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Abstract: Background: In genomics, highly sensitive point mutation detection is particularly relevant
for cancer diagnosis and early relapse detection. Next-generation sequencing combined with unique
molecular identifiers (UMIs) is known to improve the mutation detection sensitivity. Methods: We
present an open-source bioinformatics framework named Interface for Point Mutation Identification
(IMPI) with a graphical user interface (GUI) for processing especially small-scale NGS data to identify
variants. IMPI ensures detailed UMI analysis and clustering, as well as initial raw read processing,
and consensus sequence building. Furthermore, the effects of custom algorithm and parameter
settings for NGS data pre-processing and UMI collapsing (e.g., UMI clustered versus unclustered
(raw) reads) can be investigated. Additionally, IMPI implements optimization and quality control
methods; an evolution strategy is used for parameter optimization. Results: IMPI was designed,
implemented, and tested using BCR::ABL1 fusion gene kinase domain sequencing data. In summary,
IMPI enables a detailed analysis of the impact of UMI clustering and parameter setting changes on the
measured allele frequencies. Conclusions: Regarding the BCR::ABL1 data, IMPI’s results underlined
the need for caution while designing specialized single amplicon NGS approaches due to methodical
limitations (e.g., high PCR-mediated recombination rate). This cannot be corrected using UMIs.

Keywords: NGS; genomics; unique molecular identifier; CML; resistance mutation detection

1. Background

The identification of point mutations is of high interest in the field of genomics,
especially for the diagnosis of certain diseases, early recognition of relapses, and cancer
genome characterization [1]. Accordingly, highly sensitive next-generation sequencing
(NGS) methods are desired to detect point mutations at low variant allele frequencies
(VAFs). Using highly sensitive NGS, the limit of detection (LOD) can be as low as 0.1–1%
VAF [2–4]. The LOD for a standard NGS workflow ranges between 2 and 5% VAF. In
contrast, Sanger sequencing methods, the gold standard for sequencing for various medical
investigations, have a limited sensitivity of 15–20% VAF [5]. In NGS, the detection of
mutations with a frequency below 1% is hampered by artifacts induced by polymerase
chain reaction (PCR) errors during library preparation (polymerase error rate: 5.3 × 10−7

substitutions/base/doubling [6]) and, to a lower extent, by errors taking place in the course
of sequencing. To overcome this obstacle, short oligonucleotides, termed unique molecular
identifiers (UMIs), consisting of 8-10 random nucleotides, can be used to mark sequence
reads originating from the same DNA template molecule [7].
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The use of UMIs, a type of molecular barcoding is dedicated to enhancing the sensitiv-
ity of detecting point mutations in NGS data [1,8]. The UMI sequences are attached to the
sequencing library before amplification to tag all initial transcripts [9]. After amplification,
all descendants of one initial transcript share the same UMI. After sequencing, the UMI
information is used to determine a consensus sequence of all raw reads sharing the same
UMI. During this “collapsing” process, random base substitutions caused by polymerase
errors in single reads can be eliminated because not every read of the UMI-family shares
the same incorrect base. True variants, which are already available in the initial template,
on the other hand, are found in every descendant sequence. After collapsing, the remaining
variants can then be determined as most likely true [10].

When working with NGS, all reads have to be mapped to a reference sequence and
UMI sequences have to be extracted before the collapsing process. Commonly used
mapping tools for sequence alignments are, e.g., Bowtie2 (available at https://github.
com/BenLangmead/bowtie2 (accessed on 28 March 2024)) [11] and Burrows-Wheeler
Aligner (BWA) (available at https://bio-bwa.sourceforge.net/ (accessed on 28 March
2024)) [12] or pseudo-alignment tools such as kallisto (available at https://github.com/
pachterlab/kallisto (accessed on 28 March 2024)) [13] which is required, e.g., by the
tool umis (available at https://github.com/vals/umis (accessed on 28 March 2024)) [14].
Available tools for read collapsing by UMIs are, e.g., UMI-tools (available at https://
github.com/CGATOxford/UMI-tools (accessed on 28 March 2024)) [7], UMICollapse
available at https://github.com/Daniel-Liu-c0deb0t/UMICollapse (accessed on 28 March
2024)) [15], zUMIs (available at https://github.com/sdparekh/zUMIs (accessed on 28
March 2024)) [16], and umis. All these tools are open-source command-line tools, which,
as far as known, do not provide a graphical user interface (GUI), and require program-
ming skills.

Here, the Interface for Point Mutation Identification (IMPI) is presented. It was
initially implemented for a custom-designed NGS approach for highly sensitive sequencing
of tyrosine-protein kinase Abelson murine leukemia viral oncogene homolog 1 (ABL1)
which fused with the breakpoint cluster region (BCR) and forms the BCR::ABL1 fusion
gene in cancer cells of patients affected by chronic myeloid leukemia (CML). IMPI provides
methods for automatized NGS data pre-processing, including UMI extraction, reference
sequence mapping, and read merging in the case of paired-end reads, UMI collapsing,
and consensus sequence building. In addition, with its convenient GUI, IMPI offers
interactive usage and graphical visualization of the calculated allele frequencies (AFs) for
determining point mutations. IMPI is open-source and available on https://bioinformatics.
fh-hagenberg.at/pointmutationdetector/ (accessed on 28 March 2024).

