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Abstract: Image segmentation plays an important role in object-based classification. An optimal
image segmentation should result in objects being internally homogeneous and, at the same time,
distinct from one another. Strategies that assess the quality of image segmentation through intra- and
inter-segment homogeneity metrics cannot always predict possible under- and over-segmentations of
the image. Although the segmentation scale parameter determines the size of the image segments,
it cannot synchronously guarantee that the produced image segments are internally homogeneous
and spatially distinct from their neighbors. The majority of image segmentation assessment methods
largely rely on a spatial autocorrelation measure that makes the global objective function fluctuate
irregularly, resulting in the image variance increasing drastically toward the end of the segmentation.
This paper relied on a series of image segmentations to test a more stable image variance measure
based on the standard deviation model as well as a more robust hybrid spatial autocorrelation
measure based on the current Moran’s index and the spatial autocorrelation coefficient models.
The results show that there is a positive and inversely proportional correlation between the inter-
segment heterogeneity and the intra-segment homogeneity since the global heterogeneity measure
increases with a decrease in the image variance measure. It was also found that medium-scale
parameters produced better quality image segments when used with small color weights, while
large-scale parameters produced good quality segments when used with large color factor weights.
Moreover, with optimal segmentation parameters, the image autocorrelation measure stabilizes and
follows a near horizontal fluctuation while the image variance drops to values very close to zero,
preventing the heterogeneity function from fluctuating irregularly towards the end of the image
segmentation process.

Keywords: image segmentation; scale parameter; color factor weight; object-based image analysis;
remote sensing; geographical information systems

1. Introduction

In the past two decades, object-based image analysis has gained momentum in digital
image mapping for geographical information systems and remote sensing applications [1].
Object-based image analysis offers the advantage of extracting objects of interest as distinct
land use and land cover features in contrast to pixel-based image analysis, resulting in
more accurate thematic mapping. Today, high-resolution aerial photographs and satellite
imagery offer some accuracy advantages in urban mapping in the sense that it has now
become possible to extract individual buildings as objects of interest using object-based
image classification. However, due to their high variability in building sizes, shapes,
and roof colors, urban areas remain some of the most difficult environments to map
using pixel-based image classification algorithms [2]. In object-based image analysis,
attributes such as shape, size, and color can play a vital role in improving the accuracy of
image classification outcomes. In contrast to pixel-based image classification, object-based
image classification offers the advantage of mapping groups of internally homogeneous
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pixels into distinct classes [3]. A key element in object-based image analysis is image
segmentation, which partitions the digital image into distinct objects that are made of
groups of homogeneous pixels. However, achieving image objects that are internally
homogeneous remains a challenge in image segmentation due to the fact that the quality of
produced image segments largely depends on a fair balance of some user-defined parameter
thresholds that drive the image segmentation process [4,5]. These user-defined thresholds
are generally associated with shape compactness, shape smoothness, color factor, and scale
parameters [6]. Finding a proper balance between these segmentation parameters has been
the subject of great research interest in object-based image analysis for the past decades.
Not achieving a good balance between these segmentation parameters can result in small
segments being submerged by larger ones and larger objects being over-segmented.

Due to the difficulty of finding optimal balances between segmentation parameter
thresholds, the supervised trial-and-error strategy has been widely used. Ref. [7], for in-
stance, performed the segmentation of an aerial image of an agricultural field by assigning
weights of 0.9 and 0.1 to the color factor and shape compactness parameter, respectively.
Meanwhile, [8] cautioned that the subjective selection of large segmentation-scale pa-
rameters with the expectation of achieving good quality segments can lead to serious
segmentation errors, and the authors suggested an equal weight of 0.5 be assigned to the
color factor and shape compactness parameter, respectively, in order to achieve acceptable
image segmentation results.

In the last decade, the scale parameter and shape compactness have received high
attention in research on the optimal selection of segmentation parameters [9,10]. The multi-
resolution image segmentation algorithm in eCognition has been widely used for urban
mapping applications. A successful image segmentation process is expected to produce
image segments of a shape similar to their real-world boundaries [11]. Unsupervised
attempts to identify optimal segmentation parameter thresholds have been proposed in
the literature [12–16]. Metrics such as the weighted variance and Moran’s index have
been widely used to study intra-segment homogeneity and inter-segment heterogeneity,
respectively. Early studies to determine optimal balances between segmentation parameters
relied on a global objective function that combines a local image variance measure and the
spatial autocorrelation Moran’s index [17]. However, the main limitations of these early
approaches include the fact that they only perform well for large homogeneous areas and
were designed to search for optimal segmentation parameters at a single segmentation level.
These approaches were later improved by [18,19] to include more than one segmentation
level. The improved approaches identified optimal segmentation parameters as those
defining peak points of the curve of a global objective function that is a function of a
spatial autocorrelation model and an image variance measure. Ref. [20] modified the
global objective function by restricting it to generate strictly three peak points of the curve,
with each peak point corresponding to one segmentation level. This restriction may not
be suitable for urban scenes where more than three types of objects may be dominant.
This restriction was also reported not to be suitable for high-resolution imagery when
the purpose of image classification is to extract features of small sizes, such as individual
building units, swimming pools, roads, parking lots, or urban trees [9].

It has been suggested in [21] that methods of selection of optimal segmentation pa-
rameters based on the weighted variance and Moran’s index in their most commonly used
formulations are very limited when it comes to objective searches for optimal segmentation
parameters. Ref. [22] also reported that methods that use Moran’s index in its commonly
used formulation are not suitable for heterogeneous areas such as urban environments,
and the authors suggested the use of local variance measures instead. This is because
Moran’s index in its present formulation makes the global objective function fluctuate
irregularly, and this results in the image variance increasing drastically towards the end
of the segmentation process, forcing larger objects to merge even though they belong to
distinct classes [23]. Ref. [24] also cautioned that when modeling a good local variance
curve in order to identify optimal segmentation parameters, it is vital to ensure that the
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models identify optimal values of parameters such as shape compactness or color factor
weights that increase or are equal between successive segmentation levels. Ref. [25] argued
that standard deviation measures should replace the current image variance measure since
the latter fails to capture all the irregular intra-segment variances throughout the image.

