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Abstract: Public transportation systems, including trams and buses, play a crucial role in urban
traffic. However, these traditional modes of transport have some well-known drawbacks, such as
long distances between stops, lengthy waiting times, and a lack of privacy. In response to these
challenges, an innovative mobility concept called “FLAIT-train” offers potential solutions. The
FLAIT-train operates on regular roads and aims to provide DOOR-2-DOOR transport, addressing
the issues associated with fixed stops and offering increased accessibility and convenience. In
its initial phase, the FLAIT-train operates on exclusive lanes, but it is designed to integrate with
other traffic eventually. The vehicle technology of FLAIT-trains closely resembles that of battery
electric autonomous vehicles. To assess whether FLAIT-trains can be used as a suitable alternative to
conventional public transportation systems, this paper employs traffic simulations that consider key
performance indicators, including the average waiting time per passenger, maximum waiting time of
a single passenger, average in-vehicle time per passenger, and average occupancy rate of the vehicles.
Using SUMO software (“Simulation of Urban Mobility”, version 1.12.0), a night bus service scenario
is meticulously designed and generated. Within this scenario, both FLAIT-trains and conventional
buses are simulated under identical conditions and based on statistical data.

Keywords: FLAIT-train; traffic simulation; public transport; on demand; SUMO; night bus routes

1. Introduction

Tram and bus systems offer valuable economic and environmental advantages as
essential elements of public transportation, contributing to improved sustainability and
urban living standards [1]. Nevertheless, they face specific challenges that can affect their
acceptance and usage.

Poor accessibility to fixed stops is a significant issue affecting the attractiveness of
trams or buses [2], especially during the night when there are fewer active night bus routes,
such as in the German city Duisburg. Passengers often find themselves having to walk long
distances to reach a stop, and in some cases, they may even have to cross several streets to
access the nearest stop. This inconvenience can deter potential passengers and reduce the
overall appeal of using public transportation.

Optimizing the total travel time is another crucial aspect to consider for public modes
of transport, such as buses. The total travel time includes various components, including
the time to walk to and from the boarding and alighting stops, the waiting time at the stop,
and the actual in-vehicle travel time.

Another area for improvement is the in-vehicle time, which can be optimized by mini-
mizing the number of intermediate stops and reducing the boarding and alighting times.

Furthermore, ensuring passenger privacy and comfort is indeed an important aspect of
public transportation. Trams or buses, being shared public spaces, can sometimes lack the
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level of privacy that individual travelers might prefer. Passengers may feel uncomfortable
due to the proximity of fellow passengers, especially during rush hours when trams or
buses are crowded [3].

Conversations between passengers, phone calls, and other activities can contribute
to a sense of reduced privacy for some passengers. This can be challenging, especially for
those seeking a quieter and more private environment during their commute.

Additionally, as demonstrated by studies such as [4], the limited number of seats in
trams or buses can be a concern for passengers, leading to discomfort during long journeys.
Standing for extended periods may also impact passenger satisfaction. Furthermore, an
inadequate air quality, especially during rush hours when trams or buses are packed with
passengers, can add to the perceived discomfort [3].

A night bus service presents a unique application scenario for public transportation,
as the number of passengers is usually much lower at night. The reduced passenger
volume results in longer intervals between two consecutive night buses, e.g., departing
only once every hour in the German city Duisburg. The fixed schedule restricts passengers
from returning home at their preferred time, and they must plan their travel around the
scheduled departure time.

However, innovative, on-demand transportation concepts, like the DOOR-2-DOOR
service [5], have gained attention as potential solutions to overcome the limitations of
conventional public transportation systems. The DOOR-2-DOOR service aims to provide a
more flexible and personalized transport option for passengers, offering them a convenient
and efficient way to travel from their doorstep to their destination without the need to
adhere to fixed schedules or stops.