The implementation is described in detail in Section 2. Subsequently, the functionality
of IMPI is shown in Section 3 by describing the workflow for the identification of resistance
mutations in CML. The results provided by IMPI, the findings, and the usability are
discussed in Section 4. Finally, a conclusion and an outlook for future research is provided
in Section 5.

2. Implementation

IMPI (Figure 1) is a stand-alone GUI application that runs on Windows 10 and Linux
operating systems and is implemented in Python 3.9. IMPI is designed and implemented
for determining point mutations in small-scale NGS data. Accordingly, IMPI implements
algorithms for NGS data pre- and processing where sequence mapping, read merging
in the case of paired-end reads, and UMI extraction and clustering. Consequently, IMPI
allows for the identification of point mutations and result comparison (e.g., UMI clustered
versus unclustered (raw) reads) and to investigate the advantages of UMI clustering in
comparison to raw data analysis and particular parameter settings.

https://github.com/BenLangmead/bowtie2
https://github.com/BenLangmead/bowtie2
https://bio-bwa.sourceforge.net/
https://github.com/pachterlab/kallisto
https://github.com/pachterlab/kallisto
https://github.com/vals/umis
https://github.com/CGATOxford/UMI-tools
https://github.com/CGATOxford/UMI-tools
https://github.com/Daniel-Liu-c0deb0t/UMICollapse
https://github.com/sdparekh/zUMIs
https://bioinformatics.fh-hagenberg.at/pointmutationdetector/
https://bioinformatics.fh-hagenberg.at/pointmutationdetector/
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Figure 1. Screenshot of the IMPI GUI.

It allows for automated processing and evaluation of NGS data, focusing on detecting
and identifying point mutations and providing information about AFs. IMPI further
provides individual parameter and condition settings for processing single and multiple
UMI-tagged NGS data files. The main methods implemented in IMPI are data cleaning,
UMI extraction, consensus sequence building, and AFs calculating for point mutation
identification. Additionally, parameter optimization algorithms are implemented to detect
parameter settings optimized for a given dataset.

2.1. Software Overview

The IMPI framework consists of four central algorithm suites (as shown in Figure 2):
(1) data import, (2) data analysis, (3) output generation, and (4) optimization. As input
(Figure 2, represented in yellow), the software requires FASTQ files and target sequence-
specific information (e.g., a reference sequence, primers, UMIs, paths to the output folder,
and third-party tools). Input files and sequence information are mandatory required for
the initial data pre-processing. This includes data cleaning, UMI extraction (if required),
sequence mapping, and merging (in the case of paired-end reads). The second part of IMPI,
the data analysis (Figure 2, represented in blue) comprises allele frequency calculation and
clustering of the reads by the previously extracted UMIs. If several sequences have the
same UMI sequence, consensus sequences are built. These clustering and read analyses
provide all AFs in a matrix, similar to position weight matrices (PWMs) [17]. These matrices
can be exported—individually or for batches of NGS files—for immediate investigation
and sample comparison (see Figure 2, represented in green). The settings menu provides
an interface to define clinically relevant mutations, which subsequently can be investigated
and exported. Additionally, algorithms for quality control, additional data cleanup, and
clustering optimization are implemented in IMPI (Figure 2, represented in red). The param-
eter optimization algorithm for calculating best-fitting feature settings for data analysis is
based on an evolution strategy (ES) [18]. IMPI allows to apply a wild-type (wt) correction
to the data and provides an integrated cross-sample contamination analysis method.



BioMedInformatics 2024, 4 1292

Figure 2. Representation of the IMPI workflow starting with the input setup (yellow) which includes
raw data pre-processing and is followed by the data analysis step (blue) that comprise all algorithms
for clustering and raw data evaluation. Finally, IMPI outputs are generated (green). Additionally,
IMPI provides three optimization methods (red): Cross-sample contamination analysis based on
shared UMIs in multiple samples, an evolution strategy for settings parameter optimization, and a
wild-type (wt) correction method.

2.2. Input Data

IMPI requires non-compressed FASTQ files of small-scale NGS data of a gene region
of interest. The workflow can be executed for one single file as well as for batches of
files. Additionally, all sample-specific information has to be provided. This includes
the reference sequence and primer definitions. If UMIs are used, these are defined as
“N” within the primer sequence. Further essential information are the path definitions
for the used third-party tools: this includes the paths to the Bowtie2 and its respective
library file with the reference sequence information, and NGmerge (available at https:
//github.com/jsh58/NGmerge (accessed on 28 March 2024)) [19]. These and the path to
the output folder can be defined in the settings menu. Additionally, the exact read length
and the start position of the gene of interest are required. Optionally, users can specify
known loci of clinically relevant mutations.

2.3. Data Pre-Processing

The data pre-processing step starts with the verification of all sequences whether
they contain the primer sequences (with or without UMI information), and whether the
length of the UMI corresponds to the specified length. If a read does not contain a reverse
primer or an erroneous UMI is observed, it is not considered for further analysis. If a
forward primer is present, the first five nucleotides following this primer are stored. These
nucleotides are stored because of the low Phred quality scores within the first nucleotides
resulting in many reads being discarded. Therefore, reads without a forward primer are not
discarded if the first 50 nucleotides contain a five nucleotide long oligomer which follows
all other reads containing a forward primer. All reads that were considered successfully
are written to new FASTQ files and—in the case of paired-end reads—processed using the
open-source tool NGmerge for merging purposes. Afterwards, all sequences are mapped on
the reference gene by using the open-source tool Bowtie2. The results generated by Bowtie2
are provided in SAM file format and are extracted and summarized in tab-delimited file
format. The final file contains various features described in detail in Table 1 (e.g., read ID,
extracted UMI sequence, read sequence, Phred quality score, and insertion, deletion, and
mismatch counts). All features are used later-on to generate AF matrices and to identify
point mutations.

https://github.com/jsh58/NGmerge
https://github.com/jsh58/NGmerge
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Table 1. Features extracted and processed from the SAM output file derived from Bowtie2 mapping.

