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Abstract: Background: Currently, discriminating Iron Deficiency Anemia (IDA) from other anemia
requires an expensive test (serum ferritin). Complete Blood Count (CBC) tests are less costly and more
widely available. Machine learning models have not yet been applied to discriminating IDA but do
well for similar tasks. Methods: We constructed multiple machine learning methods to classify IDA
from CBC data using a US NHANES dataset of over 19,000 instances, calculating accuracy, precision,
recall, and precision AUC (PR AUC). We validated the results using an unseen dataset from Kenya,
using the same model. We calculated ranked feature importance to explain the global behavior of the
model. Results: Our model classifies IDA with a PR AUC of 0.87 and recall/sensitivity of 0.98 and
0.89 for the original dataset and an unseen Kenya dataset, respectively. The explanations indicate
that low blood level of hemoglobin, higher age, and higher Red Blood Cell distribution width were
most critical. We also found that optimization made only minor changes to the explanations and
that the features used remained consistent with professional practice. Conclusions: The overall high
performance and consistency of the results suggest that the approach would be acceptable to health
professionals and would support enhancements to current automated CBC analyzers.

Keywords: explainable AI; biomedical data; blood disorders; anemia; ferritin; iron deficiency; iron
deficiency anemia; machine learning; SHAP

1. Introduction

It is currently unknown how well data from routine Complete Blood Count (CBC)
tests alone can be used to identify a common form of anemia (iron deficiency), potentially
replacing a more expensive test (serum ferritin) now used by experts for diagnosis. Here, we
address this question through a novel application of Machine Learning methods involving
model training and feature selection. We then apply methods for explaining the output
of Machine Learning models to reveal which aspects of the CBC results contribute most
to a diagnosis and to what extent methods meant to improve model performance impact
the role of different features. These additional tests allow us to confirm that the machine
learning model’s “reasoning” is consistent with clinical judgment. This use of explanatory
AI to show the impact of feature selection on feature importance is also unique to this study.

Anemia, defined by blood hemoglobin levels lower than specific age and gender
reference levels [1], is of global health concern affecting the health and productivity of pop-
ulations [2]. The 2023 Global Burden of Disease study estimated that the global prevalence
of anemia is about 24.5%, corresponding to about 1.98 billion people [2]. Iron deficiency
is a common, yet potentially preventable, cause of anemia because iron is an essential
nutrient for both the synthesis and functioning of hemoglobin [3]. Insufficient consump-
tion or malabsorption of dietary iron results in the reduced synthesis of red blood cells
and blood hemoglobin levels [1]. Thus, supplementation of iron is routinely practiced,
improving blood hemoglobin levels in populations where the prevalence of anemia is more
than 40% [1]. Although the most common cause of anemia has been iron deficiency, the
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deficiencies of other nutrients such as vitamin B12 (cyanocobalamin), vitamin B9 (folic
acid), genetic disorders of hemoglobin, and tropical diseases also contribute to anemia
prevalence [2,4]. Therefore, in addition to hemoglobin, the measurement of serum ferritin,
an indicator of body iron stores, is required to identify the cause of anemia, which can then
be treated with iron supplements [5]. However, the measurement of serum ferritin requires
additional blood processing and advanced immunological testing [5], which may not be
practical in many hospital/public health settings with limited resources.

Although serum ferritin is widely used to identify the cause of anemia [5], several
reports have suggested that Red Blood Cell (RBC) indices such as Red blood cell Distri-
bution Width (RDW), Mean Corpuscular Volume (MCV), and hemoglobin can be used
as a differential diagnostic tool for the identification of iron deficiency anemia [6–9]. The
current standard complete blood count (CBC) lab test, which is performed using automated
hematology analyzers, measures blood hemoglobin and multiple blood cell indices such as
mean corpuscular volume (MCV), packed cell volume (PCV), hematocrit (HCT), red blood
cell number (RBCs), red blood cell distribution width (RDW), platelet (PLT) count, and
data on total and differential white blood cells (WBC), neutrophils, and monocytes [6–9].
Therefore, it is theoretically possible to classify the type of anemia (whether it is due to iron
deficiency or not) based on CBC data alone. If this approach is successful and generalizable,
the model could eliminate the need for serum ferritin laboratory tests for IDA, and the
associated costs.

Machine learning (ML) algorithms are increasingly being used in medicine for the
classification of diseases, predicting the clinical outcome [10,11]. Indeed, many studies have
attempted to diagnose or classify anemia based on blood cell variables [12,13], demographic
variables [14,15], images of palm [16], conjunctiva, or fingertips [17–19], and sickle cell
anemia from images of blood smears [20], but all these studies were to diagnose anemia,
rather than IDA specifically. Some studies also reported differential diagnosis of IDA
and ß-thalassemia with high accuracy [12,21,22]. In the few other studies that include
IDA classification, either serum iron parameters or serum ferritin was used as features
along with CBC data [23–27]. However, a recent study reported the prediction of low
ferritin levels or IDA among adult anemic subjects (more than 18 years of age) in referred
lab tests with 90–98% specificity and sensitivity, using a random forest algorithm [28].
However, as suggested in a recent review [29], these models need to be validated in larger
datasets and across larger age and gender subgroups to show robust generalizability.
No prior studies have been shown to discriminate IDA effectively for a wide sample of
subjects using only features from the CBC alone. (See Supplementary Table S1 for more
information.) More importantly, in a medical setting, explaining the risk factors (features)
that contributed to a diagnosis of disease is of utmost importance to guide the clinician to
make informed decisions (and to trust the diagnosis if it was not anticipated). Explainable
AI (XAI) algorithms provide a useful interpretation of individual feature contributions to
the diagnostic model [30].

