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Abstract: Understanding the role that settlement can have on the base resistance of piles is a crucial
matter in the design and safety control of deep foundations under various buildings and infras-
tructure, especially for long to super-long piles (60–90 m length) in soft soil. This paper presents
a novel assessment of this issue by applying explainable machine learning (ML) techniques to a
robust database (1131 datapoints) of fully instrumented pile tests across 37 real-life projects in the
Mekong Delta. The analysis of data based on conventional methods shows distinct responses of
long piles to rising settlement, as compared to short piles. The base resistance can rapidly develop
at a small settlement threshold (0.015–0.03% of pile’s length) and contribute up to 50–55% of the
total bearing capacity in short piles, but it slowly rises over a wide range of settlement to only
20–25% in long piles due to considerable loss of settlement impact over the depth. Furthermore, by
leveraging the advantages of ML methods, the results significantly enhance our understanding of the
settlement–base resistance relationship through explainable computations. The ML-based prediction
method is compared with popular practice codes for pile foundations, further attesting to the high
accuracy and reliability of the newly established model.

Keywords: base resistance; pile foundation; machine learning; pile load tests; pile settlement

1. Introduction

Pile foundation is one of the most reliable and effective solutions for various buildings
and infrastructure, including offshore, energy and transportation, around the world [1–5].
In essence, the contribution of base resistance (also known as tip or end-bearing capac-
ity/resistance) to the total bearing capacity of piles can change significantly, not only with
the interaction between soil and pile tip, but also with the mobilization of shaft (skin) friction
along the piles. This can be classified into three different cases as demonstrated in Figure 1.
In Case 1, the base resistance develops quickly with increasing settlement and bears most of
the applied load, whereas the shaft resistance is insignificant (i.e., end-bearing piles). This
case can occur when piles are short and are seated directly on a rigid stratum (e.g., shallow
bedrock), while the surrounding soils are soft and contribute a minimal resistance to the
axial load. For this end-bearing context, the well-known hyperbolic form is often found
relevant to describe the relationship between the base resistance and settlement [6–8]. On
the other hand, in Case 2, the base resistance is negligible as the soil underneath the pile tip
is soft and gives insignificant resistance to the applied load (Figure 1b). This case can be
observed in many coastal regions such as the Mekong Delta, Bangkok and Jakarta, where
soft soil layers (SPT < 10) can reach up to 40 m [9,10]. In this context, despite using very
long piles, the pile tip cannot reach a rigid layer, so there is a minimal contribution from the
base to the pile bearing capacity. Finally, Case 3 occurs when both shaft and base resistances
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are considerable for the entire bearing capacity. In this case, determination of how base
resistance can develop with increasing load and settlement becomes much more challenging
because of the complex load-transfer along the depth and the corresponding response of
soil–pile interaction at the base [11,12]. For example, when the base soil is medium and
fine sand, the base resistance can slowly increase due to the high compressibility of the
soil underneath before reaching a larger magnitude at later stages. In fact, Case 3 is very
common in practice, especially when piles, even when very long, cannot reach the rigid
layer [9,13]. In this process, the development of settlement (i.e., the displacement of pile
head) is the key indicator for the mobilization of the load bearing mechanism. Nevertheless,
the use of settlement to assess behaviour of base resistance, especially for long piles in soft
soil, has not been considered and employed effectively in design practice.
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Figure 1. Contributions of base and shaft resistances to the total bearing capacity of piles in 3 different
cases: (a) Case 1, where the base resistance is predominant; (b) Case 2, where the shaft resistance is
predominant; and (c) Case 3, where both the base and shaft resistances are significant contributors to
the total bearing capacity.

The propagation of load along a pile significantly depends on the pile geometry and
its interaction with surrounding media. For very long piles, such as those commonly used
in Ho Chi Minh City (50–100 m long), the base resistance only becomes significant when the
pile tip presses the soil underneath to a certain degree under vertical compression load. This
is because the shaft friction usually takes the majority of the applied load at the initial stage
before the soil–pile interaction propagates downward with larger contribution from the
base resistance [14,15]. In soft soil regions, such as the Mekong delta where the layer of soft
clay (SPT N ≈ 0–5) can exceed 25–35 m [10], the pile toe is normally required to sit on a hard
soil layer at extremely great depths (e.g., coarse to medium dense sand layers at a depth of
70–100 m), resulting in a significant but complex contribution of base resistance to the entire
bearing capacity of piles. Although this topic has received considerable attention in recent
years, most previous studies could only examine short and medium piles (<45 m) [16–19],
while understanding of how the base resistance of long piles can develop with increasing
settlement is still limited due to the complexity and excessive cost of in situ pile tests. In
fact, many empirical equations have been proposed to describe the relationship between
base resistance and settlement, but they usually vary significantly with different types of
soil and pile, resulting in a certain confusion in practice [11]. Predicting the base resistance
and advancing our understanding of the influencing factors are thus crucial to the practical
design of long pile foundations.