Feature Name Description

ID Read identifier extracted from the FASTQ file source

UMI Extracted unique molecular identifier sequence which was part of
the primer

UMI_Phred_Quality Phred quality scores of the UMI encoded in ASCII characters

UMI_Avg_Score Average Phred quality score of the UMI

Seq Nucleotide sequence of the read with its deletions and insertions
which are defined by the Concise Idiosyncratic Gapped Alignment
Report (CIGAR) [20] information

Phred_Quality Phred quality scores of the whole nucleotide sequence encoded in
ASCII characters

Avg_Score Average Phred quality score of the sequence

Start Start position of the sequence within the reference gene sequence

Length Length of the sequence

Insertions Number of insertions

Deletions Number of deletions

RefIdentical Identity of the sequence with the reference gene sequence

RefMismatches Number of mismatches in comparison with the reference gene se-
quence

aaSeq Translated nucleotide sequence to get the amino acid sequence

aaRefIdentical Identity of the amino acid sequence with the amino acid reference
sequence

aaRefMismatches Number of mismatches in comparison with the amino acid refer-
ence sequence

2.4. Data Analysis

For data analysis, the tab-delimited files generated in the pre-processing step are re-
quired. Each pre-processed sample can be selected for the generation of an allele frequency
matrix. The tabs in the Results area of the IMPI GUI (Figure 1) contain the AF matrices
of the different clustering results and report the number of reads of the selected sample.
Different clustering algorithms can be activated or deactivated. The AF matrices show
called variants at each position of the provided sequences. All AF matrices are calculated
by using the raw sequencing data and the consensus sequences after one or two optional
clustering steps of the sequences by the extracted UMIs.

Further, the variant calling and AF calculation of data processed using the open-
source UMI-tools (available at https://github.com/CGATOxford/UMI-tools (accessed
on 28 March 2024)) [7] software package (version 1.1.1) is integrated. Similar to IMPI,
UMI-tools contains methods for identifying errors within PCR duplicates using UMIs. An
additional feature is the definition of a minimum variant allele frequency value (Min val.)
for a better overview of the detected mutations which can be set and the called variants
are highlighted. Thus, AFs greater than the defined Min val. and below 1—Min val. are
highlighted in purple (see Results area of the IMPI GUI in Figure 1).

The calculation of the AF matrices is based on variant calling. Several OS-independent
variant calling tools have been applied to the data, such as VarScan 2 (available at https://
varscan.sourceforge.net/ (accessed on 11 28 March 2024)) [21] or Genome Analysis Toolkit
(GATK) HaplotypeCaller (available at https://gatk.broadinstitute.org/hc/en-us/articles/
360037225632-HaplotypeCaller (accessed on 28 March 2024)) [22,23]. Unfortunately, these
tools have not been applicable because of the low sequencing depth of the small-scale

https://github.com/CGATOxford/UMI-tools
https://varscan.sourceforge.net/
https://varscan.sourceforge.net/
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
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NGS data and their capability to call higher allele frequencies. Therefore, a custom variant
calling algorithm is implemented in IMPI. AF calculation is adapted from Xia et al. [24]
and is based on the frequencies of a specific base (A, T, C, or G) at a particular position
within the sequence. Additionally, the Phred quality score is taken into account. All base
occurrences are weighted with the average Phred quality score of all reads normalized
between 0 and 1.

Later, in Section 3.4 results of a wild-type (wt) sequence analysis using IMPI are
described. In wt samples an AF of 100% according to the reference sequence is expected,
IMPI is able to achieve an average allele frequency of 99.80% with a highest aberration of
2.72%.

2.5. Parameter Settings

The conditions for selecting the sequences that are included in the calculation of the
AF matrices are defined in the GUI in the Settings area (Figure 1—top right). Users can
individually set these parameters to include or exclude sequences by specific features, e.g.,
by setting a minimal average Phred quality score of the sequence or UMI. In Table 2, all ten
parameters are described in detail.

Table 2. Adjustable parameters for calculating allele frequency matrices.

Parameter Name Description

Min. Quality All sequences with a lower average Phred quality
score are excluded for calculating the AF matrices

Min. UMI Quality All sequences with a lower average Phred quality
score of the UMI are excluded

Min. Clustersize When clustering algorithms are applied, all clusters
with a size lower than requested are discarded

Min. Cut-Off and Min. Cut-Off
Value

The minimal cut-off value defines the rate of identi-
cal nucleotides of the reads within one cluster to be
identical and confirm this nucleotide—if Min. Cut-
Off is set Dynamic, the cut-off value depends on the
cluster size—the larger the cluster, the higher the
need of identical bases for defining a nucleotide at a
specific gene location

Max. N When a nucleotide at a specific position is not con-
firmed and is defined as N—this value defines the
maximum N per sequence

Threshold Ref Identity Only sequences with a reference gene correspon-
dence are taken for AF matrix calculation

