
Citation: Mosher, J.R.; Banta, J.E.;

Spencer-Hwang, R.; Naughton, C.C.;

Kadonsky, K.F.; Hile, T.; Sinclair, R.G.

An Environmental Equity Assessment

Using a Social Vulnerability Index

during the SARS-CoV-2 Pandemic for

Siting of Wastewater-Based

Epidemiology Locations in the United

States. Geographies 2024, 4, 141–151.

https://doi.org/10.3390/

geographies4010009

Academic Editor: Hartwig H.

Hochmair

Received: 25 November 2023

Revised: 26 January 2024

Accepted: 1 February 2024

Published: 16 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Environmental Equity Assessment Using a Social
Vulnerability Index during the SARS-CoV-2 Pandemic for
Siting of Wastewater-Based Epidemiology Locations in the
United States
Jessica R. Mosher 1,† , Jim E. Banta 1,* , Rhonda Spencer-Hwang 1 , Colleen C. Naughton 2 ,
Krystin F. Kadonsky 2 , Thomas Hile 1 and Ryan G. Sinclair 1,†

1 School of Public Health, Loma Linda University, 24951 Circle Drive, Loma Linda, CA 92354, USA;
jmosher@students.llu.edu (J.R.M.); rspencer@llu.edu (R.S.-H.); thile@llu.edu (T.H.); rsinclair@llu.edu (R.G.S.)

2 Department of Civil and Environmental Engineering, University of California Merced, 5200 North Lake Road,
Merced, CA 95343, USA; cnaughton2@ucmerced.edu (C.C.N.); kkadonsky@ucmerced.edu (K.F.K.)

* Correspondence: jbanta@llu.edu; Tel.: +1-909-558-4000
† These authors contributed equally to this work.

Abstract: Research has shown that there has consistently been a lack of equity and accessibility
to SARS-CoV-2 testing in underserved and disadvantaged areas in the United States. This study
examines the distribution of Wastewater-Based Epidemiology (WBE) testing placement across the
United States (US), particularly within the context of underserved communities, and explores an
environmental equity approach to address the impact of WBE on future pandemics. The methods
combined the Centers for Disease Control Social Vulnerability Index (CDC-SVI) data set at the county
level in a geospatial analysis utilizing ArcGIS and multilinear regression analysis as independent
variables to investigate disparities in WBE coverage in the US. The findings show that disparities
exist between counties in the use of WBE nationwide. The results show that WBE is distributed
inequitably on national and state levels. Considering the nationwide adoption of WBE and funding
availability through the CDC National Wastewater Surveillance System, these findings underscore
the importance of equitable WBE coverage for effective COVID-19 monitoring. These findings offer
data to support that a focus on expanding WBE coverage to underserved communities ensures a
proactive and inclusive strategy against future pandemics.

Keywords: wastewater surveillance; CDC Social Vulnerability Index; geospatial analysis; GIS;
COVID-19; early detection

1. Introduction

Early in the COVID-19 pandemic, statistical methods were used to predict the be-
ginning of an outbreak as a decision-making tool for stakeholders to direct resources in
preparation for a surge in cases [1]. This approach was created using positive individ-
ual test results published by the World Health Organization (WHO) online dashboard, a
method that was limited to short-term predictions and could not provide results over long
periods of time [1]. There was a general acknowledgment in many publications that the
number of positive cases and deaths attributed to SARS-CoV-2 was underreported [2]. A
universal standard of population surveillance outside of the boundaries of a clinical lab
would be crucial to quantifying the burden of the virus and mitigating community trans-
mission [2]. Wastewater-Based Epidemiology (WBE) was identified as a possible solution
to conduct pooled sampling and surveillance without a need for individual testing, but
would need to be implemented on a national scale because incomplete gaps in geographical
data would suffer from the same poor-quality data issues associated with only tracking
clinically administered SARS-CoV-2 tests that have a positive test result [3].