In recent years, machine learning (ML) has emerged as a preferrable and effective
approach, not only to predict various geotechnical issues, but also to assess the interaction
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between different features [20–22]. Past ML applications, including the artificial neural
network (ANN) and other advanced algorithms for pile foundation, have mainly focused
on prediction of pile bearing capacity and settlement as highlighted in recent review
studies, e.g., Baghbani et al. (2022) and Nguyen et al. (2023b) [23,24]. For example, many
studies [25,26] employed shear parameters of soil from laboratory and field tests, including
SPT and CPT data, to build ML models for predicting bearing capacity and settlement of
piles, while the basic settlement-loading curves have also been used [20,27]. Nevertheless,
there is a lack of attention to using ML to predict components of pile bearing capacity such
as the skin friction and base resistance, mainly because of the complexity in measuring
these individual parameters in the field. Further, the database collected for establishing
ML models was relatively limited in past investigations, e.g., only short and medium piles
were considered, while mobilized base resistance with increasing load was still overlooked
due to the lack of appropriate field tests. Recent efforts have been made to predict base
resistance of long piles based on more than 1100 datapoints collected from different real-life
projects [9]; however, this study used a conventional basic ANN model, resulting in a
relatively medium level of prediction quality (i.e., R2 = 0.8–0.87). More importantly, the
past applications of ML for pile foundation were often criticized for their black-box nature
regarding, e.g., the unseen interactions among different features and the lack of validation
with existing methods. In fact, an insightful interpretation of the key role of settlement on
pile bearing capacity, including the base resistance that can employ an effectively advanced
ML and post-analysis techniques, is still missing. Therefore, more attempts, not only to
develop robust ML models for predicting pile’s base resistance, but also to advance our
understanding of settlement-base resistance interaction become necessary.

In view of the above, this paper aims to advance our understanding of how the base
resistance of long piles (approximately 57–90 m) can behave when the pile settlement
increases. A novel method combining extensive field data and advanced analysis based
on machine learning techniques is adopted. Data from various field tests (86 piles in
37 different projects) on bored piles installed in the very soft soils of the Mekong Delta are
used to form empirical relationships between the base resistance and settlement of piles,
followed by development of advanced ML models adopting XGBoost and Random Forest
(RF) algorithms. This approach enables different soils and piles to be incorporated into a
universal model through a training process, eliminating the confusion in using empirical
equations, which often change widely with different factors. It is worth noting that, while
adopting the existing ML algorithms, major innovations are the new understanding of base
resistance behaviour when piles are very long and installed in soft to medium soils with
reference to common practical methods. The novel outcomes are not only the cost-effective
prediction of pile base resistance, but also the assessment of the role of pile settlement on
base resistance behaviour, giving significant value to the practical design of pile foundation.

2. Influence of Settlement on Base Resistance through Field Investigations
2.1. Overall Review of Field Investigation and Pile Features

An extensive site investigation over the past 10 years of pile foundation practice in
the Mekong Delta (South of Vietnam) was carried out to improve understanding of the
base resistance of piles in soft soil [9]. The investigation went through 37 different high-rise
building projects located on the very soft ground of Ho Chi Minh City, Vietnam (Figure 2a),
resulting in a collection of 86 different long and large piles. These piles were selected for
detailed assessment because they were all longer than 40 m (classified as long to very long
piles) and subjected to static load tests where instrumentation enabled the shaft and base
resistances to be estimated. They had an equivalent diameter ranging from 1.0 to 2.5 m and
a length of up to nearly 100 m, and were installed on complex geological strata, including
various soft soil layers. Figure 2b shows a typical profile of the ground near the Mekong
River. The soft to very soft soil layer (SPT < 5), which would make a minor contribution to
the pile bearing capacity, can reach up to 35 m in depth. On the other hand, Layer 4, i.e.,
30–40 m thickness of dense fine to coarse sand, can be the largest contributor to the shaft
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(skin) resistance of piles. The SPT of soil only exceeded 50 at a depth > 70 m (dense sand),
which is also the normal required depth for pile embedment, thus very large and long piles
are often used for high-rise buildings in this region.

Apart from the conventional static load test (SLT), which is often relevant to bored
piles in a sufficiently large space with test load less than 4500 tons, the O-cell load test (OLT)
was adopted for super-long piles (usually > 60 m) in limited space conditions with test load
greater than 4500 tons. The major advantage of these pile tests compared to many others in
previous studies was the installation of strain gauges along the pile and near the toe (i.e.,
0.5–1 m above the pile tip) to estimate the load distribution during testing, enabling the
shaft and base resistances to be estimated. Compared to previous studies where machine
learning techniques were applied to pile foundations [20,23,27,28], the piles investigated
in this study were certainly longer, larger and embedded through various soft soil strata,
thereby exhibiting a more complex and distinct behaviour.
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Figure 2. (a) Location of the investigated projects relative to the Mekong River delta, and (b) typical
geological profiles near the Mekong River.

