Co-Creating Strategies to Optimize Traditional Silvopastoral Systems through the Management of Native Trees in Caívas in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Developing a Forest Management Methodology for Caívas with Improved Pasture
- Periodic assessment of shade levels and/or canopy coverage. When there is more than 60% coverage, continue to step 2;
- Conduct a floristic survey (identification) of tree species in the area where tree management will be performed;
- Count the number of trees of each species;
- Start forest management by pruning the lowest branches of trees that are providing the greatest shade;
- After pruning, if shade levels remain above 60%, begin to remove trees based on the following criteria: (a) dead trees or those in a severe state of degradation; (b) trees with a large number of individuals of the same species in the area;
- Exclude from management any species on the endangered species list (Ocotea porosa, Araucaria angustifolia, Cedrela fissilis, Ocotea puberula, Ocotea catharinensis), with the exception of pruning lower branches (permitted by legislation);
- Never remove trees that only have one individual of the species;
- Do not exceed 15 m3 of firewood/year/property;
- After management, measure the light intensity and carry out a new survey of the species and number of individuals to ensure that management has not changed the phytosociological indicators;
- Do not use, under any circumstances, removed or pruned trees for commercial activities or sale. According to current legislation, they can only be used for domestic use or left to decompose in stacks in the area.
2.3. Data Collection and Analysis
2.3.1. Forest Indicators
2.3.2. Measuring Shade Level from PAR Data
2.3.3. Measuring Soil Attributes
3. Results and Discussion
3.1. Forest Indicators
3.2. Shade Levels from PAR Data
3.3. Soil Indicators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | IV | AD (ind·ha−1) | RD (%) | AF (%) | RF (%) | ADo (m2·ha−1) | RDo (%) |
---|---|---|---|---|---|---|---|
Ilex paraguariensis | 124.00 | 416.67 | 65.45 | 100.00 | 32.14 | 6.96 | 26.41 |
Ocotea porosa | 45.59 | 27.78 | 4.36 | 27.78 | 8.93 | 8.51 | 32.30 |
Curitiba prismatica | 45.43 | 90.28 | 14.18 | 66.67 | 21.43 | 2.59 | 9.82 |
Ilex brevicuspis | 13.22 | 11.57 | 1.82 | 13.89 | 4.46 | 1.83 | 6.94 |
Sapium glandulosum | 12.99 | 18.52 | 2.91 | 22.22 | 7.14 | 0.77 | 2.94 |
Araucaria angustifolia | 11.73 | 6.94 | 1.09 | 8.33 | 2.68 | 2.10 | 7.96 |
Annona rugulosa | 10.40 | 18.52 | 2.91 | 19.44 | 6.25 | 0.33 | 1.24 |
Ocotea puberula | 7.83 | 6.94 | 1.09 | 5.56 | 1.79 | 1.31 | 4.96 |
Annona neosalicifolia | 5.61 | 9.26 | 1.45 | 11.11 | 3.57 | 0.15 | 0.59 |
Myrceugenia myrcioides | 4.30 | 6.94 | 1.09 | 8.33 | 2.68 | 0.14 | 0.53 |
Cedrela fissilis | 4.17 | 2.31 | 0.36 | 2.78 | 0.89 | 0.77 | 2.91 |
Nectandra megapotamica | 3.74 | 4.63 | 0.73 | 5.56 | 1.79 | 0.32 | 1.23 |
Casearia decandra | 2.74 | 4.63 | 0.73 | 5.56 | 1.79 | 0.06 | 0.23 |
Drimys brasiliensis | 1.89 | 2.31 | 0.36 | 2.78 | 0.89 | 0.17 | 0.64 |
Syagrus romanzoffiana | 1.87 | 2.31 | 0.36 | 2.78 | 0.89 | 0.16 | 0.62 |
Allophylus edulis | 1.60 | 2.31 | 0.36 | 2.78 | 0.89 | 0.09 | 0.34 |
Cinnamodendron dinisii | 1.46 | 2.31 | 0.36 | 2.78 | 0.89 | 0.05 | 0.20 |
Machaerium sp. | 1.40 | 2.31 | 0.36 | 2.78 | 0.89 | 0.04 | 0.15 |