Geographies 2024, 4, 141–151. https://doi.org/10.3390/geographies4010009 https://www.mdpi.com/journal/geographies

https://doi.org/10.3390/geographies4010009
https://doi.org/10.3390/geographies4010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geographies
https://www.mdpi.com
https://orcid.org/0000-0002-7123-1098
https://orcid.org/0000-0002-9717-7683
https://orcid.org/0000-0001-9623-655X
https://orcid.org/0000-0002-3923-7465
https://orcid.org/0000-0001-8047-9266
https://orcid.org/0000-0002-0044-2728
https://orcid.org/0000-0003-4360-2071
https://doi.org/10.3390/geographies4010009
https://www.mdpi.com/journal/geographies
https://www.mdpi.com/article/10.3390/geographies4010009?type=check_update&version=1


Geographies 2024, 4 142

This study addresses the problem of a lack of equity and access to consistent testing for
SARS-CoV-2 for vulnerable populations in disadvantaged areas in the United States [4–6].
The vast majority of SARS-CoV-2 testing has been performed within populations consisting
of voluntary subjects (e.g., those purposefully seeking test results in a clinical or hospital set-
ting) or those required to submit to testing for various reasons such as work or educational
requirements [6]. In contrast, the underserved minority population has generally been
known to have adverse personal experiences with the healthcare system in combination
with poor social determinants of health and a lack of need-based justice [7]. While the
United States offered free at-home SARS-CoV-2 testing delivered via the United States
Postal Service, the efforts of any Public Health Agency to identify SARS-CoV-2 outbreaks
were missing a significant amount of formal testing data as at-home test results were not
mandated to be reported by at-home private citizens to the CDC [8]. This also limited the
ability of the United States (US) healthcare system to mount a timely response to stop the
spread of SARS-CoV-2 once hospitalizations and deaths increased as they were limited to
reactive strategic responses instead of preventative or proactive responses [9].

The proposed solution to this problem was to use a WBE approach to detect SARS-CoV-2
in small communities, rural areas, and compartmentalized populations such as prisons
or nursing homes. Among other communicable diseases, WBE can predict SARS-CoV-2
outbreaks 4 to 10 days in advance both in symptomatic and asymptomatic populations [10].
This allowed a study of community infection dynamics and low-income areas that had
inefficient disease monitoring systems.

To research the effects of socioeconomic and other community determining factors on
equitable access to consistent SARS-CoV-2 testing, this study combined two spatial data
sets: all known WBE sites and their proliferation across the US and census data related
to social vulnerability taken from the 2020 CDC-SVI (CDC Social Vulnerability Index).
To identify the locations of WBE sites across the US, raw data were compiled from the
“COVIDPoops19” global dashboard of wastewater monitoring for SARS-CoV-2 as provided
by the University of California Merced [5]. The data were used in both geospatial and
statistical analyses to determine the possible effects of determinants of social vulnerability
such as socioeconomic status, population density, lack of equitable income, minority status,
and other variables on the placement of WBE sites and offer potential strategies regarding
the selection of future sites.

The purpose of the study is to identify potential inequities in the placement of WBE site
placement and to demonstrate how combining CDC-SVI data with WBE is a useful resource
for various stakeholders that are involved with policies such as healthcare providers, local
government, public health agencies, and emergency response services. This also includes
an intent to explain the spatial perspective in reference to the sites utilizing WBE and the
economic level surrounding it.

Wastewater-Based Epidemiology Proliferation, Costs, Utilization, Testing and Strategy

In the early stages of the SARS-CoV-2 pandemic, surveillance wastewater treatment
facilities, various universities, public health departments, and private labs sought to de-
velop a multidisciplinary approach to alternative methods for tracking the prevalence of
the SARS-CoV-2 virus as close to in-real-time as possible [5]. To meet this need, these
facilities adopted and refined a pre-existing viral detection process known as WBE which
can quantify fragmented viral gene copies found in raw wastewater or sludge utilizing
sampling methods applicable at any wastewater treatment facility or sewer system [5].
Defined as the use of wastewater to inform the health of a population within a contributing
sewershed [11], WBE was repurposed initially to detect the potential re-emergence of
poliovirus in the late 1990s [12]. WBE is a wastewater sampling, testing, and reporting
process that can be utilized at wastewater treatment plants, systems, or water bodies which
then send samples to clinical laboratories for the detection of targeted surveillance for
pathogens or other substances as they occur in regional sewersheds [12].



