiency and accuracy
constraints, for this work, we are only investigating stereo algorithms before the deep
learning era. Deep learning algorithms have made tremendous progress in terms of both
speed and accuracy for this task. However, such algorithms require special hardware and
training data. Collecting the training data is very time-consuming and labor-intensive.
In contrast, traditional stereo matching algorithms are bottom-up and unsupervised and

Geographies 2024, 4 68

do not require any training data. Such algorithms are generally composed of four stages:
cost computation, cost aggregation, cost optimization, and disparity refinement. The main
difference between local/semi-local [8–11] and global [12–17] algorithms is whether one
can construct and optimize a global energy function. Typically, local algorithms are based
on computing windows and are sensitive to occlusion and homogeneous regions. Global
methods are time-consuming but are much more accurate. This is carried out by incor-
porating smoothness terms and ensuring an optimal/sub-optimal solution via multiple
iterations to reduce the global energy. In recent years, due to the rapid development of
high-performance parallel computing hardware, it is possible to issue several thousands
of threads at the same time to speed up the disparity calculation. By leveraging such
massively parallel computing frameworks, it is possible to perform global stereo matching
in real-time.

vSLAM vs. SfM Visual SLAM [18–22] and SfM approaches [6,23–25] are both based
on multiview geometry and both aim at solving the camera motion/scene geometry es-
timation problem. The main difference between the two methods is in time complexity
requirements and practical applications. Typically, SLAM is used in robotic applications
focusing on using a single visual sensor with limited computing resources. Algorithms
along this line generally use a very fast feature detector (LSD [22], ORB [19], FAST [26]
etc.) and incorporate predictive/closed loop estimation frameworks to adjust the trajectory.
Scene geometry estimation is a nice to-have feature but is not mandatory. This is because
most vSLAM applications are only aiming at obtaining the trajectory/pose graphs. In
contrast, SfM algorithms are more geared towards reconstructing accurate 3D representa-
tions of the scene/objects. Therefore, SfM algorithms typically trade speed for accuracy,
process data offline, and have a high demand for computing power [24]. SfM is often
combined with multiview-stereo, surface reconstruction, and texture mapping steps to
output the final mesh model. Such pipelines typically have very high requirements for
imaging quality and are not very robust to real-world data (lens glare, motion/defocus
blur, reflection/transparency, thin structures, etc.).

Aerial vs. Terrestrial Data Collection Using consumer drones for 3D reconstruction
has many benefits compared to traditional ground-based survey practices. Firstly, drones
can automatically fly in a pre-programmed pattern, collecting well-lit and occlusion-free
images, while covering inaccessible or dangerous places with much lower risk (e.g., in-
specting highway bridges without stopping traffic). Secondly, this only takes a fraction
of the time and cost of ground-based surveys. Moreover, the data collection process is
reproducible, meaning that the drone could fly in the exact same pattern and collect data for
comparison in the future. This is extremely helpful for tasks like inspecting structural cracks
on highways/bridges/critical infrastructure, surveying coastline/sea floor/wetlands, or
tracking of construction projects [27,28]. While consumer drones are great for aerial pho-
togrammetry, there are a few drawbacks. Firstly, current onboard sensors and local obstacle
avoidance systems are still not good enough for close-proximity flights, meaning that the
drone could not collect enough parallax on vertical structures, limiting the accuracy of
the final mesh when there is heavy occlusion. Secondly, LiDAR works on a variety of
objects including specular/metallic surfaces and textureless regions with certain levels
of see-through capability on transparent objects (e.g., cloud, rain, and snow). On the
contrary, photogrammetry algorithms operating on camera sensors will start to fail when
reflective/textureless/transparent regions increase. Our focus revolves primarily around
applications such as large-scale city/terrain visualization, flood/construction simulation,
surveying, and similar scenarios. We do not target use cases demanding exceptionally high
model accuracy, such as the construction of HD maps for autonomous driving.

3. Methodology
3.1. Camera Calibration

Our objective is to produce precise scans of buildings and terrain, ensuring accu-
rate metric measurements of model dimensions. Therefore, it is very important to map

Geographies 2024, 4 69

camera measurements to real-world coordinates. Since the GoPro camera we are using is
wide-angle with severe distortion, we need to perform calibration to obtain the intrinsic
parameters of the camera. Our method supposes that nearby frames captured by UAVs
flying at high altitudes can be approximated as left and right views from a generic stereo
camera system. Therefore, for camera calibration, we only recover the intrinsic parameters
and ignore the calibration of extrinsic parameters. We also assume that the camera has only
radial distortion and does not have any tangential distortion. More formally,

xcorrected = x
(
1 + k1r2 + k2r4 + k3r6)

ycorrected = y
(
1 + k1r2 + k2r4 + k3r6) (1)

We use a planar checkerboard to calibrate the stereo camera [29]. In OpenCV [30],
this process can be carried out by calling cvCalibrateCamera2(). Once we pre-calibrated the
camera, we could recover all intrinsic parameters such as focal length (fx, fy), principle
point (cx, cy), skew s, and distortion parameters (k1, k2, p1, p2, k3). Note that there is only
one physical camera, and all intrinsic parameters remain constant throughout the flight.