For this study, we used publicly available pooled survey data from the National Health
and Nutrition Examination Surveys NHANES (2003–2020) (https://wwwn.cdc.gov/nchs/
nhanes/Default.aspx accessed on 21 February 2024) conducted by the US Centers of Disease
Control and Prevention (CDC) [31], to test the performance of machine learning models
in discriminating between IDA and Non-IDA, where Non-IDA includes other causes of
anemia or no anemia. Further, we also handled the class imbalance (4.9% IDA (n = 972)
vs. 95.1% non-IDA (n = 19,203) and analyzed the feature contributions to the model.
Finally, we tested the generalizability of the model by validating it with data collected in a
different setting.

2. Materials and Methods
2.1. Data Source

The publicly available NHANES data of 2003–2004, 2005–2006, 2007–2008, 2009–2010,
2015–2016, and 2017–2020 pre pandemic data were used for this analysis, where CBC,
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serum ferritin, and demographic data are available. We examined data that included serum
ferritin, as we used it to determine a gold standard label for training and testing. (For the
survey between the years 2011 and 2013, serum ferritin data were not available, so those
data were excluded). After removing instances that did not meet the study criteria, as
described below, about 20,000 instances were available.

The demographic laboratory data (CBC and serum ferritin) were downloaded from the
NHANES (https://wwwn.cdc.gov/nchs/nhanes/Default.aspx accessed on 21 February 2024),
as .XPT files, transferred to a Jupiter notebook (v. 6.5.4), and combined using the pandas
library, which implements machine learning algorithms in Python (v. 3.10.11) [32]. To
preprocess the data, first the data were concatenated (all files of demography, CBC, and
serum ferritin), and then each file was merged based on SEQUENCE IDs (SEQN) into a
single data frame, to align the paired data of survey subjects across all the variables. The
results were then converted into a .csv file for further analysis. The demography, CBC, and
serum ferritin variable identifiers (column/variable names), units and their description are
given in Table 1.

Table 1. Names and description of variables’ units of demography, CBP, and serum ferritin variables.

Variable Description Units Range (Min, Max)

RIDAGEYR Age of the subject at the time of survey Years 1 to 60 years
RIAGENDR Gender of the subject Male 1, Female 2 None
RIDEXPRG Pregnancy status of the subject 1 for positive, 0 for negative None
LBXWBCSI White Blood Cell count 1000 cells/L 1.4, 23.4
LBXLYPCT Lymphocytes percentage % 4.2, 84.1
LBXMOPCT Monocytes percentage % 0.7, 40.4
LBXNEPCT Segmented neutrophils percentage % 2.4, 92.3
LBXEOPCT Eosinophils percentage % 5.4 × 10−79, 34.1
LBXBAPCT Basophils percentage % 5.4 × 10−79, 19.7
LBDLYMNO Lymphocyte count 1000 cells/µL 0.2, 12.4
LBDMONO Monocyte count 1000 cells/µL 5.4 × 10−79, 3.8
LBDNENO Neutrophil count 1000 cells/µL 0.2, 16.3
LBDEONO Eosinophil count 1000 cells/µL 5.4 × 10−79, 4.5
LBDBANO Basophil count 1000 cells/µL 5.4 × 10−79, 1.7
LBXRBCSI Red Blood Cell count 106 cells/µL 2.61, 7.33
LBXHGB Hemoglobin concentration g/dL 6.1, 18.1
LBXHCT Hematocrit % 20.5, 54.9
LBXMCVSI Mean Corpuscular Volume fL 35.4, 116.8

LBXMC Mean Corpuscular
Hemoglobin Concentration g/dL 25.2, 43.3

LBXMCHSI Mean Corpuscular Hemoglobin Pg 10.2, 56.2
LBXRDW Red Cell Distribution Width % 6.3, 36.5
LBXPLTSI Platelet count 1000/µL 4, 1021
LBXMPSI Mean Platelet Volume fL 5, 13.5
LBXFER Serum ferritin µg/L 1.04, 200

Pg = Pecogram (10−12 g); µL = Microliter (10−3 mL); fL = femtoliter (10−12 mL); dL = Deciliter (100 mL).

2.2. Variable Selection and Data Cleaning

Except subject ID (SEQN, required for pairing with other datasets), age (RIDAGEYR),
gender (RIAGENDR), and pregnancy (RIDEXPRG) data (required for the classification of
anemia and iron deficiency), all other demographic variables were removed. The variables,
LBXLYPCT, LBXMOPCT, LBXNEPCT, LBXEOPCT, LBXBAPCT, were also removed as their
absolute counts were available in other variables.