Geographies 2024, 4 143

WBE has numerous advantages over traditional testing methods including signifi-
cantly diminished costs in comparison to PCR and serological testing methods [3], improved
outbreak detection times, continuous population monitoring, and the ability to target local
communities. The startup costs for a single WBE program are estimated to be between five
to twenty thousand dollars (USD) per wastewater site depending on the sample testing
method used by an existing lab [13]. With consistent population surveillance, WBE can
predict SARS-CoV-2 outbreaks as well as other communicable diseases 4 to 10 days in
advance, effectively serving as an early warning system [10]. The ability to continuously
monitor populations could prevent a revisiting of the early Public Health policies that
broadcasted stay-at-home orders [3]. While typical placement of WBE testing facilities
occurs in large-scale regions, a WBE approach to detect SARS-CoV-2 can also be used in
small communities, rural areas, and compartmentalized populations such as prisons or
nursing homes [14]. This could in turn promote more accurate real-time specific outbreak
data.

With funding provided by Loma Linda University (LLU) through the central adminis-
tration, the LLU School of Public Health began collecting and refining WBE methods on
campus near the end of 2020 [10]. These samples were collected and processed utilizing
cost-effective methods within reasonable proximity to collection sites [10]. This group
provided their WBE results to the University of California Merced (UCM); a UCM team of
researchers processed this data and utilizing Geographic Information System (GIS) soft-
ware (ArcGIS Pro 3.0.2), geolocated their WBE efforts as an addition to their worldwide
dashboard entitled “COVIDPoops19”, which is based on “combined standard literature
review, direct submissions, and daily social media keyword searches” [5]. The GIS dash-
board is a summary of global SARS-CoV-2 wastewater monitoring efforts data collected
and quantified by UC Merced researchers and sourced from wastewater locations using
WBE as shown in Figure 1 [5].
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Figure 1. The COVIDPoops19 dashboard with geospatial rendering of global wastewater monitor-
ing sites. Taken from Naughton et al., 2021 [5] with permission. 
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Figure 1. The COVIDPoops19 dashboard with geospatial rendering of global wastewater monitoring
sites. Taken from Naughton et al., 2021 [5] with permission.

During the collaboration between LLU and UCM, researchers identified a gap in access
to WBE in rural and low-income communities in California [4]. Based on the combined
LLU/UCM research as well as the identified gap in WBE access, it was hypothesized
that underserved areas may be last to benefit from WBE surveillance. Conversely, urban
underserved areas are also locations where outbreaks spread faster than in other areas [15].
Also, some rural agricultural areas in California experienced rapid disease spread and
proliferation during the first year of the pandemic, mostly due to poor infrastructure, the
presence of essential workers with poor benefits, and poor healthcare infrastructure among
underserved populations [4].
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2. Materials and Methods
2.1. Hypotheses

Early geospatial analyses suggested that WBE testing locations are uniquely posi-
tioned in affluent communities and may not yet provide important surveillance data for
disadvantaged areas [4,5]. After reviewing data on California’s distribution of WBE [16],
an additional focus on health equity motivated this research to further investigate the
placement of WBE throughout the USA. The assessment evaluates the U.S. CDC’s Social
Vulnerability Index compared to a database of sites using WBE during the pandemic. The
hypothesis assessed geospatial relationships between the 2020 CDC-SVI categories and their
distribution on a map of WBE sites, testing if areas of lower SVI had less access to WBE.

The research sought to explore environmental equity within the scope of WBE to
establish if WBE access was equitably distributed as visualized in Figure 2. The CDC-SVI
(SVI) data set measures for the socioeconomic status of the United States population in
terms of vulnerability through the quantification of various determinants such as the ability
to earn an income, poverty status, level of employment, and educational attainment, and
is indexed based on geographical location [17]. Data from the SVI data set, specifically
the variable entitled “RPL_THEME1” (RPL), which indicates counties at highest risk for
socioeconomic difficulty when compared to other counties by rank [18], were used in a
geospatial analysis for the purposes of mapping and extraction of numeric county data to
measure access to WBE in areas identified as being at the highest risk. In the early stages of
research, Figure 2 below was generated utilizing GIS software (ArcGIS Pro 3.0.2) developed
by the Environmental Systems Research Institute (ESRI) to combine WBE locations from the
COVIDPoops19 dashboard with colorized county-level polygons whose color corresponds
to the severity of social vulnerability based on the CDC-SVI ranking of each county. These
combined data were then graphically rendered into a geovisualization view [19] utilizing
ArcGIS to visually reflect ranked SVI RPL variable data [20].
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Figure 2. Geospatial heatmap generated utilizing GIS depicting united states WBE locations and 
counties of greatest SVI vulnerability. Note: Compiled from data taken from the “SVI Index” of the Figure 2. Geospatial heatmap generated utilizing GIS depicting united states WBE locations and