Most segmentation parameter evaluation approaches have mainly focused on the scale
parameter and the shape compactness and have not given great attention to the influence
of color factor weights on the performance of scale parameters in object-based image
analysis [26,27]. This paper proposes one nonlinear global heterogeneity objective function
based on a non-weighted standard deviation image variance and a hybrid weighted spatial
autocorrelation measure based partly on the current formulation of Moran’s index and a
spatial autocorrelation coefficient in order to evaluate optimal segmentation parameters
that can minimize under and over-segmentation of urban environments. The rationale
behind the use of a non-weighted standard deviation image variance is that the current
formulation of the image variance measure is dependent on segment area measures. This
inclusion of individual segment area measures can introduce numerical instabilities into
the global objective function or the global heterogeneity function in occurrences of under-
or over-segmentations since some of the segment area measures do not accurately match
their real-world measures, thus undermining the accuracy of the computed image variance.
The rationale behind the proposal of the new spatial autocorrelation measure is that
Moran’s index in its current formulation is expressed as a ratio in which the presence in the
numerator of the sum of the spatial distance weights scaled by the total number of image
segments leads to an increase in the measure while the merging process carries on. This
will result in objects with low inter-segment heterogeneity not being merged. In addition,
the four-nearest neighbor distance matrix used by the current formulation does not always
hold true for all the segments within the image since it is possible for a large number of
image segments to be surrounded by only one distinct neighbor, and this can result in
a large number of zeros in the distance matrix, which could undermine the accuracy of
Moran’s index.

2. Related Work

Several land use and land cover mapping studies have used image segmentation for
object-based image classification. Many of these studies based the choice of segmentation
parameters on trial-and-error procedures [28,29]. One inconvenience of such an approach
is that it is tedious and does not always guarantee the best results since the final decision
relies on visual interpretations of segmentation results, which can be very subjective when
dealing with very complex areas such as urban areas. Ref. [17] proposed a technique to
evaluate segmentation parameters in a forest area. The approach relied on the assumption
that successful segmentations should produce objects that are internally homogeneous and,
at the same time, distinct from their neighbors. Object internal homogeneity is measured
through a weighted variance expressed as follows:

Wvar =

n
∑

i=1
aivi

n
∑

i=1
ai

(1)

with ai as the area of a segment of interest i and vi its variance. The measure returns low
values for internally homogeneous segments and produces high values for heterogeneous
segments [30]. The inter-segment heterogeneity is, on the other hand, measured through
Moran’s index, which is a spatial autocorrelation measure formulated as follows:
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MI =

n
n
∑

i=1

n
∑

j=1
wij(yi − y)

(
yj − y

)
n
∑

i=1
(yi − y)2

(
∑
i ̸=j

∑ wij

) (2)

where n is the total number of objects, yi is the spectral brightness of a segment of interest
i, and yi is the mean spectral brightness on the image at a given segmentation level. The
parameter wij is a measure of the spatial proximity between two segments i and j. The
assignment of a value of one to the parameter wij indicates that segments i and j are
adjacent regions that share at least one boundary, and a value of zero indicates they do
not. Moran index returns low values to describe segmentations with high inter-segment
heterogeneity, and high values of the index describe segmentations that produce segments
with low heterogeneity. Global objective functions are often used to characterize the overall
quality of a segmentation outcome, and these functions usually combine the image variance
measure in (1) and the spatial autocorrelation measure in (2). The most commonly used
formulation of the global score function or global objective function is given as follows:

Gs = wVarnorm + MInorm (3)

with wVarnorm and MInorm the normalized weighted variance and the normalized Moran’s
Index, respectively. The normalizations of the measures in (1) and (2) are generally deter-
mined through the following equation:

γNormalized =
γ − γMin

γMax − γMin
(4)

where γ is either the image-weighted variance measure or the spatial autocorrelation
measure, while γmin and γmax represent their respective minimum and maximum values.
The normalization equation rescales the values of these measures within the range of
0 to 1. Ref. [19] argued that the global objective function proposed in (3) by [17] does
not guarantee optimal segmentation results, and the authors came to this assumption
after visually observing segmentation results performed with optimal scale parameters
determined by the global score function. To address this limitation, a heterogeneity function
was proposed and combined the recalculated weighted variance and Moran’s index for
under and over-segmented objects. The proposed index also requires normalized image
variance and spatial autocorrelation measures and was formulated as follows:

H =
wVarnorm − MInorm

wVarnorm + MInorm
(5)

where wVarnorm and MInorm are the normalized image variance and Moran’s index mea-
sures, respectively. The measure enables the identification of optimal segmentation scales
that can re-segment the under- and over-segmented objects, which are then merged back to
the previous segmentation performed under the condition in Equation (3). Furthermore,
ref. [31] tested a hybrid approach combining the assumptions in [17,19]. However, their
technique did not rely on the global objective function measure in (3) to identify the opti-
mal scale parameters but rather used the different values of the heterogeneity function in
(5) to identify scale parameters that produce high inter-segment heterogeneity and high
intra-segment homogeneity measures, as illustrated in Figure 1 below.
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The heterogeneity function, as illustrated in Figure 1, shows some high values of the
measure, which are potential optimal scale parameters for the segmentation. Ref. [32]
also argued that the global objective function in (3) is not sensitive to under- and over-
segmentation and suggested an alternative measure, which has an additional weight
compared to the traditional measure and was formulated as follows:

Gs =
(

1 + a2
)( MInorm × wVarnorm

a2 × MInorm + wVarnorm

)
(6)

where a is a weight that controls the relative weight of wVarnorm and MInorm. The model
returns lower values for a segmentation with more homogeneous objects and high val-
ues for a segmentation with more heterogeneous objects. Ref. [21] pointed out that the
functions describing the weighted image variance and Moran index in (1) and (2) still
impose trustworthy spatial and spectral constraints on the segmentation outcome, in order
to identify optimal segmentation parameters; however, the authors were more concerned
about the normalization equation proposed in (4). According to their investigation, the
Equation in (4) can produce inconsistencies in the sense that any error in the choice of mini-
mum or maximum values of the weighted variance and Moran’s index could compromise
the optimal selection of segmentation scale parameters due to errors that might originate
from inaccurate segments area measures in occurrences of over- and under-segmentation
scenarios. The authors proposed that both the weighted variance and Moran’s index should
be rescaled separately with different measures. This means that the variance and Moran’s
index should be normalized as follows:

Vnorm =
v
v

and MInorm =
MI + 1

2
(7)

with v the variance of the object and v the mean variance of the image at a given segmen-
tation level. It can be noticed that the proposed normalization formulae do not involve a
segment area measure. Substituting the expressions in (7) into (3) produces the following
global score or objective function:

Gs =
2v + v(MI + 1)

2v
(8)

The authors argued that the new global score function is more independent from
any under- and over-segmentation errors that may occur. Indeed, the authors’ concerns
were reasonable since, currently, it is not possible to obtain a segmentation with 100%
correctly segmented objects; there are always some segments subjected to under- or over-
segmentation even though the main aim of ongoing studies in the selection of optimal
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segmentation parameters is to minimize the number of segments subjected to under- and
over-segmentation errors.