The sequential exclusion of data and associated sample loss are given in Figure 1.
Briefly, rows wherever LBXHGB or LBXFER is null were also removed, as both these
features are necessary for IDA classification. Next any row with ferritin values of 150 µg/L
for females, 200µg/L for males, which indicates iron overload [33], and any row with null
values in any of the variables was removed to obtain paired data of all variables. The

https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
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RIDEXPRG is coded as 1 for positive pregnancy, and 2 and 3 for uncertain or could not
ascertain the status at the time of the NHANES survey. Therefore, only 1 is considered
positive pregnancy while all others are considered non-pregnant (coded as 0). The data
of subjects above the age of 60 were excluded, as hemoglobin concentration at this age
reduces, independent of iron status due to age-related physiology [34]. The total available
paired data of all required demography, CBP, and serum ferritin data were 19,975.
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2.3. Validation Dataset

To test the generalizability of the model in an independent different dataset, we tested
the trained model’s performance on an unseen dataset with the same features. The dataset
used for cross validation was from a healthy adult Kenyan population (n = 502, and is
publicly available [35,36]. Some instances (n = 26) were excluded, where age >60 years old;
in the data used, age ranged from 18–60, and the gender distribution was 52.7% female.
Since this study excluded subjects who were pregnant, for all samples of RIDEXPRG the
value was considered zero. The proportions of anemia, ID, and IDA were 4.5%, 15.5%, and
3.78%, respectively.
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2.4. Classification of Anemia, Iron Deficiency (ID), and Iron Deficiency Anemia (IDA)

The age, gender, pregnancy status, specific hemoglobin (LBXHGB), and serum ferritin
(LBXFER) reference values (Table 2) suggested by the WHO were used for the classification
of anemia and ID [1,33]. A subject who was both positive for anemia and ID was classified
as IDA, and otherwise was considered as non-IDA.

Table 2. World Health Organization (WHO) reference values for classification of anemia, iron
deficiency (ID).

Age Biological Gender Hemoglobin Reference
(g/100 mL) for Anemia

Serum Ferritin Reference for
Iron Deficiency
(µg/L)

less than 5 years Any 11 12
5–11 years Any 11.5 15
12–14 years Any 12 15
15 years and above Male 13 15

15 years and above Non pregnant female 12
15Pregnant female 11

2.5. Data Aggregation and Preprocessing

The proportion of anemia, ID, and IDA or mean of numerical variables along with their
95% confidence intervals (Cis) were computed using the appropriate “group by” function in
the stats package in the SciPy library. The bar graphs with 95% CI error bars for all numerical
variables stratified by IDA status were generated using matplotlib software, and the 95%
CIs were non-overlapping and hence considered statistically significant (p < 0.05). Since the
units for different features varied, all the data were normalized using the StandardScaler
method from the scikit-learn Library prior to the data input in ML models.

2.6. Classification of IDA by Machine Learning (ML) Algorithms

The full pipeline for training and validation is shown in Figure 2. The classification
of IDA and Non-IDA was initially tested using multiple ML algorithms, namely logistic
regression (LR), random forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB),
gradient boosting (GB), and XGBoost (XGB), with all the features except SEQN and LBXFER
variables. (These algorithms form a representative set of linear and nonlinear classifiers
available in scikit-learn and are suitable for datasets with thousands, but not millions, of
instances. They require no tuning of hyperparameters.) The target feature of IDA is binary
coded, with IDA as 1 and non-IDA as 0.
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Figure 2. Workflow for the prediction of iron deficiency anemia using gradient boost machine
learning model.

We then calculated the standard performance metrics for classification tasks, which
are accuracy, precision, recall, and Area Under the Receiver Operating Characteristic
Curve (ROC AUC). Accuracy measures the proportion of correct positive and correct
negative predictions among all possible predictions. Recall, also known as sensitivity, or
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the true positive rate, measures the proportion of accurate positive predictions among all
possible positive predictions. Precision is the proportion of correct positive predictions.
The formulas used are as follows.

Accuracy
(

y,
ˆ
y
)
= 1

nsamples

nsamples−1

∑
i=0

1
(

ˆ
yi = yi

)

Recall =
TruePositive

TruePositive + FalseNegative

Precision =
TruePositive

TruePositive + FalsePositive
Accuracy, Recall, and Precision ranged from 0 to 1. High Recall indicates that the

model identifies most positive instances. Since there was a large class imbalance in the
target class, accuracy alone is not considered a reliable indicator of model performance,
so we also computed Precision Recall AUC (PR AUC) to choose an algorithm that best
predicts both IDA and Non-IDA classes [37].

2.7. Feature Selection, Cross Validation, Model Explanation

Based on relative performance metrics, the Gradient Boost algorithm was chosen, and
the best features were selected using recursive feature elimination (RFECV, scikit-learn
library). We also tested the normalization of class imbalance via random oversampling
from the scikit-learn library. This method randomly oversamples the minority class in
the training dataset to balance the distribution of the classes. We then tested the trained
model’s generalizability by assessing its performance on unseen data from Kenya.