3.2. Depthmap Processing

Once the images are rectified, we seek to obtain depth maps representing 3D coordi-
nates of real-world points in the camera coordination system. Our GoPro camera device
is with 2.7K resolution recording at 60 frames per second. It is almost impossible to run
traditional global stereo-matching methods on this resolution in real time. To address this
problem, we choose to perform stereo matching on low-resolution image pairs first and
subsequently upsample the results with guidance from raw color images [31]. We use the
GPU-based Belief Propagation [17] and Joint Bilateral Upsampling [32] in our implemen-
tation. We downsample the stereo image pairs to the resolution of 320 × 180 and seek to
minimize the following energy function [17]:

EX(d) = ED,X(d) + ES,X(d) = ED,X(d) + ∑
Y∈N(X)

MY,X(d) (2)

where MY,X(d) is the message vector passed from a pixel to its neighbor. ED,X is the data
term, and ES,X is the smoothness term. After a given number of optimization iterations, the
label d that minimizes EX(d) is assigned to each pixel to form the disparity map. Next, we
upsample the disparity map to obtain a high-resolution copy Dp [32]:

Dp =
1

Kp
∑

q↓∈W
D′

q↓ s
(∥∥p↓ − q↓

∥∥)g
(∥∥Ip − Iq

∥∥) (3)

The formula involves iterating over neighboring pixels in the downsampled depth
map, represented by q↓, within a filter window W centered around the pixel p in the high-
resolution image. The upsampled depth value Dp at position p is obtained by combining the
downsampled depth values D′

q↓ from neighboring pixels with spatial weight s
(∥∥p↓ − q↓

∥∥)
and range weight g

(∥∥Ip − Iq
∥∥). The spatial weight measures the spatial distance between

p↓ and q↓, while the range weight captures the color similarity between the pixel values
Ip and Iq at positions p and q in the high-resolution and input images, respectively. By
combining spatial and range weights, the technique preserves edges and details during
upsampling, reducing artifacts and noise in the output. This also combines appearance
information with fine levels of details from the full-resolution image and spatial information
from the downsampled disparity maps (see Figure 2 for details).

Geographies 2024, 4 70

Raw Rectified Disparity Map via BP Optimized via JBF

Figure 2. Example output from our stereo matching module. The first and second columns show
raw images and rectified images and corresponding analygraphs. The third column shows the
disparity map generated by belief propagation (BP) stereo matching. The final row shows the
optimized disparity map using joint bilateral upsampling (JBF). Note that small errors caused by BP
are eliminated via JBF, while all important edge details are preserved.

Once we have obtained the full resolution depth-map, suppose the baseline of the
camera is B; du and dv are lengths of the pixels on the horizontal and vertical axis; (fx, fy)
are the focal lengths of a camera and represent the scaling factors for the horizontal and
vertical axes, respectively; (x, y, z) are the 3D point coordinate in the camera coordinate
system; (u, v, d) are 2D image coordinates and depth value of a point in the image plane;
and (u0, v0) are principal point coordinates, representing the offset of the image center from
the top-left corner. We could obtain:

[u, v, d] =
1
z

[
f x
du

,
f y
dv

,
f B
du

]
+ [u0, v0, 0]

[x, y, z] =
B
d

[
u − u0,

(v − v0)dv
du

,
f B
du

] (4)

Therefore, we could obtain point clouds for all virtual stereo image pairs with respect
to their own camera coordinate systems.

3.3. Pose Estimation and Refinement

Our approach supposes nearby frames taken from the aerial video with a fixed inter-
val can be treated as a set of left–right image pairs taken by virtual stereo cameras with
identical baselines. However, it is worth noting that this assumption only holds locally.
If the time difference between the two frames is too much, then we cannot assume an
ideal stereo camera setup (exact same camera pose) and must re-estimate the camera pose
and orientation. This is because if the distance between two captured shots is excessive,
there will not be adequate overlap for calculation. Another scenario arises when the drone
undergoes roll/pitch/yaw motions, making it impossible to calculate a depth map because
corresponding pixels do not align on the scanline (violating the epipolar geometry assump-
tion). In this section, we discuss how to recover orientations and poses for all stereo image
pairs. Firstly, we need to introduce a feature descriptor to build correspondence between
two camera frames. Instead of the commonly used SIFT [2]/SURF [3] feature descriptor,
we choose to use the very fast Harris corner detector for our application. Suppose the
image is Iu,v and we choose a patch with a small shift [x, y]; the change of intensity could
be formulated as [1]:

Ek = ∑
u,v

wu,v
[
Ix+u,y+v − Iu,v

]2
= ∑

u,v
wu,v

[
Ax + By + C

(
x2, y2

)]2
= (x, y)M(x, y)T (5)

Geographies 2024, 4 71

where

A = X2 ⊗ w, B = Y2 ⊗ w, C = XY ⊗ w

M(x, y) =
[

A C
C B

]
=

[
∑u,v wu,v I2

x(x + u, y + v) ∑u,v wu,v Ix Iy(x + u, y + v)
∑u,v wu,v Ix Iy(x + u, y + v) ∑u,v wu,v I2

y(x + u, y + v)

] (6)

A and B are first-order partial derivatives of the image, and w is the Gaussian window
function to improve robustness to noises. M is a 2 × 2 matrix computed from the image
derivatives. The Harris corner is detected when the response R reaches the local maximum:

R = Det(M)− k Tr2(M) (7)

where k is a constant multiplier that helps adjust the balance, and Det and Tr are the
determinant and trace of the the structure tensor M. The Harris corner is related to the
response from two directions and is thus invariant to rotation and translation. Also, the
computation is relatively simple and could be performed in real-time. For a given threshold
R, we choose a patch centered at every Harris corner and compute the correspondence
between frame It1 and It2, where t is the timestamp. The computation of correspondence
will only be performed within the given search range. We use Squared Difference (ZSSD)
to calculate the cost. Once the correspondences are obtained, we seek to obtain the rotation
and translation matrices [R, T], which describe the relative camera pose between time t1
and t2. We adopt the very fast algorithm described in [4] for determining the position and
orientation of the cameras given their calibrated intrinsics and a set of correspondences. The
core of this algorithm expresses 3D points as a weighted sum of 4 control points, reducing
the computational complexity to O(n). Including additional control points beyond the
minimum 4 required for pose estimation does not necessarily improve the accuracy of
the solution, and it may introduce numerical instability and increased computational
complexity. Suppose A is the intrinsic matrix obtained from the previous section, and ui
are a set of Harris corners representing 3D points