3. Materials and Methods
3.1. Satellite Imagery and Study Area

GeoEye imagery has been widely used for urban mapping applications [33,34]. The
multispectral imagery possesses four spectral bands, including the three bands of the visible
light region of the electromagnetic spectrum, comprising the blue band with a spectral
resolution expanding from 450 nm to 510 nm, the green band, which expands from 510
nm to 580 nm, and the red band, which expands from 655 nm to 690 nm. The fourth
band covers the near-infrared region of the electromagnetic spectrum, ranging from 780
nm to 920 nm. The spatial resolution of 1.8 meters classifies the multispectral imagery as
high resolution [35,36]. Atmospheric, radiometric, and geometric corrections were already
performed on the imagery. The choice of the City Bowl area of Cape Town metropolitan area
as our study area was driven by the diversity and complexity of this urban environment
that contains grassland fields, urban trees, open space, green recreational parks, sport
fields, roads, residential and non-residential buildings of various sizes, parking lots, and
water bodies. Five urban scenes within the study area were selected to extract spatial and
spectral attributes of urban features. These urban scenes include the residential areas of
Zoonnebloem, Vredelhoek, Oranjezicht, the Company’s Garden, Woodstock, and district
six suburbs.

3.2. Feature Selection and Extraction

The satellite image covering the study area was segmented at six distinct scale param-
eters using the multi-resolution segmentation algorithms in eCognition software version
10.3, with varying color factor weights. The choice of the software eCognition was mainly
based on the unavailability of any other object-based image analysis software packages
in the laboratory made available to conduct our experiments. The multi-resolution seg-
mentation algorithm in eCognition merges adjacent pixels of similar spectral brightness to
form larger, internally homogeneous segments that are clearly distinguishable from their
respective neighbors. The process stops when the set homogeneity criteria through the
scale parameter are achieved [37]. It has been reported in the work of [38] that beyond the
scale parameter of 40 up to 100, the number of object segments becomes more stable when
image segmentations are conducted with optimal parameters. Following this, we selected
the first segmentation parameter to be 50 and extended the range by incrementing by 20
until the scale parameter of 150, resulting in six segmentation scale parameters, namely
50, 70, 90, 110, 130, and 150, respectively. Each scale parameter was used to perform 8
segmentations with various color factor weights ranging from 0.2 to 0.9, making a total of
48 segmentations so that the various scale parameters could be analyzed at different color
factor weights. During these preliminary segmentations, a weight of one was given to each
spectral band of the imagery in order to equally retain the various spectral information
offered by each individual band. From the resulting segments, unique spectral brightness
measures describing the various objects were collected at each segmentation level. In
addition to the spectral brightness measures, area measures were also collected. Forty-eight
(48) image segments were carefully selected per segmentation level, totaling 2160 samples
across all the segmentation levels in this study.

3.3. Image Variance and Spatial Autocorrelation Modeling

To evaluate the intra-segment homogeneity, we first calculated the image variance
using a measure we denoted “standard deviation” image variance due to the closeness of
its formulation to that of the traditional standard deviation measure. The model produces
higher values for segments with low internal homogeneity, while low values of the measure
would indicate segments with high internal homogeneity. The latter hypothesis fits what is
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generally accepted as a good image segmentation outcome. The proposed image variance
model was formulated as follows:

δVar =
∑n

i=1

√
(ai − a)2

n
∑

i=1
ci

(9)

where the quantity
n
∑

i=1
ci is the sum of the area measures of segments at a given segmen-

tation level. The variable ai is the brightness value of a segment of interest i, while the
quantity a is the mean brightness value of the image at a given segmentation level. The

measure
√
(ai − a)2 in the expression minimizes any numerical instability that may be

introduced by segments of very low brightness values. It can be observed from (9) that
while smaller homogeneous objects are being merged, there is an increase in the quantity in
the denominator of the model, leading to a decrease in intra-segment image variance. The
model ensures a positive, numerically stable intra-segment homogeneity measure. Instead
of using the Moran’s index formulation in Equation (2), we propose the following spatial
autocorrelation coefficient index that we denoted ∂MI, which is formulated as follows:

∂MI =

n
∑

i=1

n
∑

j=1

(
∑(xi − xi)× ∑

(
xj − xj

)
− ∑ wij(xi − xi)

(
xj − xj

))
n
∑

i=1

n
∑

j=1

((
∑ wij

)2 − ∑ wij

) (10)

where xi represents the spectral brightness of a segment of interest i, and xj is the nearest
neighbor segment to the segment of interest i. The quantities xi and xj represent the mean
brightness measures of all the segments of interest and those of all the segments spatially
connected to the segments of interest, respectively. The parameter n represents the total
number of segments at a given segmentation level. The parameter wij represents the spatial
distance weight between segments of interest and their respective nearest neighbors, and
the weight is assigned a value of one when the segment of interest is spatially connected to
another segment, while an assignment of a value of zero indicates that there is no spatial
connection between the segments. High values of the spatial autocorrelation coefficient
index ∂MI indicate a high inter-object heterogeneity in contrast to the traditional Moran’s
Index, while low values of the index would indicate a low inter-segment heterogeneity
between adjacent segments.

A high value of the spatial autocorrelation coefficient index and a low value of the
image variance are required to achieve segments with low internal variance and high
heterogeneity. One advantage of the above-proposed model is that it enforces two spatial
autocorrelation constraints. The first constraint is enforced through the parameter of
the distance matrix wij present in the denominator of the expression. Since each pixel
within the image is assigned a spatial location, the difference between the product terms in
the numerator enforces a second spatial autocorrelation constraint between two adjacent
segments i and j. The second advantage of the adopted measure is that when more
objects are merged, the distance difference in the denominator decreases in contrast to
the traditional Moran’s index, resulting in an increase in the index. This association of
constraints imposed by models in (9) and (10) prevents larger heterogeneous objects from
being merged towards the end of the segmentation process; in other words, only larger
homogeneous segments are being merged towards the end of the segmentation process.