To provide explanations for the model, we calculated feature contribution to the pre-
diction using the SHapley Additive exPlanations (SHAP) algorithm. SHAP feature values
indicate the impact of each feature on the model’s prediction for specific instances/classes.
We also compared SHAP values of features with and without random over sampling to
identify any differences to feature importance introduced by oversampling.

3. Results
3.1. Data Description, Proportion of Anemia, ID, and IDA

The sample distribution was 18.5%, 4.5%, 22.7%, and 54.2% for “under 5”, 5–9, 10–19,
and 19–60 age groups, respectively. Of the total sample, 76% were female subjects, and
5% of females were pregnant. The proportion (%) of anemia, ID, and IDA along with their
95% CIs by gender and age group are shown in Table 3 below. The overall proportion
of anemia, ID and IDA are 8.6%, 14%, and 5%, respectively. The proportions of anemia
(10.8% vs. 1.4%), ID (16.5% vs. 5.6%), and IDA (6.4% vs. 0.4%) are higher in females
compared to males, and the proportions are higher in adolescents (10–19 years old) and
adults (>19 years old) compared to young children aged less than 10 years old.

Table 3. Proportion of anemia, iron deficiency (ID), and iron deficiency anemia (IDA) by gender and
age group.

Group Anemia ID IDA

Proportion 5% CI 95% CI Proportion 5% CI 95% CI Proportion 5% CI 95% CI

All 8.63 8.24 9.02 13.99 13.51 14.47 4.99 4.69 5.29
Male 1.39 1.38 1.39 5.61 5.60 5.62 0.41 0.40 0.41

Female 10.86 10.85 10.86 16.57 15.56 16.57 6.40 6.40 6.41
<5 y 1.87 1.43 2.31 8.73 7.82 9.65 0.70 0.43 0.97
5–9 y 1.76 0.90 2.62 5.64 4.13 7.14 0.11 −0.10 0.32

10–19 y 9.23 8.39 10.07 16.15 15.08 17.21 5.13 4.49 5.77
>19 y 11.25 10.65 11.84 15.57 14.89 16.23 6.8 6.32 7.27
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3.2. Comparative Analysis of Machine Learning Models

The classification of IDA and non-IDA in the dataset was tested using multiple ma-
chine learning models. The comparative prediction performance metrics are given in
Table 4. The accuracy of all the models was 97% except Naïve Bayes which was 95%. The
PR AUC was highest (0.87) using the Gradient boost model, which was therefore chosen
for further optimization.

Table 4. Comparative prediction metrics of machine learning models on classification of anemia.

Confusion Matrix Accuracy Precision Recall ROC AUC PR AUC

Logistic regression
[[3769 22]
[ 87 121]] 0.97 0.84 0.58 0.99 0.83

Random Forest
[[3761 30]
[ 67 141]] 0.97 0.82 0.67 0.99 0.85

K-Nearest Neighbors
[[3759 32]
[ 75 133]] 0.97 0.80 0.63 0.94 0.73

Naive Bayes
[[3656 135]
[ 33 168]] 0.95 0.56 0.84 0.97 0.72

Gradient Boosting [[3759 32]
[ 61 147]] 0.97 0.82 0.70 0.99 0.87

XGBoost
[[3744 47]
[ 55 153]] 0.97 0.76 0.73 0.99 0.85

3.3. Optimization of the Gradient Boost Algorithm and Cross Validation with Unseen Data

Feature selection was performed using the RFECV algorithm, with the selected features
being LBXHGB, RIDAGEYR, LBXRDW, LBXMCHSI, RIAGENDR, RIDEXPRG, LBXHCT,
and LBXMCVSI, and the performance of models with these features remained similar to
that when all the features were included, except that a marginal increase in recall was
observed (0.716 vs. 0.706). We used random oversampling to handle the class imbalance.
In addition to the above features, LBDLYMNO and LBDMONO features were picked with
RFECV; although this did not improve PR AUC significantly (0.87 vs. 0.87), there was
a marked increase in recall/sensitivity (0.980 vs. 0.716). To assess how well the model
performs in different settings, we evaluated its performance using a new dataset from
Kenya. The accuracy of the model on this unseen dataset was found to be 0.98. Additionally,
the precision of the model was 0.80, and the recall/sensitivity was 0.89 (Table 5).

Table 5. Gradient boost performance metrics with RFECV selected features, random oversampling,
and validation on unseen data.