{
pc

i
}

i=1,...,n; we now have:

∀i, wi

[
ui
1

]
= Apc

i = K
4

∑
j=1

αij · cc
j (8)

where wi are projective parameters, and
{

cc
j

}
j=1,2,3,4

are control points in the camera

coordinate system. By solving this linear system, we could obtain the translation and
rotation matrices which map control point coordinates from real-world coordinate system
to camera coordinate system:

cc
j = [R, T]cw

j (9)

Since the proposed system is completely based on visual information, it is possible
that bad imaging conditions (e.g., textureless regions, reflective surface glares) would
lead to inconsistency in feature matching between the stereo frames. Additionally, the
presence of noise interference introduces considerable fluctuations in the computed results.
Consequently, the utilization of filtering techniques becomes essential to obtain more
reliable and smoother outcomes. Given the relatively smooth nature of the camera’s motion,
without abrupt movements, we employ the Kalman filter based on a constant velocity
model [7]. This choice is justified by its suitability for handling such motion characteristics
and its potential to enhance the accuracy and robustness of the pose estimation results.

We begin by defining a 13-dimensional state vector as follows:

Xk =


rW

Ck
qW

Ck
vW

Ck
ωC

Ck



Geographies 2024, 4 72

where rW
Ck

represents the 3D coordinates of the camera in the world coordinate system at
time step k. qW

ck
denotes the quaternion representation of the camera’s pose in the world

coordinate system at time step k. vW
Ck

is the linear velocity vector of the camera with respect
to the world coordinate system at time step k. Finally, ωc

ck
represents the angular velocity

vector of the camera relative to the camera coordinate system at time step k. These state
variables constitute the essential elements for describing the camera’s position, orientation,
linear velocity, and angular velocity at each time step in a 3D environment. The constant
velocity model assumes that the camera motion is relatively smooth, without abrupt
changes; thus, it is suitable for accurately estimating the camera’s trajectory and poses in
a continuous manner. Incorporating this model into our pose estimation framework will
enable more reliable and accurate camera tracking results as our drone is programmed to
move and capture images in constant velocity and altitude.

Let us denote X̂k+1|k as the predicted state estimate at time step k + 1 given the
measurements up to time step k. It is computed using the function fk+1 as follows:

X̂k+1|k = fk+1


rW

Ck
qW

Ck
vW

Ck
ωC

Ck

 =


rW

Ck
+

(
vW

Ck
+ VW

k+1

)
∆t

qW
Ck

× q
((

ωC
Ck

+ ΩC
k+1

)
∆t

)
vW

Ck
+ VW

k+1
ωC

Ck
+ ΩC

k+1


The function q(•) transforms a rotation vector into a quaternion. VW

k and ΩC
k represent

the noise sequences associated with linear velocity and angular velocity, respectively. They
are considered to be zero-mean Gaussian random sequences with a covariance matrix Qk.
The measurements Zk of Xk satisfy a linear relationship, given by the measurement equation:

Zk = HXk + Sk

where H is the measurement matrix

H =

(
03×3 04×4 I3×3 03×3
03×3 04×4 03×3 I3×3

)

Here Sk represents the measurement noise at time step k, given by
(

VW
k

ΩC
k

)
. This

linear measurement equation enables the fusion of measurements with the predicted state
to update and refine the state estimates using the Kalman filter. Therefore, we could derive
the discrete-time predict and update equations on the camera poses. In the prediction stage,
the forecasted state and covariance estimate can be expressed as follows:

x̂k|k−1 = fk

(
x̂k−1|k−1, uk

)
Pk|k−1 = FkPk−1|k−1F⊤

k + GkQkG⊤
k

(10)

Here, x̂k|k−1 denotes the anticipated state estimate at time step k based on all preceding
measurements up to time step k − 1 and is obtained using the motion model fk. Pk|k−1
denotes the predicted state covariance matrix at time step k incorporating the uncertainty
in the state estimate due to the motion model and control input uk. Fk is the state transition
matrix or Jacobian matrix of the motion model, while Gk is the control matrix or Jacobian
matrix of the motion model with respect to the control input uk. Finally, Qk represents the
e zero-mean noise added to the motion model at time step k + 1. In the update stage, we

Geographies 2024, 4 73

denote the near-optimal Kalman gain as Kk, the updated state estimate as x̂k|k−1, and the
updated covariance estimate as Pk|k−1. The three variables can be computed as follows:

Kk = Pk|k−1HT
(

HPk|k−1HT + TkRkTT
k

)−1

x̂k|k−1 = x̂k|k−1 + Kk

(
zk − Hx̂k|k−1

)
Pk|k−1 = (I − KkHk)Pk|k−1

(11)

Here, Kk represents the Kalman gain at time step k. The Kalman gain is a matrix
used to determine the weight given to the current measurement and the predicted state
estimate in the update process. It is calculated based on the predicted state covariance
measurement matrix H, the measurement noise covariance matrix Rk, and a Jacobian
matrix of the measurement function Tk to map the measurement noise covariance Rk from
the measurement space to the state space. Pk|k−1 denotes the predicted state covariance
matrix at time step k given all past measurements up to time step k − 1. It represents
the uncertainty in the state estimate. H is the measurement matrix, which maps the state
space into the measurement space. It defines how the state variables are related to the
measurements obtained from the sensor. It is a constant matrix. zk represents the actual
measurement obtained from the sensor at time step k. It is a vector that contains the
measurements. x̂k|k−1 denotes the predicted state estimate at time step k based on all past
measurements up to time step k − 1. It is the expected value of the state variables given
the previous measurements and the motion model. Tk is a transformation matrix that is
used to adjust the units or dimensions of the measurement noise covariance Rk. It helps
incorporate the measurement noise into the correct space. Rk represents the measurement
noise covariance matrix at time step k. It describes the uncertainty or noise present in the
measurements obtained from the sensor. I is the identity matrix, which has ones on the
main diagonal and zeros elsewhere.