Since 2019, an innovative concept called “Fast Lane AI Transportation” (FLAIT) has
been under development [6]. The ultimate goal of this research is to achieve an on-demand
DOOR-2-DOOR service using a single FLAIT vehicle. However, due to current techno-
logical limitations, this goal needs to be pursued incrementally. This paper presents an
intermediate solution aimed at addressing the challenges faces by conventional public
transportation systems. Building on ongoing research regarding modular buses [7], the
FLAIT-trains, comprised of FLAIT vehicles, have the potential to replace traditional public
transportation systems. If the application of such systems can enhance the attractiveness of
the public transportation system, it will increase the utilization rate of public transportation
compared to private cars. As a result, some advantages of the public transportation system,
such as the efficient use of urban spaces, would be significantly improved.

This paper focuses on exploring the feasibility and performance of the FLAIT-train
system as a potential replacement for conventional public transportation. Through a
simulative analysis, the research is aimed to assess the effectiveness of this alternative
transportation approach in the context of a night bus scenario.

2. Related Work

The study of on-demand transport systems includes research on the Dial-a-Ride Prob-
lem (DARP). The DARP involves transporting passengers between paired pickup (origin)
and delivery points (destination) and has been a subject of study for over five decades [8,9].

Dial-a-Ride services can be provided in either a static or a dynamic mode, as described
by [10]. In a static mode, all transportation requests are known in advance, allowing for
preplanned routes and schedules. On the other hand, in the dynamic mode, transportation
requests are revealed in real time, and vehicle routes are adjusted accordingly [10,11]. The
dynamic mode allows for more flexibility and adaptability to changing demands.

Dial-a-Ride Problems (DARPs) can be classified into two main categories: single-
vehicle DARPs (SDARPs) and multi-vehicle DARPs. These categories are based on the
number of vehicles involved in transporting passengers, as described by [10].

In the single-vehicle DARP (SDARP) scenario, all passengers are served and trans-
ported by a single vehicle. This represents the simplest and most straightforward case of the
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DARP. The SDARP can be seen as a basic variant of the problem, where the goal is to find
the most efficient routes for a single vehicle to serve all the pickup and delivery requests.

On the other hand, the multi-vehicle DARP involves multiple vehicles to serve the
passengers’ transportation needs. In this case, the optimization challenge becomes more
complex, as the routes for multiple vehicles need to be planned to ensure an efficient and
timely service for all passengers.

Indeed, Personal Rapid Transit (PRT) is another alternative on-demand transport
system that has been extensively researched and studied, as stated in [12,13].

PRT is an automated transit system that operates with driverless vehicles. It consists of
a fixed network with dedicated off-line stops. One of the key advantages of the PRT system
is its smaller vehicle size, typically accommodating 2 to 4 passengers. Due to its on-demand
technology, the PRT system can provide faster travel times by avoiding intermediate stops,
offering passengers a more direct and efficient transportation experience [12].

One of the significant differences between the PRT system and other transportation
systems is that PRT traffic does not interfere with other traffic participants. This is achieved
by elevating the PRT track to a higher level or concealing it underground, effectively
separating it from pedestrian and vehicular traffic. As a result, the PRT system can ensure
a high level of safety and efficiency in its operation [13].

However, it is essential to note that the PRT system comes with considerable invest-
ment costs for its infrastructure. According to research in [12], the investment costs for PRT
tracks can range from USD 30 to 100 million per mile due to the exclusivity and technical
complexity of the system.

While the PRT system offers several advantages in terms of safety, efficiency, and
direct travel, its high infrastructure costs may present a challenge to its widespread imple-
mentation. Nonetheless, the PRT and DARP services present promising alternatives in the
field of on-demand transport systems, each with unique features and capabilities that cater
to different transportation needs.

2.1. Scientific Research of the DARP

Since the introduction of the first Dial-a-Ride Problem (DARP) service in 1970, a
substantial amount of research has focused on developing models and algorithms to
address its various aspects. Notably, the research progress up to 2007 was thoroughly
summarized and described in [14]. The publication provided a comprehensive overview of
the advancements made in the DARP field up until that time.

In more recent years, from 2008 to 2018, further research and developments in the
DARP domain were documented and presented in [9]. This study showcased the latest
findings and methodologies in handling the DARP, reflecting the ongoing efforts to improve
and optimize this on-demand transportation system.

Furthermore, an update on the research progress in the DARP domain up until 2021
was provided in [15]. This publication compiled and summarized the relevant works and
contributions made in the DARP field during the years leading up to 2021, shedding light
on the latest findings and innovations in the domain.