Confusion Matrix Accuracy Precision Recall ROC AUC PR AUC

With selected features
[[3761 30]
[ 59 149]] 0.97 0.83 0.71 0.99 0.87

With selected features and
random oversampling

[[3669 122]
[ 4 204]] 0.96 0.62 0.98 0.99 0.87

Validation metrics with
unseen data

[[479 4]
[2 17]] 0.98 0.8 0.89 - -
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3.4. Influence of Oversampling on Model Explanations

The impact of the CBC features on the performance of the trained gradient boost model
with and without random oversampling is given in Figure 3. In the SHAP summary plots
(Figure 3 left panels), a positive SHAP value indicates an increase in the value of a specific
feature associated with an increase in the model’s prediction, while a negative relationship
reduces the prediction of that instance, and the distance of the values from zero on the
x-axis indicates the magnitude of its contribution to the prediction. A visualization using a
red dot indicates a higher probability of indicating a positive class (IDA), while blue dots
indicate the opposite (non-IDA). The explanatory model reveals that a low blood level of
hemoglobin (LBXHGB), higher Age (RIDAGEYR), higher RDW (LBXRDW), being female
and pregnant, and lower values of MCH, MCV, and HCT contribute to the prediction of
IDA class, with their relative importance given (Figure 3, upper right panel). When trained
with the random oversampling method, the feature importance was similar, except that
the relative contribution of gender (RIAGENDR) was reduced, possibly due to a higher
proportion of female subjects in the oversampled data due to a higher proportion of IDA
class in this gender. The contribution of LBDLYMNO and LBDMONO was relatively lower
compared to other features.
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underlying iron deficiency without using the serum ferritin test [6–9], but there has been 
no large-scale study. In recent years, ML algorithms have found potential applications in 
medical diagnosis including classification based on numerical and image data [10], and 
several studies reported the prediction of IDA based on CBC data (Supplementary Table 
S1). However, nearly all studies that specifically focused on IDA classification included 
serum iron or ferritin parameters in addition to CBC data for the prediction of IDA. One 
study predicted low ferritin (IDA) but only for data from adult anemic subjects (above 18 
years old) generated from the referred lab tests. However, a model that applies to all age 
groups, including pregnant women, is lacking, possibly due to the extensive requirement 
of high-quality and paired CBC and serum ferritin data for the classification of IDA along 
with information on age, sex, and pregnancy status. Fortunately, these data are available 
in NHANES surveys, which provides an opportunity to test and classify IDA based on 
CBC variables. 

In this study, we created a subset of data (n = 19,975) with paired demography, CBC, 
and serum ferritin values, and categorized the IDA based on their age and gender-specific 
hemoglobin and serum ferritin. In this dataset, we found that the proportion of subjects 
with IDA (5%) is close to half that with anemia (8.6%). Further, a higher proportion of 
anemia and IDA was in females compared to males, and the proportion of IDA among 
females also increased with age, which are consistent with reported age and gender 
differences in the prevalence of anemia and IDA [2]. 

Figure 3. This figure shows SHAP summary plots (left) and feature importance (right) of model
features and their average impact on the gradient boost IDA classification model without (top) and
with (bottom) random oversampling.

4. Discussion

Since not all anemia is due to iron deficiency [2,4,38], the diagnosis of IDA normally
requires both CBC (for hemoglobin) and serum ferritin tests [5]. Understanding the type
of anemia is critical in making an informed decision on iron treatment either in hospital
settings or in quantifying the proportion of IDA in survey settings. However, a serum
ferritin test requires centrifugation of blood to collect serum or plasma and its transportation
to the laboratory under a cold chain, and expensive lab infrastructure and expertise in
handling are required to measure ferritin levels using enzyme-linked immunosorbent
assays (ELISA) to identify IDA [5,33]. Since IDA has a unique effect on blood cell indices,
such as reduced hemoglobin, HCT, and MCV and a higher RDW, it has been hoped that it
would be possible to use this data for the precise identification of underlying iron deficiency
without using the serum ferritin test [6–9], but there has been no large-scale study. In recent
years, ML algorithms have found potential applications in medical diagnosis including
classification based on numerical and image data [10], and several studies reported the
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prediction of IDA based on CBC data (Supplementary Table S1). However, nearly all studies
that specifically focused on IDA classification included serum iron or ferritin parameters
in addition to CBC data for the prediction of IDA. One study predicted low ferritin (IDA)
but only for data from adult anemic subjects (above 18 years old) generated from the
referred lab tests. However, a model that applies to all age groups, including pregnant
women, is lacking, possibly due to the extensive requirement of high-quality and paired
CBC and serum ferritin data for the classification of IDA along with information on age, sex,
and pregnancy status. Fortunately, these data are available in NHANES surveys, which
provides an opportunity to test and classify IDA based on CBC variables.

In this study, we created a subset of data (n = 19,975) with paired demography, CBC,
and serum ferritin values, and categorized the IDA based on their age and gender-specific
hemoglobin and serum ferritin. In this dataset, we found that the proportion of subjects with
IDA (5%) is close to half that with anemia (8.6%). Further, a higher proportion of anemia
and IDA was in females compared to males, and the proportion of IDA among females also
increased with age, which are consistent with reported age and gender differences in the
prevalence of anemia and IDA [2].