To this end, we could obtain camera poses for every virtually captured stereo pair
obtained by the UAV. This also enables us to calculate the real-time speed, traveled distances,
and turn angles of the UAV in real-world metrics without using any GPS information.
Combined with the point clouds we obtained from Section 3.2, we could stitch the point
cloud together into a combined point cloud of the captured scene along the flight trajectory.
We use the EKF-filtered poses as initialization and use the CUDA accelerated Iterative
Closest Point (ICP) [33] algorithm to fine-register all point clouds together. We run ICP on
the point clouds calculated from low-resolution disparity maps using Equation (4). The
final module, which includes orientation/pose estimation and fine-registration, is running
at a constant speed of more than 100 Hz on a desktop equipped with a standalone GPU.

3.4. Meshing and Texture Mapping

To this end, we have shown an efficient approach to generate dense point cloud data.
We also leverage Screened Poisson Surface Reconstruction [34] for mesh reconstruction,
and Large-Scale Texturing [35] for texture mapping.

Screened Poisson Surface Reconstruction aims to reconstruct a smooth surface, denoted
as S, from an unorganized point cloud, denoted as P, with N points pi in R3. The goal is to
find a scalar field u(x) over 3D space R3 such that it satisfies the Poisson equation with a
guidance function g(x):

∇2u(x) = g(x) (12)

where ∇2 is the Laplacian operator. The guidance function g(x) is derived from the point
cloud P and helps to direct the reconstruction process. To ensure a stable and smooth
reconstruction, Screened Poisson Surface Reconstruction introduces a screening function
s(x) that acts as a spatially varying weight. The screened Poisson equation is given by:

∇2u(x) = s(x) · g(x) (13)

Geographies 2024, 4 74

The screening function s(x) assigns higher weights to points near the surface and
lower weights to points further away. This effectively suppresses the influence of noisy or
distant points, resulting in a more robust and accurate reconstruction. The reconstructed
surface S can be obtained by applying the marching cubes algorithm to the level set of the
scalar field u(x), where the level set u(x) = 0 defines the boundary of the surface. The
marching cubes algorithm generates a triangular mesh that represents the reconstructed
surface S. By incorporating the screening function into the Poisson equation, Screened
Poisson Surface Reconstruction achieves a high-quality and smooth surface representation
that respects the input point cloud while mitigating artifacts and irregularities.

Once we obtain the mesh, raw images, and projection matrices, we can proceed with
texture mapping. We can first start with image Projection. For each vertex vi in the 3D
reconstruction, the corresponding 2D UV coordinates ui are computed by projecting vi
onto the camera images. This projection is given by:

ui = K · P · vi (14)

where K is the camera intrinsic matrix, P is the camera projection matrix, and vi is the 3D
vertex. Next, we create the UV map. Using the computed UV coordinates, a UV map is
created for each camera image. The UV map is a 2D representation of the camera image,
where each pixel corresponds to a 3D point on the reconstructed surface. To assign color
information to the 3D reconstruction, we need to perform texture sampling. For each
vertex vi, the corresponding color value ci is obtained by sampling the UV map at the UV
coordinates ui. This process is given by:

ci = Sample(UV Map, ui) (15)

where Sample represents the sampling function. Finally, to handle occlusions and seams,
we need to perform texture fusion. The color information from multiple camera images is
fused together to obtain the final texture value c(v) at each vertex v in the 3D reconstruction.
This is achieved using a weighted averaging scheme:

c(v) =
∑N

i=1 wi · ci

∑N
i=1 wi

(16)

where N is the number of cameras, ci is the color value at vertex v from camera i, and wi
is the weight associated with camera i. The weights are computed based on the distance
between the 3D vertex and the camera center.

Note that these two steps are used for generating visually pleasing results and are
not included in our real-time workflow. In the future, we will investigate different fast
meshing and texture mapping approaches and work towards a more complete end-to-end
3D reconstruction pipeline.

4. Experiments
4.1. Hardware and Software Setup

A DJI-Phantom Vision 2 Plus quadcopter with 2.4G datalink and iPad ground station
is used in this project. It weighs about 1.2 kg, with a diameter of 350 mm. The maximum
forward, ascent, and descent speed are 15 m/s, 6 m/s, and 3 m/s, respectively. Auto-
matic flights can be set up with a maximum altitude of 122 m (per US Federal Aviation
Administration (FAA) General Operating and Flight Rules (CFR) part 107) and a maximum
distance of 5 km. A GoPro Hero 3+ Black Edition camera is attached to a Zenmuse H3-3D
gimbal to capture stabilized imagery off the UAV. The video signal is transmitted to the
ground station via built-in Wi-Fi, and an AVL58 FPV system is applied to increase the video
transmission range to about 1 km in open space. An iOSD Mark II system is connected
to the onboard controller to transmit real-time flight data such as power voltage, velocity,
height, distance from the home point, horizontal attitude, and GPS satellite number. For all

Geographies 2024, 4 75

our experiments, we collect the videos, extract all the frames, and test on a desktop with
NVIDIA Geforce Titan V 12GB graphics card. Although we process the frames in an offline
fashion, there is the potential to run the same approach online with real-time speed. To
achieve this, either a reliable high-speed datalink or an embedded onboard computing
platform (e.g., NVIDIA Jetson) is required. Building such a system is outside of the scope
of this work; thus, we only evaluate the offline data.