Max. Mismatches, Max. Inser-
tions and Max. Deletions

Definition of the maximal number of mismatches,
insertions or deletions

Omit from UMI Since the first few nucleotides within a read show
rather low quality IMPI allows for omitting nu-
cleotides from the UMI

Overlap NGmerge Defines the number of nucleotides that are allowed
to overlap when using NGmerge (only relevant in
pre-processing step)

Mismatch Rate NGmerge Defines the maximum rate of mismatches when in
overlapping regions

2.6. Clustering

IMPI integrates two clustering steps for sequence clustering based on UMIs (Figure 3).
In a first step, the straightforward clustering (Clustering I) groups the raw sequences by
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unique UMIs. Sequentially, all UMI clusters are collapsed into consensus sequences. As
described in Table 2, the user can set a minimal cluster size to include or exclude clusters
of a specific size to be considered for the second clustering process (Clustering II). In the
second clustering step, all clusters containing fewer reads than the previously defined
minimal cluster size undergo an additional re-clustering. UMIs that are up to 90% identical
are clustered together allowing to determine and correct potential late PCR or sequencing
errors that affected UMIs.

Figure 3. Clustering of reads by UMIs. Unique UMIs are collapsed in a first step (Clustering I) and
re-clustered, allowing mismatches (Clustering II). For each cluster, consensus sequences are built.

In addition to IMPIs’ clustering algorithms, a supplementary clustering and results
evaluation is integrated of UMI clustered data derived by UMI-tools. UMI-tools is an
open-source tool for handling UMIs on Linux devices or macOS. On Windows, Windows
Subsystem for Linux [25] is required. IMPI automatically generates the Linux command
for applying UMI-tools methods on the raw NGS files using, e.g., the Ubuntu terminal on
Windows devices. Subsequently, IMPI is able to read and convert the output of UMI-tools
and calculates the desired AFs for variant detection.

2.7. Workflow Output

IMPI calculates the AFs as described above in Section 2.4, which can be stored in
the specified output directory in CSV file format. Further, an additional export method is
implemented in IMPI for batch exports and exports of the (un)clustered reads in various
file formats such as FASTQ, FASTA, SAM, or BAM. The exported files can subsequently
serve as input for further analysis.

2.8. Parameter Optimization and Data Revision

IMPI includes methods for parameter optimization and data revision (Figure 2, rep-
resented in red). The implemented parameter optimization using an evolution strategy
allows for the identification of best-fitting parameter settings to the given data. The cross-
sample contamination analysis module shows reads of two samples with identical UMIs. If
a wt sample is provided, PCR and sequencing errors can be detected, and measured AFs
can be corrected using the AFs of the wt sample.

2.8.1. Parameter Optimization Using an Evolution Strategy (ES)

Determining the adjustable parameters which best fit a given dataset can be challeng-
ing. Therefore, IMPI has an integrated ES, which identifies the optimal parameters in an
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iterative process. All adjustable parameters are described in detail in Table 2. As input, this
method requires pre-processed files with predefined variant allele frequencies. First, one or
more folders containing the files in a tab-delimited file format generated within the input
and pre-processing step are selected. Next, the expected VAFs at specific gene loci have
to be specified. IMPI recognizes missing files required from the pre-processing steps (see
Figure 4). When all samples are defined, the implemented ES algorithm determines the
best-fitting parameters for the dataset.

Figure 4. Graphical representation of parameter optimization using an evolution strategy in IMPI.
Multiple files with known VAFs can be used to find the best parameters for a given dataset. The
implemented evolution strategy provides fitting parameter settings based on these files and expected
allele frequencies at specific loci. Additionally, IMPI indicates if all required files are available (green)
or not (red).

For this purpose, n solution candidates are generated with randomly determined
parameter settings. These parameters are applied to all defined files. In order to identify
the best set of parameters, a so-called fitness score is calculated. The fitness score value
describes how close the given solution candidate is to the optimum solution. Each solution
candidate is scored with the following fitness function:
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f itness score = mse(yestunclustered , ytrueunclustered) + ∆VAFunclustered + mse(yestclustered , ytrueclustered) + ∆VAFclustered (1)

where the mean squared error (MSE) of yest and ytrue for unclustered and clustered results
is calculated. yest and ytrue are vectors containing the estimated and expected (true) VAFs.
∆VAF is calculated as the difference between the expected and actual VAF at a specific
gene loci. The lower the fitness score, the higher the accordance with the expected VAFs.
Sequentially, the ES aims to find the one solution candidate with the best fitness (lowest
deviation to the expected score). In order to ensure not to get trapped in a local optimum, a
mutation method is implemented to slightly adapt the parameters of the solution candidates
after each iteration. The best candidates’ parameter set is finally provided.

2.8.2. Wild-Type Correction

In the case of a provided wt sample, IMPI allows for correcting the calculated VAFs of
a specific sample. As shown in Figure 8B, reverse reads keep showing lower quality than
forward reads, which can lead to a high drop rate or erroneous high VAFs. Adjusting the
AFs of a sample using the wt AFs as references allows for a correction of the calculated VAFs.

2.8.3. Cross-Sample Contamination Analysis

UMIs are supposed to be unique within one sequencing run. Nevertheless, prior
to PCR, cross-sample contamination can occur [26]. These may cause erroneous VAFs
or artificial similarity of the samples, which can lead to misinterpretation. IMPI thus
has an integrated cross-sample contamination analysis function. This method compares
shared UMIs of multiple samples and provides an interactive heatmap showing the number
and percentage of shared UMIs and Venn diagrams (generated with the Python library
matplotlib-venn [27]) of all sample pairs.