Species | IV | AD (ind·ha−1) | RD (%) | AF (%) | RF (%) | ADo (m2·ha−1) | RDo (%) |
---|---|---|---|---|---|---|---|
Ilex paraguariensis | 77.23 | 192.13 | 39.90 | 91.67 | 23.74 | 3.35 | 13.58 |
Ocotea porosa | 54.92 | 32.41 | 6.73 | 33.33 | 8.63 | 9.75 | 39.56 |
Curitiba prismatica | 44.38 | 83.33 | 17.31 | 75.00 | 19.42 | 1.89 | 7.65 |
Annona rugulosa | 17.80 | 37.04 | 7.69 | 30.56 | 7.91 | 0.54 | 2.19 |
Ilex brevicuspis | 17.31 | 16.20 | 3.37 | 19.44 | 5.04 | 2.20 | 8.91 |
Araucaria angustifolia | 15.24 | 6.94 | 1.44 | 8.33 | 2.16 | 2.87 | 11.64 |
Myrceugenia myrcioides | 14.05 | 27.78 | 5.77 | 27.78 | 7.19 | 0.27 | 1.08 |
Sapium glandulosum | 10.65 | 13.89 | 2.88 | 16.67 | 4.32 | 0.85 | 3.45 |
Annona neosalicifolia | 8.14 | 13.89 | 2.88 | 16.67 | 4.32 | 0.23 | 0.94 |
Casearia decandra | 5.39 | 9.26 | 1.92 | 11.11 | 2.88 | 0.14 | 0.59 |
Cedrela fissilis | 4.81 | 2.31 | 0.48 | 2.78 | 0.72 | 0.89 | 3.61 |
Nectandra megapotamica | 4.51 | 2.31 | 0.48 | 2.78 | 0.72 | 0.82 | 3.31 |
Allophylus edulis | 4.25 | 6.94 | 1.44 | 8.33 | 2.16 | 0.16 | 0.65 |
Cinnamodendron dinisii | 2.66 | 4.63 | 0.96 | 5.56 | 1.44 | 0.06 | 0.26 |
Casearia sylvestris | 2.58 | 4.63 | 0.96 | 5.56 | 1.44 | 0.04 | 0.18 |
Drimys brasiliensis | 1.91 | 2.31 | 0.48 | 2.78 | 0.72 | 0.17 | 0.71 |
Syagrus romanzoffiana | 1.90 | 2.31 | 0.48 | 2.78 | 0.72 | 0.17 | 0.70 |
Lonchocarpus nitidus | 1.85 | 4.63 | 0.96 | 2.78 | 0.72 | 0.04 | 0.17 |
Ocotea puberula | 1.60 | 2.31 | 0.48 | 2.78 | 0.72 | 0.10 | 0.40 |
Machaerium spp. | 1.38 | 2.31 | 0.48 | 2.78 | 0.72 | 0.04 | 0.18 |
Gymnanthes klotzschiana | 1.28 | 2.31 | 0.48 | 2.78 | 0.72 | 0.02 | 0.08 |
Campomanesia xanthocarpa | 1.25 | 2.31 | 0.48 | 2.78 | 0.72 | 0.01 | 0.05 |
Ilex theezans | 1.24 | 2.31 | 0.48 | 2.78 | 0.72 | 0.01 | 0.04 |
Zanthoxylum rhoifolium | 1.23 | 2.31 | 0.48 | 2.78 | 0.72 | 0.01 | 0.03 |
Eugenia uniflora | 1.23 | 2.31 | 0.48 | 2.78 | 0.72 | 0.01 | 0.03 |
Terminalia australis | 1.22 | 2.31 | 0.48 | 2.78 | 0.72 | 0.00 | 0.02 |
References
- Jose, S.; Dollinger, J. Silvopasture: A Sustainable Livestock Production System. Agrofor. Syst. 2019, 93, 1–9. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Negrelle, R.R.B.; Monteiro, A.L.G.; Lacerda, A.E.B.; Pinotti, L.C.A. Combining Silvopastoral Systems with Forest Conservation: The Caíva System in the Araucaria Forest, Southern Brazil. Agrofor. Syst. 2022, 96, 759–771. [Google Scholar] [CrossRef]
- Cárdenas, A.; Moliner, A.; Hontoria, C.; Ibrahim, M. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor. Syst. 2019, 93, 229–239. [Google Scholar] [CrossRef]
- Machado Mello, A.J.; Peroni, N. Cultural Landscapes of the Araucaria Forests in the Northern Plateau of Santa Catarina, Brazil. J. Ethnobiol. Ethnomed. 2015, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.C.A.; Hanisch, A.L.; Negrelle, R.R.B. The impact of traditional silvopastoral system on the mixed ombrophilous forest remnants. Floresta Ambiente 2018, 25, e20170192. [Google Scholar] [CrossRef]
- Reis, M.S.; Montagna, T.; Mattos, A.G.; Filippon, S.; Ladio, A.H.; Marques, A.d.C.; Zechini, A.A.; Peroni, N.; Mantovani, A. Domesticated landscapes in Araucaria forests, southern Brazil: A multispecies local conservation-by-use system. Front. Ecol. Evol. 2018, 6, 11. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Vogt, G.A.; Marques, A.D.C.; Bona, L.C.; Bosse, D. Estrutura e composição florística de cinco áreas de caíva no Planalto Norte de Santa Catarina. Pesqui. Florest. Bras. 2010, 30, 303–310. [Google Scholar] [CrossRef]