The pioneering work on planning and scheduling for the Dial-a-Ride Problem (DARP)
was presented in [16]. Subsequently, research in this area has been continuously studied
for different cases and scenarios. As highlighted in the research in [14], the publications on
the DARP have primarily focused on two main problem objectives:

1. Minimizing costs while ensuring full demand satisfaction and adhering to various
side constraints;

2. Maximizing the number of satisfied demand requests, taking into account vehicle
availability and other side constraints.

These side constraints often include factors such as the fleet size, operational costs, and
driver’s wages. The common goal is to find solutions that optimize the overall efficiency
and effectiveness of the DARP system. Satisfied demand refers to meeting customer
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preferences and requirements, such as minimizing the waiting time, in-vehicle time, or the
total duration of the route.

In 1980, ref. [17] analyzed and solved the single-vehicle case of the DARP in static
mode using a dynamic program. The objective was to minimize a combined objective
function comprising the route duration, total waiting time, and in-vehicle time for all
passengers. Concurrently, other researchers also explored this problem using Benders’
decomposition procedure [18,19].

Subsequent research on single-vehicle DARPs employed various approaches. In
one study, the DARP was formulated as a k-forest problem to optimize the total routing
distance [20]. Another investigation [21] aimed to optimize the cost effectiveness of a
single-vehicle DARP and the total travel distance using metaheuristic techniques, such
as simulated annealing, generic algorithms, particle swarm optimization, and artificial
immune system.

Since the research conducted in [22], most publications have primarily focused on
developing multi-vehicle DARPs, each distinguished by varying constraints and objective
functions. Some studies aimed to minimize the travel costs, including the total ride distance
and duration, assuming an efficient number of available vehicles [10,23–25]. On the other
hand, some researchers sought to maximize the service quality measures with a limited
number of available vehicles [26–28].

Moreover, some publications also considered the vehicle emissions as an additional
factor in the optimization process [29]. Other objective functions included the passenger
occupancy rate [30], service provider’s operational costs and profit [31–33], workforce
planning and staff workload [34], and system reliability [35].

Interested readers can refer to the detailed introductions and classifications available
in [5,10,11] for a more comprehensive understanding of the different models and algorithms.
These works provide valuable insights into the various approaches taken to tackle the
multifaceted challenges presented by multi-vehicle DARPs.

2.2. Application Projects of the DARP in Germany

In North and South America and Asia, ride-hailing services have gained immense
popularity as on-demand mobility solutions, with transportation network companies like
Uber, Lyft, and DiDi dominating the market. However, in Germany, these ride-hailing
services are not as common due to strict regulations [36]. Instead, the country has seen
the emergence of on-demand mobility services in the form of ride pooling. Several private
enterprises or startups have ventured into this space, such as MOIA, which has been
operating in Hamburg and Hannover since 2019 and 2017, respectively [36].

Furthermore, collaborations between municipal transportation companies and star-
tups have led to the establishment of additional on-demand mobility services. For instance,
LüMo operates in Lübeck, myBus in Duisburg, and SSB Flex in Stuttgart [37]. A notable
example is the “Bedarfsbus Schorndorf” service, which operates as part of a research
project [38].

These on-demand mobility services have filled the void left by the absence of tradi-
tional ride-hailing services in Germany, offering residents more flexible and convenient
transportation options. The partnerships between startups and municipal transportation
companies have further facilitated the integration of these services into the existing public
transportation infrastructure.

2.3. FLAIT-Trains

The FLAIT-train system, designed based on the vehicle specifications mentioned
above, utilizes a unique approach for traffic flow. Each direction of travel on the classic
tram track is divided into two sections: one for the parking lane and the other for the traffic
of FLAIT. The FLAIT-trains operate fully autonomously, eliminating the dependence on
the drivers’ working hours. Passengers can easily reserve a FLAIT-train at any time using
their smartphones or other mobile devices.
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One of the significant advantages of the FLAIT system is that passengers no longer
need to walk to fixed stops. Instead, they can wait directly at the parking lane, reducing
both the waiting time and walking distance to the stop. This innovative approach optimizes
passenger convenience and enhances the overall transportation experience.