2.9. Output

All processed sequences can be exported in FASTQ, FASTA, SAM, and the AF matrices
in spreadsheet file format. Furthermore, IMPI allows the export in BAM file format by
providing the Linux command for automated conversion of the exported SAM files using
SAMtools [20].

3. Results

In the following section, the results of the IMPI software are described by applying all
methods implemented in IMPI to NGS data of synthesized DNA samples with predefined
VAFs. The results described below show how point mutations (in this case: resistance
mutations in CML samples) are identified using IMPI and demonstrate the functionality of
the different implemented clustering approaches.

3.1. Dataset

The dataset used here comprises NGS data of synthesized and UMI-tagged DNA
samples of a fusion gene basically known from CML, consisting of breakpoint cluster
region (BCR) and the tyrosine kinase ABL1. CML is a hematopoietic neoplasm leading
to granulocytic precursor cells’ uncontrolled proliferation. The disease is caused by a
translocation, t(9;22)(q34;q11.2), leading to the BCR::ABL1 fusion gene. The resulting
BCR::ABL1 fusion protein is a constitutively activated kinase, leading to cancer-specific
signal transduction [28,29]. Standard first-line CML therapy involves tyrosine kinase
inhibitors (TKI), which act as adenosine triphosphate (ATP) competitors and inactivate the
kinase domain [30–32]. However, in some patients, targeted therapy induces the evolution
of clonal cell populations carrying specific point mutations, so-called resistance mutations,
in ABL1 [33]. In these patients, the drug binding affinity of TKIs is reduced and the resulting
therapy failure requires a therapy switch to other TKI [34]. Common residues for resistance
mutations are, among others, E255, T315, and F359 [35]. Regular sequencing of CML
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patients’ BCR::ABL1 gene enables the recognition of these resistance mutations and allows
to counteract uncontrolled proliferation.

A custom-designed NGS workflow was developed to sequence RNA and DNA sam-
ples of the BCR::ABL1 fusion gene region (Figure 5—yellow). For both sample types UMIs
were attached to each initial template (Figure 5—blue). For RNA samples, UMI attachment
was performed during reverse transcription using UMI-containing gene-specific ABL1
primers and Superscript IV reverse transcriptase (Thermo Fisher Scientific, Waltham, MA,
USA). UMI attachment to DNA controls (synthesized DNA that uses the RNA fusion
transcript as a template sequence) was performed with two-cycle PCR using the same
UMI-containing primer and Q5 polymerase (New England Biolabs, Ipswich, MA, USA).
Fusion-gene selection was performed with a first PCR step using a forward primer in the
BCR region and a reverse primer in the ABL1 region (see Table 3). In the course of library
preparation, the region of interest, bearing most of the clinically relevant ABL1 mutations in
CML cells including whole exons 4, 5, 6, and 7, was amplified in a second PCR with a single
amplicon including the 10 bp-UMI attached to its 3’ end (Figure 5—red). In this study, the
synthesized control DNA samples are used; CML patients’ samples are not considered.

Figure 5. Custom-designed NGS Workflow. Starting material was either DNA or RNA samples
(yellow). Sample pre-processing (blue) differs in the method of UMI attachment. UMI attachment
in DNA samples was performed by using a two-cycle PCR; UMI attachment in RNA samples was
completed during reverse transcription. Library preparation (red) was the same for both sample
types. The region of interest (including the UMIs) was selectively amplified using two steps of PCR
followed by linker ligation necessary for Illumina sequencing. Finally, after NGS, FASTQ files were
generated and run information was provided for further processing (green).

Table 3. Primer used in the custom-designed NGS workflow. The BCR::ABL1 fusion-gene selection
was performed using a forward primer in the BCR region and a UMI-containing reverse primer in
the ABL1 region.

Primer Sequence

Forward TACGACAAGTGGGAGATGGAACG
Reverse NNNNNNNNNNTGTTGTAGGCCAGGCTCTCG

3.1.1. Synthesized Control DNA Samples

IMPI’s methods are applied to synthesized BCR::ABL1 control DNA. This synthe-
sized DNA was used for panel evaluation and determination of the LOD. To this end, a
wt BCR::ABL1 control and three mutated BCR::ABL1 transcripts (p.E255K, p.T315I, and
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p.F359V) were synthesized (BioCat, Heidelberg, Germany). The mutated controls with
clinically relevant resistance mutations were diluted with wt controls in different percent-
ages for LOD evaluation: 5%, 1%, 0.5% VAF. For all samples, three replicates have been
sequenced. To evaluate the extent of recombination events taking place during sample
amplification, two mutated controls (100% p.E255K and 100% p.F359V) were mixed in
equal parts before library preparation.

3.1.2. Next-Generation Sequencing

NGS (Figure 5—green) was performed on the Illumina MiSeq platform (Illumina, San
Diego, CA, USA) using the V3 sequencing kit (600 cycles, 2 × 300 bp). This kit has the
potential of sequencing 300 cycles per sequencing direction and enables a full sequencing
coverage of the 586bp-region of interest with two largely non-overlapping reads.

3.1.3. Evaluation

The results of the UMI processing workflow implemented in IMPI were compared to
the results of a standard NGS workflow (raw workflow). For all synthesized DNA controls,
expected VAFs at specific loci are available. All synthesized DNA controls were analyzed
for LOD evaluation.