- Mello, A.J.M. Etnoecologia e Manejo Local de Paisagens Antrópicas Da Floresta Ombrófila Mista, Santa Catarina, Brasil. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2013. [Google Scholar]
- Mattos, A.G. Conservação pelo uso de populações de IIex paraguariensis A. St. Hil, em Sistemas Extrativistas no Planalto Norte Catarinense. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2015. [Google Scholar]
- de Souza, A.M. Sistemas de Manejo da Erva-Mate (Ilex Paraguariensis St. Hil.) em Ervais Florestais do Planalto Norte Catarinense: Base Para Uma Indicação Geográfica. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2018. [Google Scholar]
- Marques, A.D.A.C.; Reis, M.S.D.O.S.; Denardin, V.F. Yerba Mate landscapes: Forest use and Socio-environmental conservation. Ambiente Soc. 2019, 22, e02822. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Dalgallo, D. Melhoria Produtiva de Caívas com a Introdução da Grama Missioneira-Gigante. Boletim Didático, 157. 2020. Available online: https://publicacoes.epagri.sc.gov.br/BD/article/view/1073 (accessed on 29 November 2023).
- Hanisch, A.L.; Pinotti, L.C.A.; de Lacerda, A.E.B.; Radomski, M.I.; Negrelle, R.R.B. Impactos do pastejo do gado e do manejo da pastagem sobre a regeneração arbórea em remanescentes de Floresta Ombrófila Mista. Ciência Florest. 2021, 31, 1278–1305. [Google Scholar] [CrossRef]
- Marques, A.D.C. As Paisagens do mate e a Conservação Socioambiental. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2014. [Google Scholar]
- Baldissera, T.C.; Pontes, L.d.S.; Giostri, A.F.; Barro, R.S.; Lustosa, S.B.C.; de Moraes, A.; Carvalho, P.C.d.F. Sward Structure and Relationship between Canopy Height and Light Interception for Tropical C4 Grasses Growing under Trees. Crop Pasture Sci. 2016, 67, 1199. [Google Scholar] [CrossRef]
- Krahl, G.; Baldissera, T.C.; Pinto, C.E.; Garagorry, F.C.; Werner, S.S.; Lopes, C.F.; Ribeiro Filho, H.M.N. Can Pasture Defoliation Management Targets Be Similar under Full Sun and Shaded Conditions? Crop Pasture Sci. 2022, 74, 259–269. [Google Scholar] [CrossRef]
- Brasil. Lei nº 12.651, de 25 de maio de 2012. Dispõe sobre a Proteção da Vegetação Nativa; Altera as Leis nºs 6.938, de 31 de Agosto de 1981, 9.393, de 19 de Dezembro de 1996, e 11.428, de 22 de Dezembro de 2006; Revoga as Leis nºs 4.771, de 15 de Setembro de 1965, e 7.754, de 14 de Abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de Agosto de 2001; e dá Outras Providências; Seção 1; Diário Oficial da União: Brasília, DF, Brazil, 2012; p. 1. [Google Scholar]
- Brasil. Lei nº 11.428, de 22 de Dezembro de 2006. Dispõe Sobre a Utilização e Proteção da Vegetação Nativa do Bioma Mata Atlântica, e dá Outras Providências; Seção 1; Diário Oficial da União: Brasília, DF, Brazil, 2007; p. 1. [Google Scholar]
- Instituto do Meio Ambiente de Santa Catarina (IMA). Instrução Normativa nº 25: Aproveitamento/Corte de Material Lenhoso Morto/Caído por Ação da Natureza. Florianópolis; 2021. Available online: https://in.ima.sc.gov.br/ (accessed on 29 November 2023).