With reference to the previous findings [9], 5 key parameters, including the applied
load (Pt), settlement (S or the displacement of loading point), axial stiffness (i.e., A × E,
where A is the cross-sectional area of pile, and E is the equivalent Young’s modulus,
E = 36 GPa), SPT values (N) of the soil beneath the pile toe, and the distance from the load-
ing point to the pile toe (Le), were considered in the current analysis. Figure 3 and Table 1
summarize key information of the pile tests used in this study. It is noted that the distance
from the loading point to the pile toe was the same as the embedded length (Figure 3a) for
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SLT, but this was not the case for OLT as the loading point was not identical to the pile head
in this type of test. The results show that the ultimate test load varied from approximately
1000 to around 6000 tons, whereas the maximum displacement of loading point (settlement)
exceeded 230 mm. In fact, many of the tested piles had maximum displacement of less than
50 mm, indicating that the pile tests seemed not to have been carried out up to ultimate
failure. The equivalent diameter of piles changed from approximately 1 to 2.5 m (Figure 3b)
and the SPT value of soil beneath the pile toe was in the range between 26 and 70 (Figure 3c).
Through these pile load tests, a database of 1131 load-displacement points was collated in
tandem with the measured unit base resistance Qb for building appropriate ML models. It
is also noteworthy that this database only encompasses long to very long piles (L > 40 m)
where the base resistance measured during loading is available.
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Table 1. Key information for pile load tests (full data can be downloaded from the link: https:
//zenodo.org/records/11029735).

Features
Applied Load

Pt
(Tonne)

Settlement of
Loading Point S

(mm)

Distance from
Loading Point
to Pile Toe Le

(m)

SPT of Soil
Beneath Pile Toe

(m)

Equivalent
Diameter

D
(m)

Embeded Pile
Length L

(mm)

Min 162.5 0.10 8.00 23.00 1.00 40.20

Max 5625.0 228.00 80.30 76.00 2.07 99.00

Mean 1749.8 12.80 44.52 50.11 1.49 72.45

2.2. Behaviour of Base Resistance in Short and Medium Piles

Previous studies [16,29–32] have proved the considerable impacts that settlement
can have on the developed base resistance of pile foundation. However, these studies
were restricted to short and medium piles, while quantitative data for long piles (>60 m)
are still limited, as shown in Table 2. In fact, the pile length investigated in past studies
was normally less than 35 m, which is much shorter than those considered in the current
investigation. Figure 4 shows how the contribution of the base resistance, i.e., Pb/Pt,
changes with different degrees of settlement in short piles. It is worth mentioning that,
in this consideration, Pb is the total reaction force, whereas Qb is the pressure under the
pile toe, i.e., the base unit load [7]. Both Pb and Qb can represent the base resistance (i.e.,
Qb = Pb/A); however, Pb is used herein to compare with the total applied load Pt for the
unity. Figure 4a undoubtedly indicates that the base resistance–settlement relationship of
short and medium piles complies with the well-known hyperbolic form, i.e., [6]

Pb
Pt

=
S

a + bS
(1)

where a and b are the constants changing with different soils. In this description, Pb rapidly
develops at the initial stage and then becomes stable, despite the increasing settlement.
Nonlinear behaviour begins to occur when the settlement S exceeds 5–10 mm. The lower
and upper bounds for these data are defined with the values of a that change from 0.033 to
0.395, while b varies slightly from 0.017 to 0.022, respectively. On the other hand, Figure 4b

https://zenodo.org/records/11029735
https://zenodo.org/records/11029735
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shows the combination of data from the previous and the current site investigations. It
is important to note that the current data for short piles were obtained from O-Cell tests
where the loading points were placed 20 to 30 m away from the pile toe. The length from
the loading point to the pile toe is termed as “effective length” (Le), which is different from
the real (physical) length of the piles (57–90 m). For this extension of data, the value of
a becomes wider, i.e., a = 0.055 to 0.93. This indicated that the distance from the loading
point to the base, i.e., the effective length, plays a crucial role in the load transfer behaviour
of piles.

Table 2. Summary of long piles loaded up to ultimate failure in this study and short/medium piles
from previous studies.

Project Name/References Test Pile
Name D (m) L (m) Le (m)

Pt
(Max)

(Tonne)

S
(Max)
(mm)

Pb/Pt
(Max)

(%)

SPT of Soil
Beneath Pile

Toe

Long piles L = 60–80 m,
Static load tests (SLT) in the current study

Viet Gia Phu TP02 1.2 80.0 80.0 2640 59.2 36.6 50

Lakeside TP2 1.2 80.0 80.0 2750 49.5 15.8 37

Acent Plaza
PTB 1.0 70.3 70.3 1170 54.7 24.5 35

PTA 1.2 80.3 80.3 1950 45.4 20.6 38

Friendship Tower TP2 1.2 64.0 64.0 3150 42.6 14.6 50

Vietcombank Tower TBP2 1.5 70.8 70.8 2604 90.7 33.0 46

Green Towers TP1 1.5 63.8 63.8 3500 37.9 22.6 60

Vinhomes Bason TN2 1.2 60.0 60.0 3000 51.5 18.2 45

Empire City TSBP7-MU7 1.2 62.2 62.2 3250 50.3 12.4 40

Short and medium piles L/Le < 35 m,

O-cell load test (OLT) in the current study (Le is considered)