3.2. Sample Pre-Processing

As described in Section 2.3, the IMPI workflow starts with the sample pre-processing
(Figure 2). Thus, sample cleaning, UMI extraction, and feature calculations are carried out.
Figure 6 shows the number of reads considered (colored) and not considered (black) for
downstream analysis. As shown, in a first cleaning step, reads without reverse primer 2
(here: primer which contains UMI) and reads with aberrations within the length of the UMI
are removed from the raw reads (red). Reads without a forward primer are not discarded if
they contain the first five nucleotides according to the majority of all other reads. Reads
which are not merged or mapped successfully are dropped as well. All reads are mapped
on the BCR::ABL1 fusion gene reference sequence (transcript ID ENST00000318560). As
shown, approximately one-third of the reads are dismissed after the first data cleaning step.
The subsequent clustering steps further reduce the number of reads.

Figure 6. Sankey diagram showing the number of reads within the pre-processing and clustering
steps. Different exclusion criteria at different steps were implemented: (1) reverse read does not
contain a primer (here: Primer 2), (2) reads containing erroneous forward primers without first five
nucleotides, (3) unsuccessfully merged reads, (4) reads that do not fulfill the conditions according to
the set parameters (see Table 2).
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3.3. Cross-Sample Contamination

Once the pre-processing step is completed, the cross-sample contamination analysis
can be applied to identify shared UMIs of two samples. As shown in Figure 7, IMPI
provides on the left an interactive heatmap showing the number and percentage of shared
UMIs. On the right, the overlap is visualized in a Venn diagram.

Figure 7. Screenshot of IMPI’s cross-sample contamination analysis. Left: a heatmap inclusing four
different samples showing the percentage and number (#) of shared UMIs between two samples.
Right: a Venn diagram of two samples (E225K1II_34 in blue and T315I1II_S42 in green), which share
2171 UMIs (=2.88%)

3.4. Raw Data, Clustering I, Clustering II

After the pre-processing step, IMPI allows clustering the reads according to their
UMI. Here, IMPI implements two clustering methods which are described in Section 2.6.
We evaluated and compared the results of these three different approaches applied to a
wt sample (Figure 8A). The expected AF of the wt sequence (black line) is 100% at each
locus, implying agreement with the reference sequence. All three replicates show a rather
heterogeneous VAF in the 3’ end region of the reverse reads. Figure 8A further displays
that the pre-processing and application of the clustering algorithms (Clustering I and
Clustering II) implemented in IMPI show a lower variability within the results.

The results of the analysis of the three mentioned clinically relevant mutations in
CML (p.E255K, p.T315I and p.F359V) are shown in Figure 9. Here, the subplots A–C show
the average results of three replicates compared to the expected values (dashed lines) of
the three implemented algorithms (blue: Unclustered, orange: Clustering I, and green:
Clustering II) using three different parameter setting schemes. The parameter setting
schemes are shown in Table 4, whereas parameter settings scheme A uses the default
parameter setting of IMPI and scheme B is more restricted. Parameters defined in scheme C
have been optimized by using the implemented evolution strategy. For the ES, one replicate
of each mutated transcript of each concentration and one wt sample was used to determine
the most suitable parameters.
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Table 4. Parameter setting schemes used for point mutation identification. Parameter setting scheme
C is the optimized parameter scheme identified by the ES implemented in IMPI.

A B C

Min. Quality 33 35 34
Min. UMI Quality 33 34 31
Min. Clustersize 1 2 1
Min. Cut-Off and Min.
Cut-Off Value 0.50 0.50 0.50

Max. N 3 10 11
Threshold Ref Identity 0.90 0.95 0.94
Max. Mismatches 10 5 11
Max. Insertions 3 1 20
Max. Deletions 3 1 20
Omit from UMI 0 0 0

Figure 8. Results provided by IMPI for a wild-type sample. (A) Allele frequencies (AFs) of a wild-type
(wt) sample where AFs are expected to be 100% and identical to the reference sequence. Results show
an average allele frequency of 99.80% with a maximum aberration of 2.72% (unclustered) and 7.76%
(UMI-tools). Clustering I and II slightly improve the AF ratios and reduce the number of detected
point mutations (VAFs > 0.5%) from 35 to 22. UMI-tools results, shown in green, show similar results
with 36 detected point mutations (VAFs > 0.5%). Low AFs (<99.5%) in the region of the 3’ end of the
reverse read highly agree with the low qualities of the reverse reads shown in (B)—graphs have been
generated using FastQC [36]. The implemented variant calling algorithm in IMPI compensates for
more extreme deviations.
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Figure 9. Comparison of the three algorithms for variant allele frequency calculation (Unclustered,
Clustering I, and Clustering II). (A–C) show the mean VAFs of the synthesized control samples with
the different clinically relevant mutations (p.E255K, p.T315I and p.F359V). Dashed lines show the
expected VAFs. For the different parameter setting schemes described in Table 4 A–C the measured
results are shown. We show that minor parameter alterations (Scheme A to Scheme B) lead to
improved results, especially in p.E255K 0.5% expected VAF. Results mainly differ in 1% expected VAF.
However, in all samples in scheme A between 14 (Clustering II) and 44 (Unclustered) point mutations
(VAF > 0.5%) and in (Scheme B) between 12 (Clustering II) and 38 (Clustering I) point mutations are
detected. (C) Parameters have been optimized using the implemented ES in IMPI and were applied
to synthesized mutated transcripts with 0.5%, 1%, and 5% VAF. For all schemes sample t-tests have
been performed. No statistically significant differences were detected, except in the following: A1-C1
5% VAF Clustering II (green), B1 5% VAF Clustering I (orange), A2-B2 1% and 5% VAF unclustered
(blue), A3-C3 1% VAF unclustered (blue) and both clustering approaches (orange and green).