- Instituto do Meio Ambiente de Santa Catarina (IMA). Instrução Normativa nº 26: Aproveitamento/corte de material Lenhoso Com Risco ao Patrimônio e à Vida. Florianópolis. 2021. Available online: https://in.ima.sc.gov.br/ (accessed on 29 November 2023).
- Paludo, G.F.; Mantovani, A.; Klauberg, C.; dos Reis, M.S. Estrutura demográfica e padrão espacial de uma população natural de Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), na Reserva Genética Florestal de Caçador, Estado de Santa Catarina. Rev. Árvore 2009, 33, 1109–1121. [Google Scholar] [CrossRef]
- Felfili, J.M.; Nogueira, P.E.; da Silva Júnior, M.C.; Marimon, B.S.; Delitti, W.B.C. Composição florística e fitossociologia do cerrado sentido restrito no município de Água Boa—MT. Acta Bot. Bras. 2002, 16, 103–112. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Shepherd, G.J. FITOPAC. Versão 2.1; Departamento de Botânica, Universidade Estadual de Campinas—UNICAMP: Campinas, Brazil, 2010. [Google Scholar]
- Stevens, P.F. (2001 Onwards). Angiosperm Phylogeny Website. Version 14, July 2017. Available online: http://www.mobot.org/MOBOT/research/APweb/ (accessed on 29 November 2023).
- Tropicos.org. Missouri Botanical Garden. Available online: https://tropicos.org (accessed on 29 November 2023).
- Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 29 November 2023).
- Meyer, L.; Sevegnani, L.; Gasper, A.L.; Schorn, L.A.; Vibrans, A.C.; Lingner, D.V.; Sobral, M.G.; Klemz, G.; Schmdt, R.; Anastácio Junior, C.; et al. Fitossociologia do componente arbóreo/arbustivo da FOM em Santa Catarina. In Inventário Florístico Florestal de Santa Catarina, Vol. III, FOM.; Vibrans, A.C., Sevegnani, L., Gasper, A.L., Lingner, D.V., Eds.; Edifurb: Blumenau, SC, Brazil, 2013. [Google Scholar]
- Budowski, G. Distribution of tropical american rain forest species in the light of sucessional processes. Turrialba 1965, 15, 40–42. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Manual Técnico da Vegetação Brasileira, 2nd ed.; IBGE: Rio de Janeiro, RJ, Brasil, 2012.
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 1; Embrapa Florestas: Colombo, PR, Brasil, 2003. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 2; Embrapa Florestas: Colombo, PR, Brasil, 2006. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 3; Embrapa Florestas: Colombo, PR, Brasil, 2008. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 4; Embrapa Florestas: Colombo, PR, Brasil, 2010. [Google Scholar]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Coleção Espécies Arbóreas Brasileiras, v. 5; Embrapa Florestas: Colombo, PR, Brasil, 2014. [Google Scholar]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Tedesco, M.J.; Gianello, C.; Bissani, C.A.; Bohnem, H.; Volkweiss, S.J. Análise de Solo, Plantas e Outros Materiais; Boletim Técnico, 5; UFRGS/Departamento de Solos: Porto Alegre, RS, Brasil, 1995; 174p. [Google Scholar]
- Sociedade Brasileira de Ciência do Solo (SBCS). Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e de Santa Catarina; SBCS: Passo Fundo, RS, Brasil, 2016; 376p. [Google Scholar]
- Lacerda, A.E.B. Sistema de Restauração Produtivo Agroflorestal; Série Erva-Mate Sombreada (2), Comunicado Técnico 440; Embrapa Florestas: Colombo, PR, Brasil, 2019. [Google Scholar]
- Vibrans, A.C.; Sevegnani, L.; Uhlmann, A.; Schorn, L.A.; Sobral, M.G.; de Gasper, A.L.; Lingner, D.V.; Brogni, E.; Klemz, G.; Godoy, M.B.; et al. Structure of mixed ombrophyllous forests with Araucaria angustifolia (Araucariaceae) under external stress in Southern Brazil. Revista de Biología Tropical 2011, 59, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). The State of World’s Forest 2020. Available online: https://www.fao.org/state-of-forests/en/ (accessed on 29 November 2023).