counties of greatest SVI vulnerability. Note: Compiled from data taken from the “SVI Index” of the
Centers for Disease Control and Prevention, 2022 (WBE site locations) [20] and Naughton et al., 2023
(heatmap) [5], with permission.
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2.2. Measures and Data Collection

This study combined data from two separate sources: WBE site locations across the
US provided by researchers who collected their data from 2020 to 2023 [5] and data from
the 2020 CDC-SVI [17].

Data from the “COVIDPoops19” global dashboard of wastewater monitoring for SARS-
CoV-2 were provided by the Environmental Systems Graduate Group at the University of
California Merced [5] in November 2021. Data originally consisted of geospatial coordinates
of each known WBE location in the US. These data were converted into city and state
locations utilizing the United States NGS Coordinate Conversion and Transformation Tool
(NCAT), made publicly available by the National Geodetic Survey, and utilizing Microsoft
Excel 2019 pivot tables, were transformed into a quantifiable WBE site count by US county
and state. These data were used as the dependent variable for the purposes of statistical
analyses.

Data from the publicly available 2020 CDC-SVI database were used [17]. Variables
included within the database that were extracted included those related to poverty and
race as well as variables to link with the WBE dataset and are included in Table 1 [17].
These datasets correspond to the values as seen in Table 1 below and were designated as
independent variables for the purposes of statistical analyses.

Table 1. The 2020 CDC-SVI dataset codes, shortened names, and corresponding descriptors.

Variable Name Short Name 2020 Description

STATE state State name

COUNTY county County name

RPL_THEME1 RPL Percentile ranking for Socioeconomic Status theme summary (overall
summary ranking variable, state-to-state/county-to-county) a

E_TOTPOP population Population estimate, 2016–2020 ACS

E_POV150 poverty Persons below 150% poverty estimate, 2016–2020 ACS

E_NOHSDP diploma Persons (age 25+) with no high school diploma estimate, 2016–2020 ACS

E_LIMENG English Persons (age 5+) who speak English “less than well” estimate, 2016–2020 ACS

E_MINRTY minority

Minority (Hispanic or Latino (of any race); Black and African American, Not
Hispanic or Latino; American Indian and Alaska Native, Not Hispanic or
Latino; Asian, Not Hispanic or Latino; Native Hawaiian and Other Pacific
Islander, Not Hispanic or Latino; Two or More Races, Not Hispanic or Latino;
Other Races, Not Hispanic or Latino) estimate, 2016–2020 ACS

E_MUNIT density Housing in structures with 10 or more units estimate, 2016–2020 ACS

E_CROWD crowd At household level (occupied housing units), more people than rooms
estimate, 2016–2020 ACS

Taken from the “CDC/ATSDR SVI 2020 documentation tables”, CDC, 2022 [17]. a RPL_THEME1 is a calculated
theme-specific percentile ranking of socioeconomic vulnerability status which ranks all counties across the US
and was generated by the CDC [17].

The variables in Table 1 were selected from the wider set of variables found in the CDC
SVI data set based on their identified potential to impact social equity and the subsequent
effects on access to healthcare and testing; for instance, housing stability, access to education,
perceived minority status and the associated potential for racial bias, poverty and income
inequality, and high-density housing and overcrowding have been identified as sources
of social inequity [21] and, as such, were considered to be of greatest significance when
attempting to ascertain the potential impact of socioeconomic equity on WBE location
placement as well as infectious disease monitoring.
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2.3. Data Linkage and Analyses
2.3.1. Geospatial Analysis

Utilizing ArcGIS Pro 3.0.2 (ArcGIS), a national map was generated which placed
polygonal borders based on known county lines within the U.S. This was then linked with
SVI data from the variable RPL, which is a percentile ranking of socioeconomic status
of all counties in the US and calculated by the CDC [17]; these data were chosen for the
purposes of geospatial analysis because the ranked percentile nature presented an accurate,
normalized single source of comparison between counties. These linked data were then
used in ArcGIS to generate a colorized heatmap within the county polygons with percentile
rank of social vulnerability severity per RPL data. ArcGIS was then used to combine the
previously generated heatmap, which was subsequently overlaid with WBE geographical
location data. The combined data were graphically rendered into a final geovisualization
view in order to visually compare ranked RPL and WBE distribution data in the US at the
county level and census tract.