4. Discussion

All methods implemented in IMPI have been applied to the provided NGS dataset
consisting of synthesized BCR::ABL1 DNA samples. In comparison to other tools such
as UMI-tools, UMICollapse, or zUMIs, IMPI provides a GUI (see Table 5). Further, IMPI
executes automatically generated commands of third-party party tools (Bowtie2 and NG-
merge). Additionally, the downloaded executables do not need any additional Python
functionalities to be installed.

Here, IMPI is mainly compared with UMI-tools based on its functionalities. As de-
scribed in Table 5, both, UMI-tools and IMPI are implemented in Python, use Bowtie2
for mapping but differ in the UMI collapsing and the GUI availability. The dataset
served mainly for functionality demonstration and does not allow deep comparisons
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with UMI-tools results due to the datasets’ inherent limitations. These limitations, such as
PCR-mediated recombination events and low sequencing depth, will be discussed in the
later sections.

Table 5. Tools for dealing with UMIs.

Mapping Operating System GUI/Command-Line-Based Implementation

UMI-tools [7] Bowtie2, e.g., Linux cmd Python
zUMIs [16] STAR Linux cmd R
UMICollapse [15] Bowtie2 *, e.g., Linux cmd Java
umis [14] Kallisto/RapMap ** Windows, Linux cmd Python
IMPI Bowtie2 Windows, Linux GUI + cmd Python

* uses UMI-tools dedup method in second step; ** pseudo-aligners.

4.1. Data Cleaning

IMPI’s pre-processing methods prepare all data for further clustering, cross-sample
contamination analysis, optimization steps, and export. In this step, methods are compara-
ble to UMI-tools extract function and the required mapping steps using (as IMPI) Bowtie2.
Further, UMI-tools requires SAMtools for conversion, sorting, and indexing. In this step,
both tools check all reads for primers and extract the UMIs. As shown in Figure 6 and
described in Section 3.2, in IMPI, approximately one-third of the reads are dismissed after
the first data cleaning step. In this case, it is due to the used merging parameters (here:
minimum overlap = 10 and allowed mismatch rate = 0.10).

For quality assurance, cross-sample contamination analysis has been performed. This
method is especially helpful contamination is assumed, e.g., during wet lab sample pro-
cessing. For example, in Figure 7, a subset of four samples is shown. When cross-sample
contamination analysis has been performed for all 27 samples, no sample pair exceeded
4.87% shared UMIs UMIs. This leads to the assumption that no cross-sample contamination
occurred during sample processing.

4.2. Comparison: Raw Data, Clustering I and Clustering II

In the second step, clustering of the raw data by UMIs is performed. This method
is comparable with UMI-tools’ dedup method, which is also used in UMICollapse after a
different UMI clustering approach. As shown in Figure 8A and described in Section 3.4,
wt VAF analysis shows an improvement by applying Clustering II. However, all three
clustering processes show a rather heterogeneous VAF in the 3′ end region of the reverse
reads. This region is known to offer a comparatively low average Phred quality score in all
samples (shown in Figure 8B). Here, neither IMPI nor UMI-tools are able to successfully
collapse UMIs to approach the expected 100%. Nevertheless, with the use of custom
parameter settings and clustering algorithms, the results of Clustering II are closest to the
expected results. The number of mutations (VAF > 0.5%) identified is reduced from 35 to
22. Results of UMI-tools show 36 identified mutations (VAF > 0.5%). These unsatisfactory
results are not primarily related to the used tools – this is due to the sequencing strategy
and is described in more detail in Section 4.3.

Looking closer into the results of the synthesized samples shown in Figure 9, the
impact of minor parameter settings adaptations is visible. Individual parameter settings
lead to different results. Allele frequencies of the p.F359V replicates show high variations
(Figure 9A(3), B(3) and C(3)), which is very likely attributed to the low Phred quality score
of the 3′ end region of the reverse read where this point-mutation is nearby. Conversely,
point mutations further away from the overlapping read ends (p.E225K and p.T315I) show
lower standard deviations than p.F359V.

All samples where parameter settings scheme B was applied (Figure 9B(1–3)) show
in average better results in lower VAFs (0.5%)—especially, Clustering I and Clustering II.
For higher expected mutation rates (1% and 5%) results show lower VAFs than results
derived from parameter settings scheme A and C. As described in Table 4 (column B),
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parameter settings scheme B only uses clusters with at least two reads (Min. Clustersize = 2).
Consequently the number of reads for (V)AF calculation after clustering is reduced and
calls much more variants. This means that an increased Min. Clustersize makes sense for
samples with higher read counts.

When comparing the results of parameter settings scheme A and C, results look very
similar but the ES optimizes parameter set allows more unspecific nucleotides (Max. N),
insertions, and deletions. When comparing the average number of total point mutations
detected (VAF > 0.5%), AF matrices generated by applying the optimized parameters
of the ES show equal or less point mutations. Especially in the case of unclustered and
Clustering I reads. For parameter settings scheme C, raw read analysis (unclustered) and
results derived from Clustering I show an average number of point mutations (VAF > 0.5%)
of 36.08 in unclustered and 37.71 in Clustering I. In Clustering II, in average 48.17 point
mutations are detected.