- Clark, P.E.; Porter, B.A.; Pellant, M.; Dyer, K.; Norton, T.P. Evaluating the efficacy of targeted cattle grazing for fuel break creation and maintenance. Rangel. Ecol. Manag. 2023, 89, 69–86. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Campos, J.C.; Pais, S.; Carvalho-Santos, C.; Azevedo, J.C.; Fernandes, P.; Gonçalves, J.F.; Aquilué, N.; Roces-Díaz, J.V.; de la Torre, M.A.; et al. Stakeholder perceptions of wildfire management strategies as nature-based solutions in two Iberian biosphere reserves. Ecol. Soc. 2023, 28, 39. [Google Scholar] [CrossRef]
Year | AD (ni·ha−1) | S | H′ | Var (H′) | J′ | BA (m2·ha−1) |
---|---|---|---|---|---|---|
2013 | 636.57 | 18 | 1.37 | 0.0079 | 0.47 | 11.38 |
2020 | 673.61 | 25 | 1.99 | 0.0059 | 0.62 | 12.22 |
2021 | 495.37 | 26 | 2.13 | 0.0090 | 0.65 | 10.09 |
2022 | 481.48 | 26 | 2.17 | 0.0086 | 0.67 | 10.65 |
Year | 2013 | 2020 | 2021 | 2022 |
---|---|---|---|---|
2013 | -- | |||
2020 | −5.33 | -- | ||
2021 | −5.81 | −1.07 | -- | |
2022 | −6.23 | −1.44 | −0.33 | -- |
Year | 2013 | 2020 | 2021 | 2022 |
---|---|---|---|---|
2013 | -- | |||
2020 | 0.84 | -- | ||
2021 | 0.82 | 0.98 | -- | |
2022 | 0.82 | 0.98 | 1.00 | -- |
Family | Regional Common Name | Number of Individuals | EG | LF | |||
---|---|---|---|---|---|---|---|
Species | 2013 | 2020 | 2021 | 2022 | |||
Annonaceae | |||||||
Annona neosalicifolia H.Rainer | Araticum amarelo | 4 | 8 | 7 | 6 | P | Meso |
Annona rugulosa (Schltdl.) H.Rainer | Araticum preto | 8 | 17 | 15 | 16 | P | Micro |
Aquifoliaceae | |||||||
Ilex brevicuspis Reissek | Voadeira | 5 | 5 | 5 | 7 | S | Meso |
Ilex paraguariensis A.St.-Hil. | Erva-mate | 180 | 128 | 94 | 83 | P | Macro |
Ilex theezans Mart. ex Reissek | Caúna; Congonha | - | - | 1 | 1 | S | Meso |
Araucariaceae | |||||||
Araucaria angustifolia (Bertol.) Kuntze | Araucaria | 3 | 3 | 3 | 3 | P | Macro |
Arecaceae | |||||||
Syagrus romanzoffiana (Cham.) Glassman | Palmeira Jerivá; Jerivá | 1 | 1 | 1 | 1 | P | Macro |
Canellaceae | |||||||
Cinnamodendron dinisii Schwacke | Pimenteira | 1 | 2 | 2 | 2 | P | Meso |
Combretaceae | |||||||
Terminalia australis Cambess. | Sarandi | - | 1 | 1 | 1 | P | Micro |
Euphorbiaceae | |||||||
Gymnanthes klotzschiana Müll.Arg. | Branquilho | - | 1 | 1 | 1 | P | Micro |
Sapium glandulosum (L.) Morong | Leiteiro | 8 | 10 | 6 | 6 | P | Meso |
Fabaceae-Faboideae | |||||||
Lonchocarpus nitidus (Vogel) Benth. | Timbó; Timbózinho | - | 2 | 2 | 2 | S | Micro |
Machaerium Pers. | Pau-ferro; Pau-marfim | 1 | 1 | 1 | 1 | S | Meso |
Lauraceae | |||||||
Nectandra megapotamica (Spreng.) Mez | Canela fedorenta | 2 | 2 | 1 | 1 | S | Meso |