Vinhomes
Golden River

TN1 1.7 60.0 12.0 2100 120 43.2 45

TN3 1.5 60.0 8.0 1325 225 72.0 50

Landmark Tower TP2 1.9 80.0 22.2 4659 17.3 15.0 58

Hilton TP2 1.9 80.0 22.0 2531 30.0 13.3 47

Lancaster Nguyen Trai TP1 1.7 62.0 15.0 2758 40.0 23.6 38

Viettinbank TP5 2.0 57.0 10.3 5625 17.9 25.6 62

KingCrown TP1-1 1.5 78.5 21.0 1850 32.4 23.4 76

Bason

TN1 1.7 60.0 12.0 2105 119 43.5 50

TN3 1.9 60.0 8.0 1850 210 69.0 55

TN6 1.7 69.0 10.5 3206 130 43.7 52

The Sun TP2 1.5 90.0 19.0 3202 32.8 20.8 62

Static load test (SLT) in the previous studies

[30] (Al-Atroush et al.,
2020) LDBP 1.3 9.5 9.5 325 70.0 37.6 NA

[33] (Eid et al., 2018) - 1.0 34.0 34.0 900 23.5 16.7 83

[29] (Liu et al., 2020)

TP1 0.8 25.8 25.8 723 46.0 54.3 NA

TP2 0.8 25.5 25.5 779 42.0 44.3 NA

TP3 0.8 25.6 25.6 779 47.0 38.5 NA

[16] (Bai et al., 2020)
TP1 0.5 25.5 25.5 900 44.0 33.3 NA

TP2 0.5 26.5 26.5 900 47.0 42.2 NA

Note: D is the diameter (or equivalent) of pile; L is the physical length of pile; Le is the effective length of pile
(i.e., distance from the loading point to pile toe); Pt is the applied load, S is the settlement (displacement) of the
loading point, Pb is the base resistance force.
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2.3. Response of Base Resistance in Long Piles

For very long piles where the length can exceed 60 m and even reach 100 m as
addressed in the current study, the measured data (Figure 5) show significant difference in
the response of base resistance compared to short and medium piles. It is important to note
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that only very long piles (L > 60 m) subjected to the static pile load test, where the length of
piles was identical to the distance between the loading point and pile toe, are considered in
this analysis. Specifically, all the datapoints are positioned outside the short-to-medium
pile region, which was defined earlier (Figure 4). The contribution from the base resistance
to the total bearing capacity becomes considerably less when piles are longer than 60 m
for the same magnitude of settlement. Furthermore, unlike short and medium piles, it is
apparent that the Pb–S curves of long piles do not comply with the conventional hyperbolic
form, as the Pb develops much more slowly at an early stage. In fact, there are two distinct
stages in the development of base resistance Pb with respect to increasing settlement S that
can be detailed as follows.
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Stage 1 (S < 20 mm): In this early stage, when the pile head settlement is less than
20 mm (Stage 1), most of the bearing capacity is derived from the shaft resistance that
develops with pile–soil interactions (friction and cohesion), while the base resistance
accounts for less than 5% the total applied load.

Stage 2 (S > 20 mm): When the settlement further increases, the curve apparently
changes its slope. Specifically, the slope gradient doubles, indicating larger contribution
from the base resistance to the total bearing capacity when S becomes larger than 20 mm.
As S increases to 40 mm, the contribution ratio Pb/Pt extends by a factor of nearly 3, (i.e.,
Pb accounts for approximately 15% Pt) compared to when S = 20 mm. As the settlement of
pile head continues to increase, the contribution of the base resistance to the total bearing
capacity continues to increase, eventually exceeding 20% when the settlement is greater
than 50 mm. In comparison with short and medium piles, this contribution is certainly
much smaller. The nonlinear relationship of the contribution ratio Pb/Pt and settlement (i.e.,
the dark blue trend line in Figure 6) can be described by Equation (2) with a relatively high
degree of correlation coefficient (R2 = 0.89). Despite its simplicity, this empirical equation
can have a significant implication for the practical design of pile foundations, as one can
estimate the contribution ratio Pb/Pt for a long pile if the settlement is known.

Pb
Pt

= −0.00006S3 + 0.0087S2 + 0.1166S + 0.5 (2)
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It is important to note that the above equation should be applicable for S ≤ 90 mm
due to the lack of data in a greater range. Furthermore, more data are required to improve
the prediction confidence when S varies from 60 to 90 mm.