Since there is severe class imbalance in the data, average precision (PR AUC) is
considered the best performance metric in assessing model performance [37]. In our
analysis, the Gradient Boost algorithm performed best and was chosen for the further
optimization that included feature selection and class imbalance handling through random
oversampling. Further, to test for differences if any, feature selection was performed without
and with random oversampling using the RFECV algorithm, and the model performance
was assessed with these selected features. The selected best features were the same with or
without random oversampling, except that an additional variable was selected with the
latter. However, random oversampling resulted in a marked increase in recall (sensitivity)
for positive classes. Discussion with a domain expert suggested that it is important to have
higher sensitivity for guiding treatment, and treating those without IDA or potentially
borderline cases is unlikely to have large negative health impacts. The selected features such
as age (RIDAGEYR), sex (RIAGENDR), and pregnancy status (RIDEXPRG) are expected as
the reference values of hemoglobin and serum ferritin to classify anemia which is specific
to these groups [1,5,33]. The other features related to hemoglobin and RBC morphology
(LBXHGB, LBXHCT, LBXMCVSI, LBXMCHSI, LBXRDW) are also expected based on prior
knowledge [9]. However, two additional WBC features, lymphocytes (LBDLYMNO) and
monocytes (LBDMONO), which were not expected, also appear to contribute to the model’s
performance. Serum ferritin is acute phase protein, and inflammation elevates its levels
independent of body iron stores [5,39]. Therefore, serum ferritin values are corrected
for inflammation with the use of additional markers of inflammation such as C-reactive
protein (CRP), prior to using it for assessing ID or IDA [39]. Since several WBC variables
including lymphocyte and monocyte levels are elevated during inflammation [40], this
explains their contribution to the model. Indeed, the lymphocyte count is (2.65 (95% CI
2.64–2.67) vs. 2.24 (95% CI 2.19–2.30)) and monocyte count is (0.57 (95% CI 0.56–574) vs.
0.55 (95% CI 0.54–0.56)). In addition, we also found that the importance of RIAGENDR
(gender) was less when the model was trained with random oversampling. However, this
difference could simply be due to oversampling of the data for this gender, with a higher
proportion of positive IDA cases. Interestingly, when tested with unseen data originating
from completely different settings, the trained model also performed exceptionally well,
indicating its great utility across different datasets and/or geographics, and is stable to the
subtle analytical differences across labs, if any.

Explaining disease diagnosis by showing the specific contributions of individual
features to such prediction is of great importance to allow the clinician to make informed
decisions. As explained above, the features selected in the trained algorithm are consistent
with their known relationship with IDA. To further quantify the specific contribution of
each feature to the prediction, we visualized the role of different features in the model using
the SHAP algorithm. It was found that having a low blood level of hemoglobin (LBXHGB),
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older age (RIDAGEYR), higher RDW (LBXRDW), being female and pregnant, and having
lower values of MCH, MCV, HCT, lymphocytes, and monocytes contribute to the prediction
of IDA class, with relative importances. While all these variable contributions are consistent
with the known literature [6–8,27,28] the contribution of lower lymphocytes and monocytes
to IDA could be mediated by the effect of inflammation on serum ferritin levels [5,39,41].

The published ML models for anemia classification all use different data than used
here or perform a task other than discriminating IDA. For example, they rely on image data,
or they use CBC variables to identify genetic disorders related to hemoglobin [10–20,27–30].
Since the cause of anemia is multifactorial [4], identifying concurrent iron deficiency is
required to guide iron therapy. Our developed ML model is unique in identifying the
presence of IDA based on CBC data alone, eliminating the need for an additional serum
ferritin test. The diagnosis of IDA using our model has two important benefits. First,
in a clinical setting, the model helps in making an informed decision to treat using iron
supplementation. Second, in a public health survey setting, the model helps in quantifying
the proportion of IDA, which contributes to understanding the factors associated with
anemia, which is key information required for formulating appropriate actions.

5. Limitations and Future Directions

One limitation of our study is the serious class imbalance, which is typical of the
disorder, although this imbalance can be overcome by using random over sampling, with
minimal impact on the role of individual features. The other limitation is that we did not
correct serum ferritin levels for inflammation prior to using it as a classifier of IDA, but we
believe that this can partly be negated by CBC data on WBC indicators (lymphocytes and
monocytes) which can be surrogate markers of inflammation. For example, WBC count has
been shown to positively correlate with CRP levels [35], and future studies that compare
the adjustment of serum ferritin using WBC indices with that of CRP corrected values
merits investigation.

We also acknowledge that testing the model’s performance in a real clinical setting
would be beneficial, but this is beyond the scope of the study. However, performing a
clinical trial could be a logistical extension of this ML model, where it might be directly
integrated into the CBC analyzer itself with the results validated via serum ferritin tests
(reverse of what is performed now). Since conducting such a trial would be costly, evidence
such as this data study would likely be needed to justify it, and this testing would most
likely be carried out by blood analysis device manufacturers.