Figure 1 provides a graphical representation of the various advantages offered by the
FLAIT-train system. Additionally, Table 1 complements the characteristics of FLAIT-trains,
making a comprehensive comparison with other transportation systems based on the table
in [9].

Figure 1. System of FLAIT-trains [39].

Table 1. A comparison between five public transportation services [39].

Tram Typical On-Demand
Transit Taxi FLAIT-Train PRT

Route Fixed Flexible Flexible Fixed Fixed
Stop Fixed w/o w/o w/o Fixed

Schedule Fixed By request By request By request By request
Ticket cost Low Medium High Low Low

Mode Shared Shared Non-shared Shared 1 Shared 1

Seating capacity >100 5–25 <7 2 2–4
Autonomous level No No No Automated Fully

Track usage Exclusive Mixed Mixed Exclusive Exclusive
Reservation Not needed Often needed Not needed Not needed 2 Not needed

Avg. speed [kph] 33.5 3 23 4 23 4 32 60 5

1 Non-shared mode is provided with a surcharge. 2 In principle, same as a taxi. 3 Average speed of trams in
Duisburg according to [40]. 4 Average urban speed of automobile traffic in Düsseldorf according to [41]. 5 Planned
average speed according to [42].

2.4. Utilized Mathematical Approaches
2.4.1. Monte Carlo Method

The Monte Carlo method is a widely used computational technique with applications
across various fields, ranging from physics and engineering to finance and computer
science [43]. Named after the famous casino in Monaco, this method was first introduced
by mathematicians John von Neumann and Stanislaw Ulam during the Manhattan Project
in the 1940s [44].

The Monte Carlo method is a simulation-based approach that relies on random sam-
pling to solve complex mathematical and statistical problems. The main idea behind the
method is to generate many random samples from a given probability distribution and
then use these samples to estimate the solution to the problem of interest. By repeating this
process many times, Monte Carlo simulations provide a statistical approximation of the
desired outcome with a certain confidence level.
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One of the key advantages of the Monte Carlo method is its ability to handle problems
with high dimensionality and uncertainty, where traditional analytical approaches may be
computationally intractable or too restrictive. Additionally, it allows for the incorporation
of various sources of randomness and complexity into the models, making it a versatile
tool for analyzing real-world systems and processes [43].

In recent years, the Monte Carlo method has gained popularity in fields such as
finance for pricing options, in physics for studying complex systems, and in engineering
for risk analysis and reliability assessments. Its widespread adoption is due to its simplicity,
flexibility, and the ability to provide accurate results even for intricate and non-linear
problems [43].

This paper utilizes the Monte Carlo method to estimate passenger arrival times at
bus stops in an on-demand public transport scenario. By generating random samples of
passenger arrival times within a specified time window, valuable insights into the system’s
behavior and performance can be obtained. Through Monte Carlo simulations, we aim
to enhance the accuracy and reliability of our passenger models, contributing to a more
efficient and optimized public transport system.

2.4.2. Convex Optimization Problem

As introduced in [45,46], convex optimization is a robust and widely used mathemati-
cal framework that deals with finding the best possible solution to a class of optimization
problems. It plays a fundamental role in various fields such as engineering, finance, ma-
chine learning, and data science, where optimization tasks are prevalent.

The central focus of convex optimization is to optimize a convex objective function
subject to a set of convex constraints. A function is considered convex if it satisfies a
specific mathematical property that ensures its local and global minimums are the same.
This property makes convex optimization particularly attractive, since it guarantees the
existence of a unique and globally optimal solution.

In a convex optimization problem, the goal is to find the values of decision variables
that minimize (or maximize) the convex objective function while satisfying the convex
constraints. The decision variables represent the adjustable parameters of the problem, and
their optimal values lead to the best possible outcome.

The process of solving convex optimization problems involves employing mathemati-
cal algorithms and techniques that efficiently navigate the solution space to identify the
optimal solution. One of the most widely used methods is the interior-point method, which
iteratively moves toward the interior of the feasible region while ensuring that each step
leads to a feasible and improved solution.