2.4. Modified Hyperbolic Form for Long Piles in Soft Soil

The above results indicate that the development of Pb in Stage 1 is almost linear to
increasing settlement, where the contribution of base resistance is relatively low. This
happened because: (i) the shaft resistance (skin friction) is predominant in the early stage
for long piles, making the contribution from base resistance insignificant (<5% of the total
applied load) when S < 20 mm; (ii) the settlement of the pile head propagated downward
and this occurred over a long distance through soil–pile interaction in long piles, resulting in
a smaller displacement of pile toe compared to that in shorter piles. In fact, the measurement
of displacement at the pile toe indicated that this displacement was about 15–20 mm less
than the settlement of the pile head. When S > 20 mm, it triggered significant mobilization
of shaft resistance (slippage between pile and soil associated with decreasing friction), and
thus a substantial growth in the contribution of base resistance to the total bearing capacity.
Considering the critical threshold Sc = 20 mm, a modified hyperbolic form for long piles to
predict the base resistance can be proposed as follows:

Pb
Pt

= 0.25S (3)

Pb
Pt

=
S − 20

1.5 + 0.0135(S − 20)
+ 5 (4)

By replacing (S − 20) by S′ to account for the initial delay before the greater contribu-
tion from the base resistance, Equation (4) becomes the ordinary hyperbolic form, as shown
in Equation (1), i.e.,

Pb
Pt

=
S′

1.5 + 0.0135S′ + 5 (5)
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3. Machine Learning Approach to Assess the Role of Settlement on Base Resistance
3.1. Selection and Algorithms for Machine Learning Models

There are various Machine Learning (ML) algorithms that have been developed and
successfully applied to pile foundation in recent years, among which XGBoost and Random
Forest (RF) have shown the best performance [21,25]. Therefore, these two algorithms
were selected to predict base resistance, as well as in assessing the role of pile settlement.
The field data described earlier (Figure 3) were employed for the training model with five
input variables, i.e., Pt, S, AE, SPT_N and Lp. Both XGBoost and RF belong to the ensemble
learning family; however, while RF uses the bagging algorithm, XGBoost is an effective
representative for the boosting concept. It is worth mentioning that the ensemble learning
method can have two different approaches, i.e., (i) bagging (also known as bootstrap
aggregating), where the learning is made in parallel through independent decision trees
and subsets, whereas in boosting technique (ii), the learning occurs sequentially and
adaptively to improve prediction through each decision tree. The differences in these two
algorithms and their implementations in the current database are represented in Figure 7.
Further details of these techniques, including their mathematical formula, have been given
in various past studies [21,34], so they are not further repeated in this paper for brevity.
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In the current study, apart from the conventional majority voting that is commonly
implemented to understand feature importance in ML modeling, the SHAP (SHapley
Additive exPlanations) analysis technique was also used for detailed characterization [35].
The Shapley value (also known as SHAP value) was computed as the averaged sum of
marginal contributions from individual features j as follows:

ϕj(x) =
1
M

M

∑
m=1

ϕm
j (6)

where M and j are the number of iterations and the feature index, respectively. The marginal
contribution ϕm

j = f̂
(

x+j
)
− f̂

(
x−j

)
with f̂ is the prediction model. Compared to other

evaluation methods, SHAP is developed based on a more solid theory that overcomes
the limitations of earlier methods, such as LIME, thus ensuring fair contributions among
different features [36,37]. Further, SHAP, via the Shapley value, allows a contrastive
explanation to be obtained, promoting understanding of both sides (negative and positive
impacts) that a feature can cause for the targeted prediction.

3.2. Data Processing, Model Training and Validation

For model training, 85% of the original dataset was randomly selected, and the re-
maining 15% was used for testing the established model. For equal treatment of datapoints
during this division, the stratified sampling method, where the entire database was first
divided into different groups (or strata) based on their shared characteristics, was applied.
This division was applied consistently for both XGBoost and Random Forest algorithms.
To enhance the training performance, the K-fold cross validation method was adopted to
ensure model stability and predictive performance. In this process, the training dataset
was sub-divided into 10 folds in which 9 folds were used for training and the rest for
cross-validation. This process was repeated through each fold so that the validation was
made 10 times across different subsets, thus giving an equal treatment for datapoints. The
trained model through a 10-fold cross-validation process was then used to predict the
remaining 15% of the dataset for testing purposes. The outcomes from cross-validation
were assessed, in addition to the prediction of testing data, further reinforcing the rigor of
the assessment method. To assess the model performance, the coefficient of determination
(R2) and root mean squared error (RMSE) were calculated.

Figure 8 shows the performance of XGBoost and RF models through 10-fold cross-
validation during the training phase. The results indicate the more reliable and accurate
prediction given by XGBoost. For example, the mean R2 for XGBoost is nearly 90%, whereas
it is about 86% for the RF model. Further, the RMSE induced by XGBoost is about 320, which
is relatively lower than that made by RF. Figure 9 compares the measured and predicted
data using the two built models based on the XGBoost (Figure 9a) and Random Forest
(Figure 9b) algorithms. The results show highly accurate predictions by the two models,
i.e., RF and XGBoost, when their R2 values are nearly 90% and 92.7%, respectively. The
XGBoost algorithm yielded better performance, as it produced a larger R2 compared than its
counterpart. In fact, XGBoost had almost perfect success in training, with R2 approaching
100%, followed by a high degree of R2 in the testing phase, indicating that no over-fitting
that had occurred. The assessment proved the success in building machine learning models
for predicting the base resistance of pile foundations, and thus the confident use of model
outcomes for advancing our understanding of the influencing factors on base resistance.
It is also important to note that using different subsets of data for training and validation
resulted in variation in model performance (varying R2 and RMSE). This was because of the
non-uniformity of data, causing varying features of data subsets, which can be minimized
by using a larger and more complete database [24,38].
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3.3. Assessment of the Role of Settlement through Machine Learning Outcomes