The two clustering approaches perform differently. With our data, best results of the
Clustering II are observed when being applied to p.T314I sample. For mutation detection
in the beginning of the sequenced BCR::ABL1 gene Clustering II performed poorly. Near
the read overlap region the three methods show similar results. However, it must be noted
that the interpretation of these results is only partially possible because, as described in the
next section, due to challenges while sequencing an exact interpretation of the results is
not given.

4.3. LOD Evaluation

Highly sensitive NGS of synthesized positive controls revealed a position-dependent
LOD. Using the UMI workflow, the LOD was 1% VAF for p.E255K, 5% VAF for p.T315I and
1% VAF for p.F359V. However, the raw workflow showed LOD of 1% VAF for p.E255K,
5% VAF for p.T315I and 5% VAF for p.F359V. In contrast to the literature [9], the use of
UMIs does not show a significant increase in sensitivity in our workflow. Because of these
unexpected LOD results, further experiments focusing on quantifying PCR-mediated re-
combination events during the library preparation were performed to find an explanation.
These experiments revealed 12.25% recombination for positive controls after 30 cycles of
PCR I. Here, PCR-mediated recombination causes a template switch of the polymerase
during the elongation step of PCR [37]. In that affected 12.25% of the amplicons, a UMI,
which initially tagged a mutated fragment, was transferred onto a wt read or vice versa. As
a result, an initial template with a particular genotype and a corresponding UMI creates
descendants showing sequences with other genetic information and other UMIs. This leads
to conflicting base information in the collapse process if one amplicon represents a wt-base
and another amplicon represents a variant base while both share the same UMI. The bioin-
formatics pipeline is set to call the base with the majority at a given position. Depending on
the PCR cycle number of the recombination event, this can cause different base call results.
Importantly, because of the single amplicon design of the workflow, those chimeric reads
cannot be distinguished from correctly processed amplicons during mapping.

Subsequently, these contradictory results in UMI workflow evaluation of control
samples can be attributed to PCR-mediated recombination. In standard NGS procedures,
such PCR-mediated recombination events also happen, but they are not noticed since no
backtracking to initial templates is usually done. One way to overcome this sensitivity
problem is a basic workflow design change from a single amplicon sequencing approach
to a multi amplicon sequencing approach. This change would decrease the probability of
recombination events within the same amplicon. A further advantage of a multi-amplicon
approach would be the possibility of sequencing with overlapping reads (a forward and a
reverse read for the same amplicon), which would further improve sensitivity. Unfortu-
nately, the long, non-overlapping reads of our design do not provide the ability to eliminate
artifacts that arise due to sequencing strand bias.
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5. Conclusions

To summarize, the ability to interpret the impact of UMIs in UMI-tagged NGS data
shows high potential. As described within this study, comparing point mutation identi-
fication of raw reads versus reads collapsed by UMIs allows for data quality analysis as
well as for better understanding of the data. Targeting this obstacles, IMPI was designed
and developed. This software framework provides algorithms for NGS data pre- and
processing, data quality assurance, handling UMI-tagged NGS data as well as providing
compact and transparent results.

In this study, all algorithms implemented in IMPI were used to determine point
mutations in BCR::ABL1 sequencing data derived from a custom-designed NGS approach.
The use of UMIs for this sequencing data revealed no significant noise reduction compared
to the raw workflow (without the use of UMIs). Comparing the results derived from
IMPI’s raw read processing and clustering revealed discrepancies in VAFs. Consequently,
experiments focusing on quantifying PCR-mediated recombination events during library
preparation were carried out to find a reason for these discrepancies.

In conclusion, for this study, the implemented bioinformatics workflow, IMPI, could
not eliminate all design and wet lab workflow limitations. However, the ability to compare
raw data analysis and UMI clustering provided by IMPI made it possible to uncover
these discrepancies. Other groups working with a similar sequencing concept were also
unable to develop the design into a highly sensitive procedure [10]. This may indicate
that future approaches should follow a modified strategy. Once wet lab experiments are
improved, further development of the NGS workflow design towards smaller amplicons
could exploit the power of the here described bioinformatics pipeline and thus the potential
of highly sensitive sequencing. Finally, the current advances in artificial intelligence and
the upcoming possibilities can not be ignored in the field of genomics and variant detection.
With the integration of an evolution strategy into IMPI, the first attempt has been performed
and opens up chances for further improvement.
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Abbreviations
The following abbreviations are used in this manuscript:

ABL1 Abelson murine leukemia viral oncogene homolog 1
AF Allele frequency
ATP Adenosine triphosphate
BCR Breakpoint cluster region
BWA Burrows-Wheeler Aligner
CIGAR Concise Idiosyncratic Gapped Alignment Report
CML Chronic myeloid leukemia
ES Evolution strategy
GATK Genome Analysis Toolkit
GUI Graphical user interface
IMPI Interface for Point Mutation Identification
LOD Limit of detection
MSE Mean squared error
NGS Next-generation sequencing
OS Operating system
PCR Polymerase chain reaction
PWM Position weight matrix
SAM Sequence alignment map
TKI Tyrosine kinase inhibitors
UMI Unique molecular identifier
VAF Variant allele frequency
wt Wild-type
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