2.3.2. Statistical Analysis

A univariate analysis was conducted to assess the distribution of WBE sites across
counties and subsequent states across the US, along with a distribution of the SVI variables
within counties and states. To assess the potential relationship between the independent
SVI data and the number of WBE testing sites, a multilinear regression analysis was used.
The number of WBE sites in a given county would be set as the dependent variable while
the SVI variables were assessed as independent variables. It was determined that the
formula for the multilinear regression is as follows:

Ŷ = β0 + β1X1 + β2X2 + . . . + βp Xp + ε (1)

where Ŷ is the number of WBE sites (dependent variable) and β1X1 et al. are subsequent SVI
predictor (independent) variables such as population, English, and density. The variable RPL
is not included in the regression model because it is a statistically calculated comparative
metric of the other variables used and not based upon raw data. The full formula can be
written as follows:

Ŷ = β0 + population (X1)+ housing (X2) + population (X3) + diploma (X4) + English
(X5) + minority (X6) + density (X7) + crowd (X8) + ε

(2)

In order to determine the proper order input sequencing of variables in the multilinear
regression analysis, each independent variable was first analyzed in separate single linear
regression models to determine the R-value of the relationship between each dependent
variable and the individual SVI variables. After determining the individual R-values of
the SVI variables, the SVI variables were ranked from greatest effect on the dependent
variable to least and input into the multiple linear regression analysis. In conjunction with
the multilinear regression analysis, various linear regression statistics including model fit,
part and partial correlations, collinearity and residual casewise diagnostics for outliers
outside two standard deviations from the mean, regression coefficient estimates, and
95% confidence interval regression coefficients with Bonferroni p-value correction were
also calculated. To address the potential for collinearity among the variables, collinearity
statistics including tolerance, VIF, and diagnostics were calculated, but no two variance
proportion values showed significant collinearity. All statistical analyses and modeling
were conducted utilizing SPSS 26.

3. Results
3.1. Geospatial Analysis

A total of 1,007 WBE site locations were identified for this study and shown on the
map in Figure 2. Most of these sites were within the state of Michigan (n = 270), followed
by Montana (n = 83) and Wisconsin (n = 64). The counties without or with less WBE are
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also those sites that have the highest vulnerability according to the U.S. CDC-SVI (Figure 2).
Counties that ranked in the lowest two percentile quarters of vulnerability (RPL ≤ 0.499)
contained the majority of WBE testing sites (n = 613), while counties ranked in the greatest
vulnerability range (RPL ≥ 0.750) held only 8% (n = 78) of the total identified WBE testing
sites. Of all counties in the United States, the counties of Kalawao, Hawaii, and Sargent,
North Dakota (nRPL = 0.000, 0.0003), ranked least vulnerable while Humphreys, Mississippi,
and Macon, Georgia (nRPL = 0.9994, 0.9997), ranked most vulnerable.

3.2. Regression Analysis

To analyze the hypotheses, a multiple linear regression analysis is shown in Table 2
below. The model showed statistical significance among all predictors (df = 7, p < 0.001,
R2 = 0.306). The analysis shows an overall R2 = 0.306 indicating that 31% of the prediction
in number of WBE site location is based upon the variables in the model.

Table 2. Multilinear regression model summary, wastewater based epidemiology site count by United
States county (n = 1007).

R R2 Adj R2 ∆R2 Se ∆F df1 df2 Sig. F∆

0.553 0.306 0.304 0.306 0.857 178.628 7 2837 0.000
Note. Predictors = crowd, density, population, English, poverty, minority, diploma.