We tested the CUDA accelerated BP algorithm with the maximum iteration set to 5
and the maximum disparity value set to 16. We set both the spatial and range filter size
of the JBF to 15 and the diameter of the filtering neighborhood to 10 pixels. We divide the
imaging plane to a 30 × 30 grid and calculate Harris corners inside each grid individually
to prevent too many points detected at the same region given a hard threshold. We fly
at 100 m with a speed of 3 m/s and maintain altitude using the DJI built-in NAZA flight
controller. We choose two frames out of every 10 frames to form a virtual stereo camera.
The baseline is approximately 0.5 m, and the overlap between adjacent images is around
90%. We conducted experiments in various environments and uploaded the results to
Sketchfab [36] (see Figure 3). We set the field of view (FOV) to 60 degrees; physically
based rendering (PBR) to “shadeless”; and enabled additional depth of field (DoF), bloom,
and Reinhard tone mapping effects. We also constructed a dynamic web portal for the
navigation, preview, and management of the uploaded 3D models.

Geographies 2023, 1 12

Table 1. Automatic measurement results on buildings from the University of Delaware. GTArea and
GTPerim denote the ground truth area and perimeter. The camera settings column shows the shutter
speed (in seconds) and ISO value. The detailed measurement process is outlined in Sec. 4.3

Name Area(m2) GTArea(m2) Perim(m) GTPerim(m) Points(M) Shutter(s), ISO

Morris Library 7047.85 7000.00 389.69 390.00 1.12 1/300, 100
Memorial Hall 2458.78 2440.00 281.84 280.00 0.63 1/300, 100
Hullihen Hall 2368.23 2320.00 195.80 196.00 0.63 1/300, 100
Mitchell Hall 1091.59 1080.00 169.54 168.00 0.55 1/300, 100

Gore Hall 2781.18 2760.00 224.43 224.00 0.65 1/300, 100
Sharp Laboratory 2652.83 2620.00 294.71 292.00 0.62 1/300, 100

Wolf Hall 2599.18 2560.00 300.32 296.00 0.68 1/150, 200
Du Pont Hall 3886.30 3840.00 341.62 338.00 0.73 1/150, 200

Evans Hall 2638.77 2600.00 206.14 204.00 0.69 1/150, 200
Brown Lab 4690.47 4640.00 298.94 296.00 0.82 1/150, 200

Lammot du Pont Lab 1533.21 1520.00 186.15 184.00 0.64 1/60, 400
Robinson Hall 768.33 764.00 119.84 118.00 0.45 1/60, 400

(a) Our Browser Interface

(b) Our Mobile Interface (c) Qualitative Results

Figure 3. Qualitative results on the reconstructed 3D scenes. Note that the VR view shown in (b) and
the mesh rendered in (c) are provided by Sketchfab [36].
Figure 3. Qualitative results on the reconstructed 3D scenes. Our web interface enabling browsing of
different scenes is shown in (a). The VR view shown in (b) and the mesh rendered in (c) are provided
by Sketchfab [36].

4.2. High-Resolution Reconstruction Experiments

In order to assess the upper bound of our reconstruction quality, we have also carried
out experiments using a more recent consumer drone, namely, the DJI Mavic 3 equipped
with the Hasselblad L2D-20c 4/3 CMOS 20-megapixel aerial camera. This particular camera
features a 24 mm equivalent focal length lens and an adjustable aperture ranging from f/2.8
to f/11, providing a native dynamic range of 12.8 stops. For flight path planning and image
capture, we utilized the publicly available Map Pilot Pro application. Our experimentation
took place at the Montalvo Arts Center in Saratoga, California.

The results obtained from our proposed algorithm exhibit superiority in both texture
and geometric accuracy when compared to the Google Maps 3D reconstruction. Despite
the inherent advantage of Google Maps employing satellite imagery for large-scale 3D

Geographies 2024, 4 76

reconstruction, our utilization of UAV drones presents a noteworthy advantage due to the
close proximity of data capture. The reduced distance from the target scene allows for en-
hanced resolution and finer detail acquisition. Moreover, this advantage is complemented
by the cost-effectiveness of our approach. The deployment of UAV drones is considerably
more economical than satellite-based methods, making our algorithm not only superior
in terms of texture and geometric accuracy but also economically viable for widespread
implementation. This cost-effectiveness renders our 3D reconstruction algorithm an attrac-
tive option for various applications, particularly those with limited financial resources, and
further underscores its significance in the domain of geographical mapping and remote
sensing technologies. However, it is important to highlight that our method may not be
appropriate for applications that demand high geometric accuracy. This is because Poisson
surface reconstruction, while enhancing visual quality by over-smoothing points, can lead
to a reduction in accuracy.