To facilitate the graphical projection of image variance and spatial autocorrelation
measures, we adopted the normalization function proposed in Equation (4). The motivation
for this choice was driven by the fact that the model proposed in [21] gives dominance to
the image variance against the Moran index measure since the normalization of the variance
would lead to larger values due to the small numerical magnitude of the denominator. In
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addition, the model proposed to normalize Moran’s index prevents the index from reaching
certain numerical values, and there are no clear justifications for the increment of Moran’s
index value by a unit measure or why the obtained value is divided by two. From the
functions in (9) and (10), we computed a heterogeneity index by modifying the numerator
of the expression in (5) since the aim of the parameter selection strategy is to maintain a
high value of the spatial autocorrelation measure and a low image variance measure, which
cannot be achieved through the original formulation. The motivation to not use the model
proposed by [32] is that there are no clear numerical rules for the assignment of numerical
values to the weighting parameter α when performing more than two segmentation levels,
and this can lead to inaccurate identification of optimal segmentation parameters. For a
four-level segmentation, the authors, for instance, assigned weights of 4, 2, 0.5, and 0.25 to
the parameter at the first, second, third, and fourth segmentation levels, respectively, while
for a three-level segmentation, weights of 3, 1, and 0.33 were assigned to the parameter
at the third, second, and third segmentation levels, respectively. The other limitation of
their global score model is that even segments with high image variance can undermine
the robustness of the function since a high value of the function would still be achieved.
For this study, the following modified heterogeneity model was used:

H =
∂MInorm − δVarnorm

∂MInorm + δVarnorm
(11)

The proposed heterogeneity function returns values close to 1 for internally homo-
geneous objects that are distinct from their surrounding neighbors, while values of the
index nearing zero would indicate segments internally heterogeneous. Table 1 presents
a subset of estimated normalized image variance and spatial autocorrelation measures.
These measures were estimated across the six segmentation scales with various color factor
weights ranging from 0.2 to 0.9.

Table 1. A subset of randomly recorded normalized estimates of image variance and spatial autocor-
relation measures across the 48 segmentation sublevels.

Normalized Image
Variance

Normalized-Spatial
Autocorrelation

Normalized Image
Variance

Normalized-Spatial
Autocorrelation

0.761112 0.001389 0.002861 0.027271
0.279703 0.389601 0.548032 0.894092
0.293666 0.311528 0.270968 0.182229
0.989752 0.455224 0.394835 0.198282
0.810025 0.201453 0.654612 0.384949
0.150011 0.136200 0.186838 0.632118
0.816667 0.551694 0.156677 0.093594
0.001906 0.420993 0.698041 0.076852
0.308909 0.006773 0.446272 0.874585
0.645545 0.085821 0.291909 0.108591
0.498977 0.089321 0.349643 0.025632
0.003216 0.986762 0.356380 0.230527
0.789301 0.326693 0.789180 0.521224
0.681493 0.021069 0.085201 0.746331
0.383669 0.001462 0.858952 0.787381

3.4. Image Variance Optimization

In order to refine the large number of records of normalized image variance and spatial
autocorrelation measures, we computed the average image variance at each individual
segmentation level with color factor weights ranging from 0.2 to 0.7. These estimated mean
values were useful in the optimization of the selection of segmentation scale parameters.
Table 2 presents the optimized image variance per segmentation scale as a function of color
factor weights.
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Table 2. Optimized image variance measures per segmentation levels at six segmentation scale
parameters.

Color Factor Weight Normalized-Image-Variance at
Scale Parameter 50

Normalized-Image-Variance at
Scale Parameter 70

Normalized-Image-Variance at
Scale Parameter 90

0.2 0.783333 0.677419 0.0027
0.3 0.216667 0.241935 0.529032
0.4 0.266667 0.003216 0.270968
0.5 0.975200 0.320297 0.354839
0.6 0.700000 0.789300 0.451613
0.7 0.150000 0.516129 0.154839
0.8 0.816667 0.612903 0.109677
0.9 0.001900 0.000112 0.724100

Color Factor Weight Normalized-Image-Variance at
Scale Parameter 110

Normalized-Image-Variance at
Scale Parameter 130

Normalized-Image-Variance at
Scale Parameter 150

0.2 0.209091 0.370968 0.248120
0.3 0.372727 0.479839 0.067669
0.4 0.363636 0.657258 0.218045
0.5 0.554545 0.366935 0.961840
0.6 0.190909 0.110956 0.090226
0.7 0.875200 0.821900 0.300752
0.8 0.010200 0.306452 0.002159
0.9 0.281818 0.173387 0.045113

Image variance measures give a first indication of the overall internal homogeneity
of image segments at a given segmentation level. This first indication can be further
analyzed in order to determine the overall internal homogeneity percentage carried by
individual segments at a given segmentation level. The overall internal homogeneity
percentage carried by each image object increases inversely proportional to the image
variance measure. To quantify such a measure an inverse ratio of the image variance
could be used; however, due to the normalization of the later measure, this would not
yield realistic results. Instead, we proposed a homogeneity proportion evaluation model
that returns high values when the intra-segment image variance decreases at a given
segmentation level. The formulation of the proposed model is as follows:

Proportion of image segments′ internal homogeneity =

(
n
∑

i=1
ci ∩ ∑n

i=1

√
(ai − a)2

)
n
∑

i=1
ci

(12)

where ci is the sum of area measures of all segments at a given segmentation level, ai is the
brightness of a segment of interest i, a is the mean brightness of the image, and n is the
total number of image segments at a given segmentation level. The estimated metrics were
further normalized using the model adopted in (4), and Table 3 presents image segments’
homogeneity levels per segmentation scale parameter as a function of color factor weights.

Table 3. Global homogeneity levels of segments per segmentation level.

Color Factor Weight Proportion of Intra-Segment
Homogeneity at Scale Parameter 50

Proportion of Intra-Segment
Homogeneity at Scale Parameter 70

Proportion of Intra-Segment
Homogeneity at Scale Parameter 90

0.2 22% 32% 99%
0.3 78% 76% 47%
0.4 73% 98% 72%
0.5 03% 68% 64%
0.6 30% 21% 54%
0.7 85% 48% 84%
0.8 18% 39% 89%
0.9 97% 98% 27%
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Table 3. Cont.