6. Conclusions

Our study successfully developed a machine learning model that discriminates IDA
from other forms of anemia, solely based on CBC data with particularly high recall for IDA
positive cases. The study used two publicly available datasets (a NHANES dataset of more
than 19,000 instances from the US and a smaller dataset from Kenya) and found that IDA
can be classified from CBC data with a PR AUC of 0.87 and recall/sensitivity of 0.98 and 0.89
for the original dataset and the unseen one collected in Kenya, respectively. In the analysis
of feature importance, we found that a low blood level of hemoglobin (LBXHGB), older age
(RIDAGEYR), higher RDW (LBXRDW), being female and pregnant, and lower values of
MCH, MCV, HCT, lymphocytes, and monocytes contributed most to the prediction of IDA
class. The precision, recall, and generalizability of the model to unseen data and the role of
features associated with the predictions align well with known prior knowledge, which
strongly supports the confidence in providers making informed decisions on whether to
treat with iron or advise additional testing. It would also be useful in public health survey
settings to quantify the proportion of iron deficiency associated with anemia, without
additional testing. In the future, following appropriate clinical trials, it would be possible
to integrate this model directly into CBC analyzer platforms to provide diagnostic decision
support along with CBC reporting, which should encourage the development of enhanced
CBC platforms.



BioMedInformatics 2024, 4 671

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedinformatics4010036/s1, Table S1 Comparison of
reported machine learning models for prediction of iron deficiency anemia.

Author Contributions: Conceptualization, S.P. and S.M.; data curation, S.P.; formal analysis, S.P.;
investigation, S.P.; methodology, S.P. and S.M.; project administration, S.M.; resources, S.P. and S.M.;
software, S.P.; supervision, S.M.; validation, S.P. and S.M.; visualization, S.P.; writing—original draft,
S.P. and S.M.; writing—review & editing, S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data from this study are derived from the NAHNES dataset. The
original dataset can be found at (https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.
aspx, accessed on 21 February 2024). For reproducibility our code and cleaned data are online and public.
Access our repository on GitHub at: https://github.com/siddartha-10/Classification_of_IDA.

Acknowledgments: The authors acknowledge the contributions of Ravindranadh Palika Scientist-C,
ICMR-National Institute of Nutrition, Hyderabad, India for domain-specific suggestions and inputs
to the interpretation of the findings. The authors also acknowledge the support of the Office of the
Dean of the College of Engineering & Applied Science at the University of Wisconsin-Milwaukee.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Health Organization (WHO). Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO:

Geneva, Switzerland, 2011.
2. GBD 2021 Anaemia Collaborators. Prevalence, Years Lived with Disability, and Trends in Anaemia Burden by Severity and Cause,

1990–2021: Findings from the Global Burden of Disease Study. Lancet Haematol. 2023, 10, e713–e734. [CrossRef] [PubMed]
3. Hsia, C.C. Respiratory Function of Hemoglobin. N. Engl. J. Med. 1998, 338, 239–247. [CrossRef] [PubMed]
4. Sarna, A.; Porwal, A.; Ramesh, S.; Agrawal, P.K.; Acharya, R.; Johnston, R.; Khan, N.; Sachdev, H.P.S.; Nair, K.M.;

Ramakrishnan, L.; et al. Characterisation of the Types of Anaemia Prevalent among Children and Adolescents Aged 1-19 Years in
India: A Population-Based Study. Lancet Child Adolesc. Health 2020, 4, 515–525. [CrossRef] [PubMed]

5. Zimmermann, M.B.; Hurrell, R.F. Nutritional Iron Deficiency. Lancet 2007, 370, 511–520. [CrossRef] [PubMed]
6. Uchida, T. Change in Red Blood Cell Distribution Width with Iron Deficiency. Clin. Lab. Haematol. 1989, 11, 117–121. [CrossRef]

[PubMed]
7. van Zeben, D.; Bieger, R.; van Wermeskerken, R.K.A.; Castel, A.; Hermans, J. Evaluation of Microcytosis Using Serum Ferritin

and Red Blood Cell Distribution Width. Eur. J. Haematol. 1990, 44, 106–109. [CrossRef] [PubMed]
8. Burk, M.; Arenz, J.A.; Schneider, W. Erythrocyte Indices as Screening Tests for the Differentiation of Microcytic Anemias. Eur. J.

Med. Res. 1995, 1, 33–37.
9. Cascio, M.J.; DeLoughery, T.G. Anemia: Evaluation and Diagnostic Tests. Med. Clin. 2017, 101, 263–284. [CrossRef]
10. Kang, M. Machine Learning: Diagnostics and Prognostics. Progn. Health Manag. Electron. 2018, 163–191. [CrossRef]
11. Al-Zaiti, S.; Martin-Gill, C.; Zègre-Hemsey, J.; Medicine, Z.B. Machine Learning for ECG Diagnosis and Risk Stratification of

Occlusion Myocardial Infarction. Nat. Med. 2023, 29, 1804–1813. [CrossRef]
12. Ayyıldız, H.; Tuncer, S.A. Determination of the Effect of Red Blood Cell Parameters in the Discrimination of Iron Deficiency

Anemia and Beta Thalassemia via Neighborhood Component Analysis. Chemom. Intell. Lab. Syst. 2020, 196, 103886. [CrossRef]
13. Vohra, R.; Hussain, A.; Dudyala, A.K.; Pahareeya, J.; Khan, W. Multi-Class Classification Algorithms for the Diagnosis of Anemia

in an Outpatient Clinical Setting. PLoS ONE 2022, 17, e0269685. [CrossRef] [PubMed]
14. Khan, J.R.; Chowdhury, S.; Islam, H.; Raheem, E. Machine Learning Algorithms to Predict the Childhood Anemia in Bangladesh.