Of all predictor variables assessed in the multiple regression model as seen in Table 3,
the variables diploma (β = −1.609, t = −8.393, p < 0.001) and poverty (β = 1.160, t = 9.879,
p < 0.001) had the greatest significance and suggest that areas with lower amounts of high
school diplomas or areas with more people above the federal poverty line tend to see
less instances of WBE. This was followed by the variable population (β = 0.851, t = 10.484,
p < 0.001), suggesting that there may be higher instances of WBE placement in areas in
which there was an overall larger population density; the variable minority (β = −0.442,
t = −3.543, p < 0.001), indicating that areas with fewer minorities have more access to
WBE testing; and English (β = 0.402, t = 4.314, p < 0.001) suggesting that more WBE testing
occurs in areas in which the population speaks English with greater ability. Although the
variables crowd and density had the least impact on the model, they were both significant.
The number of people in the household variable, crowd, suggests that areas with crowded
housing may have lower WBE coverage (crowd, β = 0.248, t = 2.946, p < 0.001). Similarly, the
variable density suggests that areas with high-density housing had lower WBE coverage
(density, β = −0.124, t = −3.193, p < 0.001).

Table 3. Multilinear regression analysis: coefficient table.

Predictor B SE B B p

population 2.53 × 10−6 0.000 0.851 0.000
poverty 1.57 × 10−5 0.000 1.160 0.000
diploma −3.44 × 10−5 0.000 −1.609 0.000
English 1.29 × 10−5 0.000 0.402 0.000
minority −2.07 × 10−6 0.000 −0.442 0.000
density −3.56 × 10−6 0.000 −0.124 0.001
crowd 2.85 × 10−5 0.000 0.248 0.004

Note. Dependent variable = WBECOUNT, upper/lower bound at 95% confidence level (α/n = 0.007).

As can be seen in Table 3, the results of the statistical analysis support the hypotheses
and suggest that there is evidence that socioeconomic vulnerability factors do play a role
on average in the placement of WBE sites.
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4. Discussion

The results from geospatial and statistical analyses included correlation of socioe-
conomic vulnerability factors on the known placement of WBE sites. According to the
results of this study, in United States regions by county with statistically significant higher
occurrences of lack of education, counties with greater concentrations of individuals who
self-identify as minorities, or counties with higher rates of high-density housing per the
CDC definition tend to experience lower placement rates of WBE sites. Conversely, an
increase within a county of individuals over the 150% poverty threshold, counties with
higher overall populations, populations in which individuals express a limited ability to
speak English, and populations in which individuals live in conditions where the reported
number of individuals living within a dwelling is at or above capacity, tend to see an
increase in prevalence of WBE placement in their counties. This information suggests there
are positively correlated and negatively correlated socioeconomic equity factors related
to the placement of WBE sites across the nation. On one hand, WBE sites seem to be
placed in higher concentrations based on higher population and lower poverty level; on
the other, there appear to be fewer WBE sites in places with statistically lower education
levels and higher populations of minorities. This information could be extrapolated to
create both constructive, proactive and socioeconomically equitable WBE site placement
strategies in the future as well as a method to develop SARS-CoV-2-related WBE Public
Health campaigns targeted towards regions of greater need.

The theoretical approach combining geospatial analysis of WBE locations and CDC-
SVI data sought to expose a gap in environmental equity which is defined as a fair dis-
semination of environmental risks with a special focus on accessing technologies [22].
The higher instances of lead poisoning among underserved minority communities [23]
are an example of environmental inequity. This example mirrors the higher instances of
poor health outcomes and higher SARS-CoV-2 death rates among similarly underserved
communities [24]. Both studies share the same solution: a call for better surveillance in
areas that are known to suffer from socioeconomic inequities and the public health issue at
hand [23]. The results of this study could be used by decision-makers to bridge the gap
between communities of high and low socioeconomic status to improve vaccine equity for
regions with elevated positive SARS-CoV-2 rates from WBE [5]. Through equitable access
to WBE as a tool to assess community infection dynamics, stakeholders and healthcare
providers could focus resources on low-income areas with inefficient disease monitoring
systems.