COLOR Factor Weight
Proportion of Intra-Segment

Homogeneity at Scale Parameter
110

Proportion of Intra-Segment
Homogeneity at Scale Parameter

130

Proportion of Intra-Segment
Homogeneity at Scale Parameter

150

0.2 79% 62% 75%
0.3 62% 52% 93%
0.4 63% 34% 78%
0.5 44% 63% 03%
0.6 80% 88% 90%
0.7 12% 17% 69%
0.8 98% 69% 98%
0.9 71% 82% 95%

Figure 2 shows the variation of image variance measures per segmentation scale
parameter as a function of color factor weights. Figure 2A suggests that the scale parameter
of 50 did not produce meaningful image segments if associated with color factor weights
of 0.2, 0.4, and 0.7. This failure of the image variance curve to produce a global minimum
point at each of these segmentation levels could be due to the fact that image segments
produced at these segmentation levels did not exhibit strong internal homogeneity, with the
measures estimated at 22%, 78%, and 85%, respectively. In contrast, the global minimum
characterizing the image variance curve at the color factor weight of 0.9 is an indication
of very good segment quality. Image objects produced at this segmentation level hold an
internal homogeneity level of about 97%. Associating the scale parameter of 50 with the
color factor weight of 0.5 resulted in the poorest image segments’ quality, as the segments at
this segmentation level exhibit the lowest internal homogeneity level at 3%. Associating the
color factor weights of 0.4 and 0.9 with the scale parameter 70 produced very good quality
segments, as illustrated by the global minimum points achieved by the image variance
curve at these two segmentation levels in Figure 2B. These global minimum points are
characteristic of internal homogeneity levels reaching values close to 98%, respectively. In
contrast, the association of the scale parameter 70 with the color factor weight of 0.6 resulted
in the poorest segment quality, as illustrated by the global maximum achieved by the image
variance curve at this segmentation level. This global maximum point originates from the
fact that image segments produced at this segmentation level are only characterized by 2%
internal homogeneity. The association of the scale parameter of 90 with the color factor
weight of 0.9 resulted in the poorest image segment quality. This poor segmentation quality
is illustrated by the global maximum point achieved by the variance curve, as revealed
in Figure 2C. At this global maximum point of the curve, image segments only achieved
an internal homogeneity level of 27%. The association of the scale parameter of 90 with
the color factor weight of 0.2 produced very good image segment quality, as illustrated
by the global minimum of the curve achieved at this segmentation level. This global
minimum is a description of the high internal homogeneity level of segments produced at
this segmentation level, which reached a value of 98%. Associating a color factor weight of
0.7 with the scale parameter of 110 produced the poorest segment quality, as illustrated by
the global maximum point of the variance curve in Figure 2D. At this segmentation level,
segments only reached an internal homogeneity level of 12% at the end of the segmentation
process. However, an adjustment of the color factor to 0.8 enabled us to increase the internal
homogeneity of image segments to a level close to 98%. As a consequence of this result,
the image variance curve decreased to its global minimum value. In contrast, any color
factor weights associated with the scale parameter of 130 failed to produce meaningful
image segments. The greatest internal homogeneity level achieved by image segments
only occurred with a color factor weight of 0.6, although the achieved homogeneity level of
89% remains low for accurate urban mapping applications. The poorest segment quality
was achieved when associating this scale parameter with the color weight of 0.7, and this
resulted in the majority of segments only reaching a homogeneity level of about 12%, as
illustrated by Figure 2E. A similar result was found when associating the color factor weight
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of 0.5 with the scale parameter of 150. The global maximum point of the curve achieved at
this segmentation level was a consequence of image segments only achieving 3% internal
homogeneity. However, adjusting the color factor weight to 0.8 improved segment quality,
as the majority of image segments achieved a homogeneity level of about 98% at the end of
the segmentation process.
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3.5. Image Spatial Autocorrelation Optimization

Spatial autocorrelation measures were computed using Equation (10), and mean
values were estimated per segmentation level. The computed data were organized into
48 groups, corresponding to individual segmentation levels. Table 4 presents 48 mean
spatial autocorrelation measures computed at each segmentation scale parameter per color
factor weight.
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Table 4. Estimates of mean spatial autocorrelation measures.

Color Factor Weight
Normalized-Spatial

Autocorrelation-at-Scale
Parameter 50

Normalized-Spatial
Autocorrelation-at-Scale

Parameter 70

Normalized-Spatial
Autocorrelation-at-Scale

Parameter 90

0.2 0.001343 0.089300 0.023700
0.3 0.390010 0.025632 0.940927
0.4 0.311528 0.986700 0.182229
0.5 0.455224 0.230520 0.198283
0.6 0.201453 0.326693 0.384950
0.7 0.136200 0.521220 0.632119
0.8 0.551694 0.021000 0.093594
0.9 0.420993 0.746331 0.076852

Color Factor Weight
Normalized-Spatial

Autocorrelation-at-Scale
Parameter 110

Normalized-Spatial
Autocorrelation-at-Scale

Parameter 130

Normalized-Spatial
Autocorrelation-at-Scale

Parameter 150

0.2 0.006773 0.025130 0.215200
0.3 0.874585 0.045347 0.803675
0.4 0.001462 0.042762 0.816430
0.5 0.085822 0.142021 0.783985
0.6 0.108592 0.989610 0.850612
0.7 0.787381 0.841753 0.820445
0.8 0.988785 0.943974 0.998540
0.9 0.003337 0.400006 0.944788

Figure 3 presents the fluctuation of the spatial autocorrelation measure at various scale
parameters as functions of color factor weights. The association of the scale parameter of
50 with any color factor weights was revealed to not produce a good spatial separation
between segments, as the highest dissimilarity level achieved by image segments only
reached 0.552, which corresponds to about 55% dissimilarity. However, the poorest inter-
segment dissimilarity measure was achieved when associating the scale parameter of 50
with the color factor weight of 0.2. At this segmentation level, image segments only reached
a dissimilarity level of 0.13%, as illustrated by the global minimum point achieved by the
spatial autocorrelation curve. This is an indication that at this segmentation level, there
is still a large number of image segments sharing similar spectral properties that can be
merged at higher segmentation levels. An adjustment of the color factor weight to 0.4 and
its association with the scale parameter of 70 produced image segments that are highly
distinct from one another, as illustrated by the global maximum point achieved by the
spatial autocorrelation curve in Figure 3B. At this segmentation level, image segments
achieved a dissimilarity level of about 98%. In contrast, the association of this scale
parameter with the color factor weight of 0.8 resulted in image segments reaching their
lowest dissimilarity level at 2.10%. Similar poor segmentation performance was achieved
when the scale parameter of 90 was associated with the color factor weights of 0.2 and
0.9. At these segmentation levels, the spatial autocorrelation curve reached its two lowest
points. Image segmentation at these levels produced segments that were spatially distinct
from one another only at 2.37% and 7.68%, respectively. However, setting the color factor
weight to 0.3 enabled us to achieve segments that are highly distinct from one another,
as illustrated by the global maximum achieved by the spatial autocorrelation curve in
Figure 3C. At this segmentation level, the segments produced achieved a dissimilarity level
of about 94%. The association of the scale parameter 110 with the color factor weights of
0.2, 0.4, and 0.9 did not produce image segments that are distinct enough from one another
since the spatial autocorrelation curve achieved its lowest values as illustrated in Figure 3D.
Image segments produced at these segmentation levels only achieved dissimilarity levels of
0.67%, 0.15%, and 0.33%, respectively. In contrast, an adjustment of the color factor weight
to 0.8 enabled us to achieve image segments that are highly distinct from one another with
a dissimilarity level close to 98%. The scale parameter of 130 failed to produce very good
quality segments when associated with color factor weights of 0.2 and 0.4, as the spatial
autocorrelation curve in Figure 3E achieved its lowest values at these segmentation levels.
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Image segments produced at these segmentation levels only achieved dissimilarity levels
of about 2.51% and 4.28%, respectively. In contrast, an adjustment of the color factor weight
to 0.6 enabled the improvement of the quality of image segments, and segments produced
at this segmentation level achieved a dissimilarity measure of about 98%. Figure 3E shows
that setting the color factor weights to 0.3, 0.4, and 0.6 only enabled us to achieve the local
maximum points of the curve. At these segmentation levels, image segments were found
to be distinct from their nearest neighbors at 80%, 82%, and 85%, respectively. However,
an adjustment of the color factor weight to 0.8 enabled us to achieve image segments that
were about 98% distinct from their nearest neighbors.
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3.6. Segmentation Scale Parameter Optimization