4.3. Auto Labeling and Measurements

We seek to automatically label the 3D point cloud, using open-source OpenStreetMap
(OSM) [37] geographical mapping tool. For the OSM users, given a GPS boundary request,
the OSM API server returns an XML file containing tags represented by various data
structures (nodes, ways, and relations). Each tag describes a geographic attribute, including
roads, buildings, water, and vegetation. The boundaries are represented by a polygon
based on GPS coordinates. We consider generating an orthographic projection from the
3D point cloud and align with the OSM map file to achieve the automatic labeling of the
3D scene object segments. We first perform a RANSAC-based plane detection method to
extract the ground plane and define the normal direction of the plane to be the Z axis. We
translate the 3D point cloud to Z = 0 and place a virtual orthographic camera at the center
+Z direction such that all points are covered in the camera view. Next, we render the scene
to obtain an orthophoto as well as a depth map stored in the Z-buffer. Once the orthophoto
is obtained, we send GPS coordinates recorded by the original image to request a RGB
satellite image from the Google Maps API. SIFT descriptors are extracted from both images
and matched against each other. Again, we apply RANSAC to solve for scale, rotation, and
translation to align the orthophoto with the satellite image. This fully automated process
gives us (pixel accurate) high-precision coordinates of our reconstructed mesh. Next, we
filter all objects less than 5 m in height to obtain building segmentation masks, as shown in
Figure 4. To validate the accuracy of our approach, we manually label 12 main buildings
from the University of Delaware using Google Earth Pro, obtaining the groundtruth areas
and perimeters of each building. The measurements obtained from our automatic pipeline
closely match the groundtruth data, as presented in Table 1, establishing the precision of
our 3D reconstruction pipeline. The final reconstruction results are presented in Figure 5.
Note that precise 3D models of the University of Delaware’s buildings on Google Earth
are not available for quantitative comparison because of copyright constraits from Google.
While we acknowledge the importance of quantitative verification using Chamfer distance
or F1 scores for surface evaluation, there is difficulty in obtaining highly accurate reference
data from Google.

In conclusion, our method demonstrates remarkable accuracy in automatically labeling
3D point clouds, incorporating orthophotos aligned with satellite imagery. The close
agreement between our automated measurements and groundtruth data underscores the
effectiveness of our pipeline, offering great potential for various applications in geographic
mapping and 3D scene analysis.

4.4. Flight Path Planning

Automatic flight path planning plays a pivotal role in ensuring the efficient and safe
operation of UAVs in various applications. We import the point clouds data obtained from
Section 3.3 into the Robot Operating System (ROS) [38] and leverage the state-of-the-art
algorithm [39] for trajectory planning. Given any target 3D point in space, the algorithm

Geographies 2024, 4 77

can generate a trajectory that allows the UAV to autonomously navigate through complex
environments with enhanced precision (see Figure 4b). This paper underscores the necessity
of automated flight path planning by elucidating how our proposed methodology harnesses
the power of real-time point cloud data and advanced trajectory planning techniques
to enable UAVs to effectively navigate through intricate spaces, thereby bolstering the
reliability and versatility of UAV operations across a spectrum of real-world scenarios.
Furthermore, the integration of automatic flight path planning with point cloud data
can facilitate task-level UAV command and streamline fleet operations, paving the way
for coordinated and collaborative missions with multiple UAVs operating seamlessly in
real-world environments. Notably, this approach enables a unique strategy where one
drone can be designated to fly at a higher altitude for 3D mapping purposes, subsequently
providing other drones with essential 3D map information. These secondary drones can
then leverage this map data for low-altitude optimal trajectory planning and obstacle
avoidance, enhancing overall operational efficiency and safety during complex missions.

Figure 4. Demonstration of UAV applications. (a) Left: Automatic building segmentation results. The
ground plane is marked in green and the segmented 3D buildings are coded in random color (see
Section 4.3). Right: OpenStreetMap view of the same area including building labels. (b) Automatic
flight path planning on the point cloud on the same area of (a). The purple 3D path shows the planned
flight trajectory between the current location and the target. (see Section 4.4).

Table 1. Automatic measurement results on buildings from the University of Delaware. GT_Area and
GT_Perim denote the ground truth area and perimeter. The camera settings column shows the shutter
speed (in seconds) and ISO value. The detailed measurement process is outlined in Section 4.3.

Name Area (m2) GT_Area (m2) Perim (m) GT_Perim (m) Points (M) Shutter (s), ISO

Morris Library 7047.85 7000.00 389.69 390.00 1.12 1/300, 100
Memorial Hall 2458.78 2440.00 281.84 280.00 0.63 1/300, 100
Hullihen Hall 2368.23 2320.00 195.80 196.00 0.63 1/300, 100
Mitchell Hall 1091.59 1080.00 169.54 168.00 0.55 1/300, 100

Gore Hall 2781.18 2760.00 224.43 224.00 0.65 1/300, 100
Sharp Laboratory 2652.83 2620.00 294.71 292.00 0.62 1/300, 100

Wolf Hall 2599.18 2560.00 300.32 296.00 0.68 1/150, 200
Du Pont Hall 3886.30 3840.00 341.62 338.00 0.73 1/150, 200

Evans Hall 2638.77 2600.00 206.14 204.00 0.69 1/150, 200
Brown Lab 4690.47 4640.00 298.94 296.00 0.82 1/150, 200

Lammot du Pont Lab 1533.21 1520.00 186.15 184.00 0.64 1/60, 400
Robinson Hall 768.33 764.00 119.84 118.00 0.45 1/60, 400

Geographies 2024, 4 78

Geographies 2023, 1 13

Figure 4. Demonstration of UAV applications. (a) Left: Automatic building segmentation results. The
ground plane is marked in green and the segmented 3D buildings are coded in random color (see Sec.
4.3). Right: OpenStreetMap view of the same area including building labels. (b) Automatic flight
path planning on the point cloud on the same area of (a). The purple 3D path shows the planned
flight trajectory between the current location and the target. (see Sec. 4.4)

Figure 5. Qualitative results between our 3D model and Google Earth. Note that the viewpoints are
manually adjusted to roughly align with each other. Our method is highly efficient while performing
favorably against Google Earth in terms of final reconstruction quality.

Figure 5. Qualitative results between our 3D model and Google Earth. Note that the viewpoints are
manually adjusted to roughly align with each other. Our method is highly efficient while performing
favorably against Google Earth in terms of final reconstruction quality.