4.1. Limitations

Several limitations should be addressed regarding the research in the study. First,
while reviewing and comparing data for homogeneity it was discovered that there were
several areas that needed to be addressed by the researchers in which the dataset required
modification to maintain robustness and minimize outliers. WBE location data were
missing for the states of Alabama and Mississippi due to lack of availability of data to the
researchers [4]. It was also discovered that due to confounding factors such as large-scale
Federal funding caused by early participation over the course of the COVID-19 pandemic,
the state of Michigan had a disproportionate number of WBE sites [25]. The prevalence of
WBE collection sites in Michigan was disproportionate in comparison to other states [4].
As such, Alabama, Mississippi, and Michigan were excluded from both datasets and
subsequent statistical analyses. Further, in relation to WBE data, previous researchers
stated that it had been difficult to obtain data from government agencies and that this may
have affected their location results [25]; however, the researchers noted that since initial
data collection, government agency transparency and data availability has become more
widespread [25]. Second, while the dataset RPL was a fit model for geospatial analysis, it
was ascertained that it was not a fit dataset for statistical analysis and yielded inconsistent
results. This was inferred to be due to the percentile ranking feature of the data in RPL.
According to the supporting documentation provided by the CDC, the RPL dataset is a
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theme-specific percentile ranking derived by summing of the sums of categorical themes
(categories of datasets) and then calculated to obtain percentile rankings in which counties
are ranked against counties and states are ranked against states [17]. As provided, RPL
was weighted, ranked data and, while suitable for the geospatial analysis portion of this
study, for the purposes of statistical analysis and regression modeling it was determined
that other non-ranked data available in the CDC SVI index would be significantly more
suitable. Worth noting, the categories used for regression analysis were rather robust in
nature and were composed of many thousands of data points taken from across the United
States [17] Third, it was noted by the UC Merced researchers that data collection related
to the COVIDPoops19 dashboard faced difficulties. They stated that their data collection
method and model relied on only publicly available data as well as data self-reported by
WBE agencies [5]. Furthermore, they acknowledge that some data points were missing from
the data set which would impact further analyses [5] and more sites came online after this
analysis. However, COVIDPoops19 had the most complete dataset of monitoring locations
and regardless of the perceived errors, the statistical models utilized in the research project
remain valid and statistically significant.

4.2. Areas for Further Research

Environmental justice demands equal access to a further-reaching WBE response
to every level of SVI especially those that are known to be at the highest percentile of
vulnerability [4], people who have a disproportionate need to be protected. The results
of this analysis have the potential to be applied on a national level to allocate funds into
continuing to protect public health through the standardization of WBE as well as WBE
testing particularly in vulnerable areas. Locally, the results of this study should motivate
policy makers to close the disparity gap in specific areas when examining new locations for
WBE programs.

It is important to note that, as seen in Table 2 above, this research was only able to
account for approximately 30% of the relationship between the variables. After using
multiple datasets, 70% of the relationship is unexplained by the model. There is a need
for further research to provide a clear framework in providing equitable WBE location
placement strategies on a national level; clearly, the data exist in the form of publicly
available CDC-SVI tables and simply need to be properly utilized to create a proactive,
sustainable public health campaign in the future.

As noted in earlier references, many providers had to withhold their data from public
use, a practice that sets up roadblocks in many areas including the demand for equitable
access to WBE testing [5]. More research needs to be directed at data collection from
wastewater sites and ease of access to WBE data. A public health campaign could be
generated from this data and further research to emphasize the need to share data for
the community’s health. When comparing the overall cost of WBE against other testing
methods, WBE has substantial cost benefits and stands to be used much more in the United
States.

Understanding the broader landscape of environmental justice regarding WBE-based
surveillance calls for further research. Unequal distribution of resources, including federal
and local funding, regional economic disparities, and political influences, can heavily
impact the placement of WBE surveillance and wastewater infrastructure [26]. These
factors disproportionately burden marginalized communities. However, emerging trends
in Europe and parts of the United States towards decentralized wastewater treatment
offer promising avenues for expanding WBE surveillance reach and potentially mitigating
exposure disparities [27]. To achieve this, further research is needed to explore: (1) the
specific impacts of WBE placement on vulnerable communities, (2) the funding mechanisms
and political dynamics shaping facility locations, and (3) the potential of decentralized
approaches to address existing environmental inequities. By investigating these areas, it is
possible to extend the reach of WBE surveillance systems that safeguard the health of all
communities.
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