In this section, the earlier established machine learning models are used to advance
our understanding of the influence that settlement can have on the behaviour of base
resistance Qb of the pile foundation. Figure 10 presents the results from SHAP analysis for
the impacts that different input features have on Qb. The results confirm the most impactful
role of settlement on the base resistance, as this feature received the largest mean score,
i.e., approximately 350, which is agreed by both XGBoost and RF models. This score is
significantly larger than those induced by the second and third impactful features, i.e., the
applied load Pt and axial stiffness AE. Interestingly, the stiffness of soil beneath the pile toe
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(SPT value), which is often believed to be one of the most important factors influencing
the base resistance [7,39], received the lowest score (around 100 and 75 by XGBoost and
RF, respectively). This was because all the collected long piles in this investigation sat on
relatively the same soil condition, i.e., the N value mostly varied in a narrow range from
40 to 70 (dense to very dense sandy soil), as shown in Figure 3. The positive and negative
scores from the SHAP analysis (Figure 10b,d) represent how the features influence the
predicted outcome. The predominant range of high positive scores (red at the right-hand
side) by settlement indicates that this factor has mainly a positive impact, i.e., a progressive
relationship, on the base resistance. On the other hand, the scores for axial stiffness are
distributed at both negative and positive sides of the charts, meaning that increasing axial
stiffness does not always lead to larger base resistance of piles.

Geotechnics 2024, 4, FOR PEER REVIEW  14 
 

 

applied load Pt and axial stiffness AE. Interestingly, the stiffness of soil beneath the pile 

toe (SPT value), which is often believed to be one of the most important factors influencing 

the base resistance [7,39], received the lowest score (around 100 and 75 by XGBoost and 

RF, respectively). This was because all the collected long piles in this investigation sat on 

relatively the same soil condition, i.e., the N value mostly varied in a narrow range from 

40 to 70 (dense to very dense sandy soil), as shown in Figure 3. The positive and negative 

scores from the SHAP analysis (Figure 10b,d) represent how the features influence the 

predicted outcome. The predominant range of high positive scores (red at the right-hand 

side) by settlement indicates that this factor has mainly a positive impact, i.e., a progres-

sive relationship, on the base resistance. On the other hand, the scores for axial stiffness 

are distributed at both negative and positive sides of the charts, meaning that increasing 

axial stiffness does not always lead to larger base resistance of piles. 

 

 

 

 

Figure 10. Cont.



Geotechnics 2024, 4 461

Geotechnics 2024, 4, FOR PEER REVIEW  15 
 

 

 

Figure 10. Assessment of influencing factors on base resistance Qb using SHAP method: (a) and (b) 

XGBoost; (c) and (d) Random Forest (RF). 

The relationship between the settlement and base resistance can be quantified using 

the partial dependence plot based on the trained machine learning models, as shown in 

Figure 11. In this analysis, the settlement was varied in a given range, e.g., 0 to 50 mm, 

and combined with other inputs to form various datasets based on Monte-Carlo theory. 

The average predicted Qb corresponding to each value of settlement S can then be used to 

create the partial dependence plot, i.e., [36] 

𝒇𝑆(𝑥𝑆) =
1

𝑛
∑𝒇(𝑥𝑆, 𝑥𝐶

𝑖 )

𝑛

𝑖=1

 (7) 

where fs is the partial dependence function for each value of settlement S (i.e., xS); xC rep-

resents other (input) features which are not considered in the partial dependence analysis; 

and n is the number of instances. The results (Figure 11) show that, when the settlement 

S increases from zero to around 18 mm, the base resistance Qb slightly increases to around 

1000 kPa. However, when S exceeds 20 mm, the slope of the S–Qb curve becomes larger, 

indicating a stronger influence of settlement on Qb, i.e., a bigger increase of Qb for the same 

rise in settlement. Both XGBoost and Random Forest models agree very well regarding 

this behaviour, which in fact corroborates perfectly the observation in the field data shown 

earlier (Figure 6). 

 
(a) 

Figure 10. Assessment of influencing factors on base resistance Qb using SHAP method: (a,b) XGBoost;
(c,d) Random Forest (RF).