J. Data Sci. 2019, 1, 195–218. [CrossRef]
15. Dejene, B.E.; Abuhay, T.M.; Bogale, D.S. Predicting the Level of Anemia among Ethiopian Pregnant Women Using Homogeneous

Ensemble Machine Learning Algorithm. BMC Med. Inform. Decis. Mak. 2022, 22, 247. [CrossRef] [PubMed]
16. Appiahene, P.; Asare, J.W.; Donkoh, E.T.; Dimauro, G.; Maglietta, R. Detection of Iron Deficiency Anemia by Medical Images: A

Comparative Study of Machine Learning Algorithms. BioData Min. 2023, 16, 2. [CrossRef]
17. Jain, P.; Bauskar, S.; Gyanchandani, M. Neural Network Based Non-Invasive Method to Detect Anemia from Images of Eye

Conjunctiva. Int. J. Imaging Syst. Technol. 2020, 30, 112–125. [CrossRef]

https://www.mdpi.com/article/10.3390/biomedinformatics4010036/s1
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx
https://github.com/siddartha-10/Classification_of_IDA
https://doi.org/10.1016/S2352-3026(23)00160-6
https://www.ncbi.nlm.nih.gov/pubmed/37536353
https://doi.org/10.1056/NEJM199801223380407
https://www.ncbi.nlm.nih.gov/pubmed/9435331
https://doi.org/10.1016/S2352-4642(20)30094-8
https://www.ncbi.nlm.nih.gov/pubmed/32562633
https://doi.org/10.1016/S0140-6736(07)61235-5
https://www.ncbi.nlm.nih.gov/pubmed/17693180
https://doi.org/10.1111/j.1365-2257.1989.tb00193.x
https://www.ncbi.nlm.nih.gov/pubmed/2766669
https://doi.org/10.1111/j.1600-0609.1990.tb00359.x
https://www.ncbi.nlm.nih.gov/pubmed/2318292
https://doi.org/10.1016/j.mcna.2016.09.003
https://doi.org/10.1002/9781119515326.CH7
https://doi.org/10.1038/s41591-023-02396-3
https://doi.org/10.1016/j.chemolab.2019.103886
https://doi.org/10.1371/journal.pone.0269685
https://www.ncbi.nlm.nih.gov/pubmed/35793343
https://doi.org/10.6339/JDS.201901_17(1).0009
https://doi.org/10.1186/s12911-022-01992-6
https://www.ncbi.nlm.nih.gov/pubmed/36138398
https://doi.org/10.1186/s13040-023-00319-z
https://doi.org/10.1002/ima.22359


BioMedInformatics 2024, 4 672

18. Jayakody, J.A.; Edirisinghe, E.A. HemoSmart: A Non-Invasive, Machine Learning Based Device and Mobile App for Anemia
Detection. In Proceedings of the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 1401–1406.
[CrossRef]

19. Asare, J.W.; Appiahene, P.; Donkoh, E.T.; Dimauro, G. Iron Deficiency Anemia Detection Using Machine Learning Models: A
Comparative Study of Fingernails, Palm and Conjunctiva of the Eye Images. Eng. Rep. 2023, 5, e12667. [CrossRef]

20. Sen, B.; Ganesh, A.; Bhan, A.; Dixit, S.; Goyal, A. Machine Learning Based Diagnosis and Classification of Sickle Cell Anemia in
Human RBC. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 753–758. [CrossRef]

21. Bellinger, C.; Amid, A.; Japkowicz, N.; Victor, H. Multi-Label Classification of Anemia Patients. In Proceedings of the 2015
IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015;
pp. 825–830. [CrossRef]

22. Saputra, D.C.E.; Sunat, K.; Ratnaningsih, T. A New Artificial Intelligence Approach Using Extreme Learning Machine as the
Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia. Healthcare 2023, 11, 697. [CrossRef]

23. Dogan, S.; Turkoglu, I. Iron-Deficiency Anemia Detection from Hematology Parameters by Using Decision Trees. Int. J. Sci.
Technol. 2008, 3, 85–92.

24. Azarkhish, I.; Raoufy, M.R.; Gharibzadeh, S. Artificial Intelligence Models for Predicting Iron Deficiency Anemia and Iron Serum
Level Based on Accessible Laboratory Data. J. Med. Syst. 2012, 36, 2057–2061. [CrossRef]

25. Yilmaz, A.; Dagli, M.; Allahverdi, N. A Fuzzy Expert System Design for Iron Deficiency Anemia. In Proceedings of the 2013 7th
International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 23–25 October 2013;
pp. 1–4. [CrossRef]

26. Yıldız, T.K.; Yurtay, N.; Öneç, B. Classifying Anemia Types Using Artificial Learning Methods. Eng. Sci. Technol. Int. J. 2021, 24,
50–70. [CrossRef]
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