5. Discussion

We show quantitative results in Table 1 and compare them with ground-truth mea-
surement data. As can be seen from Table 1, our method achieves highly precise results
across different building structures. The qualitative results from Figures 5 and 6 show
superiority in both texture and geometric quality when compared to the Google Maps
3D reconstruction. We also demonstrate useful applications such as the fully automated
labeling of buildings, building measurements, and flight path planning.

A crucial challenge in the current photogrammetry pipelines is the significant pro-
cessing time required to fully analyze the captured imagery data, thereby constraining
the real-time data acquisition capability. Such rapid data acquisition is indispensable in
scenarios like onsite scanning, emergency response, and planning. An optimal scanning
pipeline should ideally enable real-time scene mapping as the drone follows its flight
path, allowing inspectors to assess partial scans even before the flight mission concludes.
However, the high time complexity of traditional photogrammetry approaches makes it
inapplicable to achieve these objectives.

Geographies 2024, 4 79

Our proposed approach emphasizes the utilization of high-efficiency algorithms with
minimal computational burden at each pipeline stage. Notably, we employ the Harris
corner detector for feature extraction, as opposed to more resource-intensive options like
SIFT or SURF descriptors. For stereo matching, we adopt real-time Belief Propagation
(BP) on downsampled images, diverging from the resource-demanding full-resolution
multi-view stereo matching. Furthermore, we opt for the expedited EPnP algorithm for
camera pose estimation/refinement instead of the conventional Bundle Adjustment (BA)
technique found in many SfM pipelines. Finally, we derive a constant speed model using
the Kalman filter to improve the pose estimation accuracy. The culmination of these choices
results in our system’s remarkable capability to generate accurate dense point clouds in
near real-time, achieving a consistent speed of 25 frames per second.

6. Conclusions

We have presented an efficient, near-real-time solution for 3D reconstruction using
off-the-shelf consumer UAVs. Our proposed alternative approach addresses the limita-
tions of current photogrammetry pipelines for real-time mapping using consumer-level
camera drones. By employing high-efficiency algorithms with minimal computational cost
at each step of the pipeline, we have achieved significant advancements in real-time 3D
reconstructions. Our method conducts feature extraction, verification, camera pose estima-
tion/refinement, and dense stereo simultaneously on a frame-by-frame basis, allowing for
incremental and online mapping. This is in contrast to conventional approaches that rely on
global optimization and require the entire dataset as input, hindering real-time capabilities.

Our approach holds great promise for various applications, including onsite scans
and inspections, emergency response, and planning. The ability to examine partial scans
even before completing the flight mission is a significant advantage, enhancing decision-
making and operational efficiency. Moreover, the real-time data acquisition achieved by
our method opens up new possibilities for micro UAVs in diverse industries, such as
agriculture, construction, transportation, and film-making, where rapid and cost-effective
mapping solutions are increasingly in demand.

While our method has demonstrated remarkable performance, further research and
development are necessary to continue refining and expanding its capabilities. Future work
could focus on optimizing algorithms even further, exploring different feature extraction and
matching techniques and investigating ways to handle challenging imaging conditions more
effectively. Also, we plan to compare the proposed approach with other methods on 3D
reconstruction benchmark datasets and add more global/loop-closure constraints to minimize
trajectory errors. Additionally, we would like to validate the method’s accuracy and robustness
in various real-world scenarios to speed up its engineering adoption and deployment.

In conclusion, our work represents a significant step towards unlocking the full
potential of consumer-level camera drones for real-time high-resolution mapping, offering
promising prospects for enhanced efficiency and productivity across numerous industries.

Geographies 2024, 4 80
Geographies 2023, 1 14

Figure 6. High-Resolution Reconstruction Experiments. We reconstructed the Montalvo Arts Center
(Saratoga, California) using a more recent consumer drone equipped with a 20-megapixel aerial
camera 4.2. Row 1 to 4 shows the reconstructed mesh and 3D model with zoom-in views. Note that
the zoom level is more than 10X. Row 5 shows the same 3D building visualization in Google Maps.
Our results exhibit much-improved quality in both texture and geometry details.

Figure 6. High-Resolution Reconstruction Experiments. We reconstructed the Montalvo Arts Center
(Saratoga, CA, USA) using a more recent consumer drone equipped with a 20-megapixel aerial
camera (Section 4.2). Rows 1 to 4 show the reconstructed mesh and 3D model with zoom-in views.
Note that the zoom level is more than 10×. Row 5 shows the same 3D building visualization in
Google Maps. The upper and lower enlarged areas are indicated by red and green boxes, respectively.
Our results exhibit much-improved quality in both texture and geometry details.

Geographies 2024, 4 81

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available at the author’s personal
website at https://qiaosongwang.com. Under the Publications section please check instructions on
how to download data used in this paper.

Acknowledgments: The author conducted this research during his PhD study at the University
of Delaware. Special thanks are extended to Bobby Healy of Manna Drone for email discussions
that sparked the inspiration for this project. Christopher Rasmussen, from the Department of
Computer and Information Sciences at the University of Delaware, deserves acknowledgment for
offering valuable suggestions and advice throughout the project. Thanks to Kenneth Barner from the
Department of Electrical and Computer Engineering at the University of Delaware for reviewing the
project proposals. Gratitude is also expressed to Hank Chen and Matija Radovic from the University
of Delaware for their efforts in collecting aerial data. Further appreciation goes to Julie Yan and
Jennifer Zhao for their contributions in gathering data from the Montalvo Arts Center.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Harris, C.G.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester,

UK, 31 August–2 September 1988; Volume 15, pp. 10–5244.
2. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference

on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.
3. Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the Computer Vision—ECCV 2006: 9th

European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Proceedings, Part I 9; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 404–417.