The relationship between the settlement and base resistance can be quantified using
the partial dependence plot based on the trained machine learning models, as shown in
Figure 11. In this analysis, the settlement was varied in a given range, e.g., 0 to 50 mm,
and combined with other inputs to form various datasets based on Monte-Carlo theory.
The average predicted Qb corresponding to each value of settlement S can then be used to
create the partial dependence plot, i.e., [36]

fS(xS) =
1
n

n

∑
i=1

f
(

xS, xi
C

)
(7)

where fs is the partial dependence function for each value of settlement S (i.e., xS); xC
represents other (input) features which are not considered in the partial dependence
analysis; and n is the number of instances. The results (Figure 11) show that, when the
settlement S increases from zero to around 18 mm, the base resistance Qb slightly increases
to around 1000 kPa. However, when S exceeds 20 mm, the slope of the S–Qb curve becomes
larger, indicating a stronger influence of settlement on Qb, i.e., a bigger increase of Qb for
the same rise in settlement. Both XGBoost and Random Forest models agree very well
regarding this behaviour, which in fact corroborates perfectly the observation in the field
data shown earlier (Figure 6).
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Figure 11. Influence of settlement on base resistance predicted through machine learning assessment
(partial dependence plot PDP): (a) XGBoost; and (b) Random Forest.

Although the earlier partial dependence plots induced by machine learning have
successfully captured the relationship between Qb and settlement S, they can only show the
average effect of S on Qb (i.e., global method), while the variation over different instances
cannot be seen. Equation (7) averages the function fs for different instances of xS and xC,
therefore, the individual conditional expectation (ICE) plots, which can present the Qb–S
relationship more comprehensively across various instances, are useful to understand the
full range and any other different behaviour of the Qb–S curves. Figure 12 shows this range,
with the S varying up to 50 mm for the trained XGBoost and Random Forest regressions.
While the centred (Red) curves are identical to the partial dependence plots, the results
show considerable variation for individual instances. Most of the curves agree very well
with the centred behaviour, where Qb increases slowly at the initial stage (S < 20 mm) and
develops more quickly for the larger settlement. There are some instances in which Qb
exhibits an opposite response, i.e., it develops rapidly at an early stage and stabilizes when
S rises to 50 mm, which was probably induced by some outliers in the database.
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(individual conditional expectation (ICE) plots): (a) XGBoost; and (b) Random Forest.

4. Discussion and Practical Implications

The conventional hyperbolic relationship between the base resistance and settlement
often considers the displacement of pile tip, which is more difficult to measure compared
to that of pile head in practice. For example, during service of the pile foundation, the
settlement at pile head (i.e., normally identical to the ground or basement levels) can
be conveniently monitored over time, whereas the measurement of pile tip is usually
challenging and costly. The current study has addressed this issue by investigating the
relationship between the base resistance Qb and the settlement of the pile head (S). The
results show the considerable influence of pile length on the Qb–S curves, i.e., the longer
the piles, the slower response and the less contribution of Qb to the increasing S. Figure 13
shows the contribution ratio of base resistance that has been normalised with the pile’s
length and presented over the settlement of the pile head. The results clearly show that,
without the influence of pile length, the difference in base resistance behaviour among
different piles is still considerable. This means that the influence of pile length is not only
because of the vertical deformation (shrinkage) of pile under compression, but also due
to the frictional contact between soil and pile affecting the load being transferred to the
pile toe. For short piles (Le < 30 m), the base resistance can account for a maximum of
approximately 55% of the total bearing capacity, but it can reach only to around 30% in long
piles (Le > 60 m). Given the same percentage of settlement, e.g., 0.05%, the base resistance
of short piles has already developed rapidly to around 80% of its maximum level; however,
it increases very slowly in long piles. This suggests that, for long piles, the skin friction can
account for the majority (80–90%) of the ultimate bearing capacity of piles, despite being
installed in soft soil, thus appropriate consideration of this part is critical.
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Figure 13. Contribution of the base resistance to total bearing capacity with settlement normalised
over the pile length [16,29,30,33].

Figure 14 represents how well the predicted trend line by the XGBoost model matches
the actual behaviour of base resistance in long piles. The data not only show the distinctive
response of long piles to increasing settlement in comparison with short piles, as explained
earlier, but also proves the excellent capability of the trained model, with its main focus on
long piles.
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Figure 14. Comparison of trend line given by ML (XGBoost) model and field test datapoints for short
and long piles.

In comparison with past suggestions, as well as practice codes, the current findings
have some significant implications. For example, Terzaghi [40] stated that the ultimate load
occurs when the pile head movement is about 10% of the pile diameter, but Fellenius (2023)
indicated that this is only applicable to small piles with a diameter of around 300 mm,
which corresponds to the threshold of pile head displacement approximating to 30 mm.
On the other hand, according to the National Code for Design of Building Foundation [41]
(GB 50007 2011), China, the vertical ultimate bearing capacity of piles is determined based
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on the load–settlement curves. When the curve does not indicate significant change in the
shape, the ultimate load is taken at the pile head settlement of 40 mm. If the pile length
is greater than 40 m, the elastic deformation of pile body (pile compression) should be
considered, in addition to the head total settlement, and the ultimate bearing capacity
can occur when the pile head settlement >40 mm and may reach 60 mm–80 mm. The
current findings corroborate this practice as the results (Figures 6 and 13) indicate that, for
super-large and long piles (>60 m), the base resistance can account for approximately 25%
to 35% of the total ultimate bearing capacity of piles, corresponding to the settlement in the
range from 60 mm to 80 mm (>0.1% of the pile length).