From the segmentation results analyses, it was revealed that the scale parameter of
50, when associated with the color factor weight of 0.9, produced highly homogeneous
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image segments. However, the inter-segment dissimilarity level of these segments was
revealed to be very low at a level of 42%. The association of the scale parameter of 70
with color factor weights of 0.4 and 0.9 produced image segments with very high internal
homogeneity levels at about 98% and dissimilar to their nearest neighbors at 98% and
74%, respectively. From these results, it appears that the scale parameter of 70 could be
suitable for the optimal segmentation of a certain type of urban feature. Furthermore, it
was revealed that the scale parameter of 90 associated with the color factor weight of 0.2
produced image segments that were 99% internally homogeneous, but these segments
were revealed to be dissimilar to their nearest neighbors only at 2%, indicating that they
still share 98% of their spectral attributes with their surroundings. It can be suggested that
this scale parameter is not suitable for the optimal segmentation of urban scenes within
the study area. The scale parameter of 110 associated with the color factor weight of 0.8
produced image segments that were internally homogeneous at 98% and dissimilar to
their nearest neighbors at 98%. These results suggest that the scale parameter of 110 can
drive an optimal segmentation process that will accurately delineate a certain type of
urban feature within the study area. The scale parameter of 130, in association with the
color factor weight of 0.6, produced image segments that were distinct from their nearest
neighbors at 98% but internally homogeneous only at 89%, and this can suggest that the
scale parameter of 130 may not produce good segment delineation if used in our study
area. Finally, the scale parameter of 150 associated with the color factor of 0.8 was found to
produce image segments that were internally homogeneous at 98% and distinct from their
nearest surrounding neighbors at about 99%. From these later results, it can be suggested
that the scale parameter of 150 could optimally segment a certain type of urban object
within the study area.

Consolidating these results in Table 5 enables us to compute the segmentation hetero-
geneity measures through Equation (11). The estimated heterogeneity function enables us
to confirm the authenticity of the potential ideal segmentation scales pre-identified above.
High values of the function confirm that produced segments are internally homogeneous
and highly heterogeneous from one another, while low values of the index indicate the
presence of segments that are not internally homogeneous, thus not highly heterogeneous
from one another.

Table 5. Computed optimal heterogeneity function measures per scale parameter.

Scale Parameter Lowest Normalized Image
Variance Measures

Largest Normalized Spatial
Autocorrelation Measures Heterogeneous Function

50 0.150000 0.551694 0.572463
70 0.003216 0.986700 0.993503
90 0.109677 0.940927 0.791211

110 0.010200 0.988785 0.979579
130 0.110956 0.989610 0.798366
150 0.002159 0.998540 0.995685

Figure 4 presents the heterogeneity function curve, showing low and high points.
The identified peak points indicate the optimal segmentation scale parameters suitable
to perform segmentations of the satellite image and achieve good-quality segments. It
can be observed that the scale parameters of 70, 110, and 150 would produce the best
image segment quality as they are associated with peaks of the heterogeneity curve, and
this consolidates our earlier assumptions on the suitability of these segmentation scale
parameters to successfully segment urban features within the study area. In contrast, the
scale parameters of 50, 90, and 130 did not qualify as optimal segmentation scale parameters
as they failed to produce peaks of the heterogeneity curve.
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Figure 4. Heterogeneity function measures revealing three optimal segmentation scale parameters.

4. Results and Discussion

Figure 5 shows that the image variance curve follows a very regular fluctuation
towards the end of the segmentation, following a sinusoidal-like shape, revealing the
robustness of the new proposed image variance model. This result is in line with the
statement of [22], who are of the view that a good image variance measure should produce
a curve that follows a regular fluctuation shape towards the end of the segmentation. These
results are also in line with [23], who argued that a good image variance model should not
produce an increase in the image variance towards the end of the segmentation.
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Figure 5. Overall assessment of the quality of the image segmentation process.

The fact that the curve of spatial autocorrelation measures follows a nearly linear trend
towards the end of the segmentation shows that segments have reached some status of
internal stability, which means that large distinct objects are not being forced to merge
towards the end of the segmentation process, in contrast to current segmentation parameter
selection methods that rely on the weighted image variance and Moran’s index. These
observations indicate that the proposed image variance and spatial autocorrelation for-
mulations are suitable for urban areas, which are very heterogeneous and complex areas,
and this is in line with the suggestions made by [21]. Figure 6 illustrates the segmentation
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of a built-up scene at a scale parameter of 50 (A) and a scale parameter of 70 (B). It can
be observed that the segmentation at scale 50 has over-segmented most of the built-up
features, including regular-sized buildings as well as large buildings and some trees near
buildings. In contrast, the segmentation at a scale parameter of 70 has improved the delin-
eation errors, and all buildings have achieved outlines that are very close to their real-world
measurements. This result is coherent with earlier findings by [39], who also found the
scale parameter of 70 to be suitable for the segmentation of standard sized and slightly
large buildings.
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Figure 6. Subsets of regular and large building segmentation results from the satellite imagery.
(A) over-segmentation results at scale parameter 50, and (B) optimal segmentation results at scale
parameter 70.