Ocotea porosa (Nees & Mart.) Barroso | Imbuia | 12 | 12 | 14 | 14 | P | Macro |
Ocotea puberula (Rich.) Nees | Canela guaicá | 3 | 3 | 1 | 1 | P | Meso |
Meliaceae | |||||||
Cedrela fissilis Vell. | Cedro; Cedro rosa | 1 | 1 | 1 | 1 | S | Macro |
Myrtaceae | |||||||
Campomanesia xanthocarpa (Mart.) O.Berg | Guabiroba | - | 2 | 1 | 1 | S | Meso |
Curitiba prismatica (D.Legrand) Salywon & Landrum | Cerninho | 39 | 60 | 29 | 36 | S | Micro |
Eugenia uniflora L. | Pitanga | - | 1 | 1 | 1 | P | Micro |
Myrceugenia myrcioides (Cambess.) O.Berg | Guamirim | 3 | 11 | 14 | 12 | C | Micro |
Continue… | |||||||
Rutaceae | |||||||
Zanthoxylum rhoifolium Lam. | Mamica de cadela | - | 1 | 1 | 1 | S | Micro |
Salicaceae | |||||||
Casearia decandra Jacq. | Guaçatunga; Guaçatunga branca | 2 | 10 | 5 | 4 | S | Micro |
Casearia sylvestris Sw. | Guaçatunga preta | - | 2 | 2 | 2 | S | Meso |
Sapindaceae | |||||||
Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Niederl. | Vacum | 1 | 3 | 4 | 3 | S | Micro |
Winteraceae | |||||||
Drimys brasiliensis Miers | Cataia | 1 | 1 | 1 | 1 | S | Meso |
Total individuals per year | 275 | 291 | 214 | 208 |
Year | Diameter (cm) | Height (m) | ||||||
---|---|---|---|---|---|---|---|---|
μ ± σ | Maximum | Minimum | μ ± σ | Maximum | Minimum | |||
2013 | 18.2 | 14.0 | 96.1 | 3.8 | 5.9 | 5.6 | 28.0 | 1.5 |
2020 | 17.7 | 14.9 | 98.7 | 1.8 | - | - | - | - |
2021 | 18.0 | 16.6 | 112.8 | 4.1 | - | - | - | - |
2022 | 19.0 | 17.1 | 98.9 | 4.9 | 7.3 | 5.5 | 29.5 | 2.0 |
Attributes | 2020 | 2021 | 2022 |
---|---|---|---|
Clay (%) | 39 | 34 | 40 |
pHwater | 4.4 | 4.9 | 5.1 |
P (mg·dm−3) | 3.9 | 3.9 | 4.3 |
K (mg·dm−3) | 119 | 113 | 118 |
SOM (%) | 1.9 | 2.2 | 2.3 |
Al (cmolc·dm−3) | 3.8 | 1.4 | 0.6 |
Ca (cmolc·dm−3) | 2.1 | 4.9 | 6.3 |
Mg (cmolc·dm−3) | 0.7 | 1.8 | 2.3 |
V% | 21 | 65 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanisch, A.L.; Pinotti, L.C.A. Co-Creating Strategies to Optimize Traditional Silvopastoral Systems through the Management of Native Trees in Caívas in Southern Brazil. Conservation 2024, 4, 65-81. https://doi.org/10.3390/conservation4010005
Hanisch AL, Pinotti LCA. Co-Creating Strategies to Optimize Traditional Silvopastoral Systems through the Management of Native Trees in Caívas in Southern Brazil. Conservation. 2024; 4(1):65-81. https://doi.org/10.3390/conservation4010005
Chicago/Turabian StyleHanisch, Ana Lúcia, and Lígia Carolina Alcântara Pinotti. 2024. "Co-Creating Strategies to Optimize Traditional Silvopastoral Systems through the Management of Native Trees in Caívas in Southern Brazil" Conservation 4, no. 1: 65-81. https://doi.org/10.3390/conservation4010005