4. Lepetit, V.; Moreno-Noguer, F.; Fua, P. Epnp: An accurate o (n) solution to the pnp problem. Int. J. Comput. Vis. 2009, 81, 155.
[CrossRef]

5. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In Proceedings of the
Vision Algorithms: Theory and Practice: International Workshop on Vision Algorithms Corfu, Greece, 21–22 September 1999;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 298–372.

6. Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.M.; Szeliski, R. Building rome in a day. Commun. ACM 2011,
54, 105–112. [CrossRef]

7. Civera, J.; Grasa, O.G.; Davison, A.J.; Montiel, J.M. 1-Point RANSAC for extended Kalman filtering: Application to real-time
structure from motion and visual odometry. J. Field Robot. 2010, 27, 609–631. [CrossRef]

8. Yoon, K.J.; Kweon, I.S. Locally adaptive support-weight approach for visual correspondence search. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June
2005; Volume 2, pp. 924–931.

9. Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
30, 328–341. [CrossRef]

10. Geiger, A.; Roser, M.; Urtasun, R. Efficient large-scale stereo matching. In Computer Vision—ACCV 2010; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 25–38.

11. Hosni, A.; Rhemann, C.; Bleyer, M.; Rother, C.; Gelautz, M. Fast cost-volume filtering for visual correspondence and beyond.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 504–511. [CrossRef] [PubMed]

12. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.
2001, 23, 1222–1239. [CrossRef]

13. Sun, J.; Zheng, N.N.; Shum, H.Y. Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 2003,
25, 787–800.

14. Yang, Q.; Wang, L.; Yang, R.; Stewénius, H.; Nistér, D. Stereo matching with color-weighted correlation, hierarchical belief
propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 492–504. [CrossRef] [PubMed]

15. Kolmogorov, V.; Zabin, R. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 2004,
26, 147–159. [CrossRef]

16. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient belief propagation for early vision. Int. J. Comput. Vis. 2006, 70, 41–54. [CrossRef]
17. Yang, Q.; Wang, L.; Ahuja, N. A constant-space belief propagation algorithm for stereo matching. In Proceedings of the 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 1458–1465.

18. Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234.

19. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

https://qiaosongwang.com
http://doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1145/2001269.2001293
http://dx.doi.org/10.1002/rob.20345
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://dx.doi.org/10.1109/TPAMI.2012.156
http://www.ncbi.nlm.nih.gov/pubmed/22848130
http://dx.doi.org/10.1109/34.969114
http://dx.doi.org/10.1109/TPAMI.2008.99
http://www.ncbi.nlm.nih.gov/pubmed/19147877
http://dx.doi.org/10.1109/TPAMI.2004.1262177
http://dx.doi.org/10.1007/s11263-006-7899-4
http://dx.doi.org/10.1109/TRO.2015.2463671

Geographies 2024, 4 82

20. Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense tracking and mapping in real-time. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327.

21. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [CrossRef]
22. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on

Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 834–849.
23. Gherardi, R.; Farenzena, M.; Fusiello, A. Improving the efficiency of hierarchical structure-and-motion. In Proceedings of the

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 1594–1600.

24. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.

25. Wilson, K.; Snavely, N. Robust global translations with 1dsfm. In Proceedings of the Computer Vision—ECCV 2014: 13th
European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part III 13; Springer: Berlin/Heidelberg, Germany,
2014; pp. 61–75.

26. Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 32, 105–119. [CrossRef]

27. Bhardwaj, A.; Sam, L.; Bhardwaj, A.; Martín-Torres, F.J. LiDAR remote sensing of the cryosphere: Present applications and future
prospects. Remote Sens. Environ. 2016, 177, 125–143. [CrossRef]

28. Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection.
Autom. Constr. 2020, 117, 103250. [CrossRef]

29. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
30. Bradski, G. The openCV library. Dr. Dobbs J. Softw. Tools Prof. Program. 2000, 25, 120–123.
31. Wang, Q.; Yu, Z.; Rasmussen, C.; Yu, J. Stereo vision–based depth of field rendering on a mobile device. J. Electron. Imaging 2014,

23, 023009. [CrossRef]
32. Kopf, J.; Cohen, M.F.; Lischinski, D.; Uyttendaele, M. Joint bilateral upsampling. ACM Trans. Graph. ToG 2007, 26, 96. [CrossRef]
33. ICPCUDA Open Source Utility Library. Available online: https://github.com/mp3guy/ICPCUDA (accessed on 5 May 2023).
34. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. ToG 2013, 32, 1–13. [CrossRef]
35. Waechter, M.; Moehrle, N.; Goesele, M. Let there be color! Large-scale texturing of 3D reconstructions. In Proceedings of the

European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany,
2014; pp. 836–850.

36. Sketchfab. Available online: https://sketchfab.com (accessed on 5 May 2023).
37. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [CrossRef]
38. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating

System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.
39. Zhou, B.; Gao, F.; Pan, J.; Shen, S. Robust real-time uav replanning using guided gradient-based optimization and topological paths.

In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 1208–1214.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://dx.doi.org/10.1109/TPAMI.2008.275
http://dx.doi.org/10.1016/j.rse.2016.02.031
http://dx.doi.org/10.1016/j.autcon.2020.103250
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1117/1.JEI.23.2.023009
http://dx.doi.org/10.1145/1276377.1276497
https://github.com/mp3guy/ICPCUDA
http://dx.doi.org/10.1145/2487228.2487237
https://sketchfab.com
http://dx.doi.org/10.1109/MPRV.2008.80

	Introduction
	Related Work
	Methodology
	Camera Calibration
	Depthmap Processing
	Pose Estimation and Refinement
	Meshing and Texture Mapping

	Experiments
	Hardware and Software Setup
	High-Resolution Reconstruction Experiments
	Auto Labeling and Measurements
	Flight Path Planning

	Discussion
	Conclusions
	References