Figure 7 shows the segmentation of a large parking lot at scale parameter 90 (A)
and the segmentation of the same area at scale parameter 110 (B). It can be observed
that the segmentation at scale parameter 90 produced internally homogeneous objects;
however, many of these objects seem to still share spectral similarities and thus are not
highly heterogeneous to one another, and this is in line with the earlier results found in
Figure 5, which show low heterogeneity between segments at this specific scale parameter.
However, the segmentation at a scale parameter of 110 shows an improvement in inter-
segment heterogeneity as smaller segments that share similar spectral attributes were
successfully merged to produce the full extent of the parking lot. It can also be observed
along the diagonal from the top right corner and near the bottom of the image that the
scale parameter 110 achieved a good segmentation of elongated urban features, particularly
roads that reached near real-world boundaries. However, it is revealed that the majority
of standard-sized buildings were under-segmented at this scale parameter. This result
confirms an earlier observation by [39], who suggested that scale parameters larger than
100 are not generally suitable for standard and small-sized buildings.

Figure 8 shows the segmentation results of a large green sports field at scale parameters
130 (A) and 150 (B). Unlike the scale parameter of 90, the scale parameter 130 shows some
high heterogeneity between the resulting small segments, as most of the segments at this
specific scale parameter seem slightly different in terms of spectral brightness. However,
a visual examination of individual segments reveals that many of these segments are not
internally homogeneous as they seem to carry more than one color tone and this visual
result confirms the earlier observation in Figure 5, where distinct segments produced at
scale parameter 130 were associated with a high internal segment variance.
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Figure 8. Segmentation of a large sports field from satellite imagery. (A) shows over-segmentation
of the sports field at scale parameter 130 and (B) optimal segmentation of the sports field at scale
parameter 150.

Figure 9 shows the segmentation of a large swimming pool structure at scale parameter
130 (A) and at scale parameter 150 (B). As pointed out earlier, segments produced at scale
parameter 130 are not yet internally stable in terms of brightness, and this can be extended to
the tree cover and some green areas around the swimming pool. However, a segmentation
at scale parameter 150 can stabilize the internal variance of the image by further merging
smaller segments with the larger ones, and the entire outline of the swimming pool area,
the blue roofing structure on the side of the swimming pool as well as some nearby tree
patches, were successfully reconstructed.
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Figure 9. Segmentation of a large swimming pool and its surroundings. In (A), the over-segmentation
of the swimming pool structure at scale parameter 130 and (B) the optimal segmentation of the
swimming pool structure at scale parameter 150.

The segmentation parameters evaluation strategy proposed in this study was further
tested on a 0.5 m resolution color aerial photograph covering the same study area as
the satellite GeoEye imagery. Radiometric, atmospheric, and geometric corrections were
already performed on the imagery acquired from the department of rural development,
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agriculture and land reform in Pretoria. Three urban scenes were selected from the imagery
and subjected to several segmentation tasks at varied scale parameters. Figure 10 illustrates
subsets of segmentation results achieved with the scale parameters 40 (B), 50 (C), and 70 (D).
The segmentation results in Figure 10B and 10C show poor delineation of building units
that were subjected to over- and under-segmentation errors. However, the segmentation
result in Figure 10D shows successful delineations of these building units.
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Figure 10. Subsets of image segmentation results performed with scale parameters of 40, 50, and
70 on the aerial photograph. Figure (A) shows the original scene; (B) shows the over-segmentation
of building units at scale parameter 40; (C) shows the over- and under-segmentation of building
units at scale parameter 50; and (D) shows the improved segmentation of building units at scale
parameter 70.

Figure 11 presents subsets of segmentation results obtained from the partitioning of the
aerial photograph at scale parameters 90 (B), 100 (C), and 110 (D). The result in (D) shows a
successful delineation of roads, while the results in (B) and (C) reveal over-segmentation
occurrences on the linear urban objects.

Figure 12 shows subsets of segmentation results for urban vegetation cover at scale
parameters 120 (B), 130 (C), and 150 (D). The results reveal that scale parameters 120 and 130
could not produce meaningful image segments of urban trees. However, a segmentation at
the scale parameter of 150 successfully merged small tree patches into larger homogeneous
tree segments that are distinct from their nearest neighbors.
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roads segmented with scale parameters 90, 100, and 110. In (A), the figure shows the original scene;
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(D) shows an optimal segmentation of roads at scale parameter 110.
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Figure 12. Subsets of segmentation results performed on the aerial photograph and showing urban
trees segmented with scale parameters of 120, 130, and 150. Figure (A) shows the original scene;
(B) and (C) show over-segmentation results of urban vegetation at scale parameters 120 and 130,
respectively; and (D) shows optimal segmentation of urban vegetation at scale parameter 150.
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5. Accuracy Assessment

The segmentation accuracy assessment was performed through five quantitative
metrics, namely the quality rate (QR), the area fit index (AFI), the over-segmentation (OS),
the under-segmentation (US), and the root mean square error (RMS). The quality rate
error quantifies how large the under-segmentation error is [40]. Small values of the measure
are achieved in an optimal image segmentation where the outlines of segments are very
close to their real-world references. The Area Fit Index quantifies the over-segmentation
error, and negative values of the index indicate a one hundred percent overlap between the
reference polygon and its corresponding segment image and an overall under-segmentation
of the image. Values of the AFI greater than zero generally describe an overlap of less
than 100 percent between the reference polygon and its corresponding segment. The
under-segmentation error (US) describes the amount of over-segmentation in the image,
while the over-segmentation error (OS) characterizes the amount of under-segmentation to
which individual segments were subjected. To compute these five assessment measures, we
manually digitized some buildings, roads, parking, and swimming pool polygon samples
using ArcGIS version 10.8. Area measures of the digitized polygons were converted into
pixels. These measures were used with the associated segment area measures to compute
the quality rate, area fit index, over and under-segmentation errors, as well as the root
mean square error. A total of 390 image segments were carefully selected within the study
area, with 65 segment polygons considered per urban scene. Table 6 shows computed
values of quality rate, area fit, under and over-segmentation error indices, as well as the
root mean square error of six state-of-the-art segmentation evaluation approaches against
our proposed strategy.