Various efforts have been made to employ SPT values (N) for calculating the bearing
capacity of pile foundations [42–44], many of which have in fact been adopted widely
across various practical design codes and guidelines, such as ASHTOO 2010, Vietnamese
and Japanese National Standards, among others [39,45] (AASHTO Specifications 2010;
TCVN 10304 2014). The most common formula to estimate the unit base resistance (i.e.,
end-bearing capacity) can be written as [1]

Qb = mNSPT (8)

where m is the coefficient changing with different soil and pile types; NSPT is the SPT
values of base soil, which can be either the pure or corrected blow counts (N) depending
on different standards and requirements. For example, Meyerhof (1976) [42] suggested
m = 120 (kPa) for bored piles and 400 for driven piles, Karkee et al. (1998) [41] uses m = 155
for nodular piles, whereas others further classified m values in different soils. The value of
m in sandy soils is often suggested to be 1.5 to 3 times larger than that in clayey soils, e.g.,
Decourt (1995) [46] proposed m from 115 to 165 for sandy silt to sands, and 80 to 100 for
clayey soils in non-displacement piles. In fact, there is a severe lack of practical guidelines
on the assessment of the base resistance with respect to different degrees of pile settlement.
The Egyptian Code (ECP202/4 2005) [47] is one of very few that considers pile settlement in
the calculation of base resistance; however, this oversimplified method, i.e., fixing Qb with
certain magnitudes of settlement, can certainly result in significant errors in prediction.

Figure 15 compares the measured (real) base resistance Qb in comparison with those
predicted by machine learning (XGBoost) and practice codes. In this comparison, the
method shown in Equation (8), where m varies from 115 to 165 (min and max, respectively),
is adopted as the representative for practice codes. It is important to note that the results are
shown in correlation with both settlement S and SPT, which are the two primary parameters
used to estimate base resistance. The results indicate a good agreement between the
measured and ML (XGBoost)-predicted Qb, whereas the practice codes yield considerable
deviations. Figure 15a shows that the Qb predicted by the ML method is very close to the
measured data (orange and blue dots) across a wide range of settlement and SPT. While the
mean prediction error is only about 25% using the machine learning (XGBoost) method, this
error exceeds 80% in the cases of practice codes. The results also show that using m > 150
in practical design can significantly overestimate the end bearing capacity of piles in sandy
soil (the prediction error > 90%). It is noteworthy that the measured Qb at S > 20 mm was
considered in this analysis, which enabled the values at ultimate failure to be included.
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5. Conclusions

This paper improved our understanding of the influence that settlement (pile head
displacement S) can have on the mobilized base resistance (Qb) of long to super-long piles
(i.e., L from 60 to 90 m) through a series of static load test data and machine learning (ML)
assessments. Two robust ML algorithms, i.e., the XGBoost and Random Forest (RF), were
adopted for model training based on the collected field data, followed by various post-
analyses using advanced techniques, such as SHAP, partial dependence plot (PDP) and
individual conditional expectation (ICE). Salient findings can be summarized as follows:
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1. The field data showed that super-long piles (L > 60 m) had very different response
to rising settlement (pile head displacement) compared to short and medium piles
(L < 35 m). While short/medium piles can reach 80% of their ultimate bearing capacity
with 50–55% contribution from the base resistance at a settlement threshold S of
10–20 mm (equivalent to 0.015–0.03% of the pile’s length), long piles only reached
this stage when S > 40–50 mm (>0.08–0.1% of the pile’s length). with the largest
contribution at around 20–25% from the base resistance.

2. Settlement was found as the principle key factor affecting behaviour of the base
resistance. When settlement increases, it causes compression of the soil underneath
the pile toe that resists the applied load. However, when the pile becomes longer,
the settlement must propagate, not only through the pile compression, but also the
complex load transfer along the pile length, thus reducing its influence on the base
resistance. This was reflected through the substantially smaller slope and lower
magnitude of the Qb–S curves in the long piles obtained through in-situ load tests.

3. Empirical equations including the modified hyperbolic formula were proposed for
estimating the base resistance of long piles (L > 60 m) with acceptable accuracy. This
method considers the initial settlement (i.e., approximately 20 mm) induced by pile
compression, thus enabling the pile head displacement (surface settlement instead of
the displacement of pile tip in conventional formulas) to be used properly.

4. Machine learning (ML) techniques, specifically the XGBoost and RF algorithms, were
proved to be effective, not only to predict the base resistance, but also to evaluate the
influence that various factors can have on the behaviour of base resistance of piles.
Based on the developed model, the SHAP analysis was implemented, and its results
further confirmed the predominant impact of settlement on the response of base
resistance. More importantly, the settlement-dependent plots of Qb were successfully
created through PDP and ICE techniques, quantitatively presenting how dominantly
settlement governed the development of base resistance.

Despite the above achievements, the current study could only address long and very
long piles (L > 40 m) installed in the soft soil of the Mekong Delta. A larger database that
incorporates wider contexts for pile foundations is required to further improve the model.
Moreover, other advanced algorithms from machine learning can be used to yield greater
benefits to the practical design of deep foundations.
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