From the second column of Table 6, it can be observed that the segmentation parameter
evaluation strategies proposed by [41] and that proposed by [16] produced the largest
quality rate errors, followed by the strategies proposed by [5,24,42,43]. However, our
proposed segmentation evaluation strategy achieved the lowest quality rate error, and this
implies that the overall under-segmentation to which the various image segments were
subjected is very negligible [40]. When it comes to the Area Fit Index, the segmentation
parameter evaluation method proposed by [41] produced a positive measure of the error,
which indicates that most image segments were subjected to over-segmentation. The
evaluation strategies proposed by [42,43] and our proposed method all achieved negative
index values. This indicates that the majority of image segments were subjected to under-
segmentation errors. However, in terms of the magnitude of the error, our proposed
strategy achieved the best results at 0.006. The largest under-segmentation errors were
achieved through the segmentation parameter selection methods proposed by [5,24,42–44],
respectively. The parameters evaluation strategy proposed by [41] achieved the lowest
under-segmentation error at 0.005, followed by our proposed strategy at 0.008. This means
that some image segments in both evaluation methods were subjected to over-segmentation.
A look at the Area Fit Index indicated that the amount of over-segmentation is more
prominent in the strategy proposed by [41] than that achieved through our proposed
strategy [45]. An observation of the fifth column of Table 6 indicates that the newly
proposed segmentation parameter evaluation produced the lowest over-segmentation
error, followed by the strategies proposed in [41,42]. This means that the amount of under-
segmentation error under which image segments were subjected in our strategy was very
negligible, at about 0.782% of the size of the reference polygons, which is a very good
and acceptable error. In terms of overall performance, the last column confirms that the
newly proposed segmentation parameter evaluation strategy produced the lowest over
and under-segmentation errors.
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Table 6. Average estimates of five image segmentation accuracy assessment indices from six state-of-
the-art methods.

Segmentation Assessment Metrics QR AFI US OS RMSE

Yang et al., (2014) [24] 0.257700 ------- 0.220500 0.127550 0.180000
El-Naggar, (2018) [42] 0.386800 −1.062000 0.329000 0.058000 0.273000

Vamsee et al., (2018) [43] 0.306700 −0.145000 0.311700 0.295000 0.368000
Wang et al., (2019) [5] 0.314500 ------- 0.148200 0.191500 0.171000

Norman et al., (2020) [41] 0.483200 0.004580 0.005000 0.009730 0.014000
Dao et al., (2021) [16] 0.490000 ------- 0.080000 0.970000 0.688000
He et al., (2024) [44] 0.321100 ------- 0.238000 0.246900 0.342900

The proposed method 0.003910 −0.005740 0.007780 0.007820 0.005510

6. Conclusions

Image segmentation remains a very important step in object-based image analy-
sis. However, the development of strategies for selecting optimal segmentation-scale
parameters for multi-resolution image segmentation is still ongoing and remains a great
challenge. This study proposed an unsupervised strategy for the selection of optimal
segmentation-scale parameters and color factor weights. The new strategy presents alter-
native image segmentation evaluation paradigms in addition to those presented in the
works of [5,16,25,41–44]. The proposed robust, repeatable strategy for optimal selection of
segmentation parameters (OSSP) consists of three modules. The first module, based on the
concept of standard deviation, computes non-weighted image variance to keep the measure
independent from area-size errors that may originate from over- and under-segmentation
of the imagery. The second module partially relies on the current formulations of Moran’s
index and the correlation coefficient to evaluate the spatial autocorrelation of the image
in order to reinforce the separation of internally distinct objects during the segmentation
process. When the spectral distance between objects increases, the measure levels off in
opposition to the traditional trend of this measure. For our measure, the heterogeneity be-
tween objects would always increase when the spectral distances between objects increase,
which is best for good segmentations. The third module consists of a heterogeneity index
that differs from current formulations in terms of the numerator. This module can find
multiple optimal segmentation scale parameters as well as associated color factor weights
that would guarantee a good delineation of the spatial outlines of the resulting image
segments. The effectiveness of the optimal selection of segmentation scale parameters
strategy in extracting distinct segments of land use and land cover from multispectral
imagery was validated with a GeoEye multispectral image and a color aerial photograph.
The optimal segmentation scale parameters obtained from the proposed OSSP strategy
could successfully outline land use and land cover of various sizes, including small and
standard-sized buildings, large buildings, parking areas, roads, water bodies, and urban
trees. Although the proposed approach achieved successful segmentations for most urban
land use and land cover features, some objects were slightly over and under-segmented, but
these errors were quantified better than some of the state-of-the-art existing methods. Minor
under-segmentation in urban mapping using object-based image analysis is preferable,
especially when dealing with very complex environments such as urban environments.
These minor under-segmentation errors can generally be corrected through manual re-
segmentation and merging. Associating the obtained individual optimal segmentation scale
parameters to urban features of interest within the imagery was performed through visual
observations. Our evaluation strategy produced image segments with outlines very close
to their real-world characteristics. Standard-sized building objects were better delineated
using low color factor weights, which can be translated to a higher shape compactness
measure. This was observed at a scale parameter of 70 with a color weight of 0.4. However,
when increasing the segmentation scale parameter measures, larger color weights seem to
play a more significant role than shape compactness in producing image segments of good
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quality, as observed at scale parameters 110 and 150. The proposed segmentation parameter
selection strategy successfully brought out three inherent optimal scale parameters suitable
to segment the high-resolution multispectral GeoEye image and the aerial photograph,
and the tool has the potential to efficiently improve knowledge-based image analysis of
complex urban areas.

It was found in this study that the internal homogeneity of image segments does not
necessarily increase with an increase in segmentation-scale parameter values or color factor
weights. The study found that small values of the color factor weight can optimize the
performance of large-scale parameters in opposition to larger weights of the parameter and
vice versa. Large color factor weights were also found to optimize the performance of large
segmentation scale parameters, and it can be argued that medium-range scale parameters
would perform very well with large shape compactness/small color factor weights for the
segmentation of urban scenes. In addition, large segmentation-scale parameters would
perform very well with larger color factor weights or smaller shape compactness values. It
was also found that the number of spectral bands carried by the imagery also affects the
segmentation outcomes, and this finding came from the visual comparison of segmentation
results from both the satellite image and the aerial photograph, as some minor over- and
under-segmentation occurrences were observed on the aerial image segmentation results
while they were inexistent on the satellite image segmentation results. Further investigation
of this study could involve an urban environment that contains informal settlements and
a large amount of vegetation cover and the consideration of a multispectral image with
more spectral bands to assess the performance of the newly proposed modules in handling
larger spectral variability. Other segmentation parameters, such as shape compactness
and an extension of the range of scale parameters, could also be considered in further
investigations. Combining the developed strategy with the concepts of deep and machine
learning could also be investigated for future works. To improve the speed of selection
of optimal segmentation parameters, an automated heterogeneity graph interpretation
algorithm could also be developed. This study did not directly focus on image classification
assessment; however, there is a direct implication between improvements in image segmen-
tation quality and image classification results. It has been advocated that improvements in
image segmentation quality would result in improved image classification outcomes [46].
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