Convex optimization has a wide range of applications, such as portfolio optimization
in finance, parameter estimation in machine learning, trajectory planning in robotics,
and resource allocation in engineering projects. Its ability to efficiently handle complex
optimization tasks with guaranteed convergence to the global optimum makes it a vital
tool in modern problem solving.

This paper employs convex optimization to estimate passengers’ alighting possibilities.
By formulating the problem as a convex optimization task, the model efficiently determined
the probabilities for passengers to alight at specific stops based on the given constraints.

3. Methodologies
3.1. Aim and Key Figures

The limited passenger seating capacity of each FLAIT vehicle raises the question of
whether an appropriate number of FLAIT vehicles can effectively cover the system perfor-
mance of conventional public transportation systems. As defined by [47], transportation
system performance encompasses various quantitative operating characteristics, including
the service frequency, speed, reliability, safety, capacity, and productivity. During rush
hours, the passenger volume reaches its maximum, and it is essential for FLAIT vehicles to
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ensure that all passengers are transported to their destination with comparable or shorter
waiting times.

To address this concern, simulations were conducted to determine the required number
of FLAIT vehicles needed to match or exceed the performance of the conventional trams
or buses based on the available statistical data. The goal is to assess whether the resulting
number of FLAIT vehicles is feasible for both operational and economic reasons. In the
real FLAIT-train system, the passengers can board and alight at any point along the FLAIT
tracks without fixed stops, providing additional flexibility and convenience.

However, in this paper, the main objective is to investigate whether the FLAIT-trains
can effectively handle the passenger volume currently served by trams or buses based on
the available statistical data. To achieve this goal, the simulations with FLAIT-trains still
involve picking up passengers from the tram or bus stops without considering the full
advantage of the flexible stops that FLAIT-trains offer.

One advantage of FLAIT-trains compared to conventional public transportation sys-
tems is the elimination of transfer. However, due to the limitation of unavailable statistical
data for the simulative analysis, passenger transfers cannot be considered within the scope
of this paper. The limitation presents another constraint of the study.

For the analysis, all statistical data provided by DVG were first summarized and
analyzed. Furthermore, the scenario, including streets and bus stops, was modeled in
SUMO. In the next step, passengers were modeled in SUMO based on the statistical data,
as well as related vehicles such as buses and FLAIT-trains. The modeling of the related
components in SUMO will be explained in more detail in Section 4. After the modeling, a
reference simulation using the bus model was conducted to obtain the performance data of
the current state. Subsequently, iteration simulations for the FLAIT-trains were carried out
by varying the number of FLAIT-trains. The results analysis and comparison between the
two transportation modes were executed in MATLAB (version 24.1) and will be depicted
in Section 5. The methodology used for this analysis is graphically described in Figure 2, as
introduced in [39].

Figure 2. Flow chart of methodology [39].
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However, it is important to note that in these simulations, the passengers are still
assumed to be picked up from the traditional tram or bus stops, and the full potential of
the FLAIT system’s flexible stops is not yet taken into account.

The evaluation of the system performance in this paper is based on the four key
performance figures, which are as follows:

• Average waiting time per passenger;
• Maximum waiting time for a single passenger;
• Average in-vehicle time per passenger;
• Average occupancy rate of the vehicles.

3.1.1. Average Waiting Time per Passenger

Indeed, the average waiting time per passenger (tW,mean) is a crucial metric that directly
reflects the reliability and quality of the public transport service, as noted in [48]. This
paper also considers tW,mean as a significant evaluation criterion.

To calculate tW,mean, the waiting time of each individual passenger (tW,i) is recorded.
The total number of passengers transported is denoted by np. The average waiting time
per passenger is then obtained by dividing the sum of all individual waiting times by the
total number of passengers:

tW,mean =
∑

np
i=1 tW,i

np
. (1)

This formula allows for the determination of the average waiting time experienced
by passengers throughout the entire simulation or study period. By using this metric, the
paper aims to assess the overall service reliability and passenger satisfaction in both the
conventional public transportation and FLAIT-train systems.

3.1.2. Maximum Waiting Time of a Single Passenger

In on-demand public transport, the maximum waiting time of a single passenger
(tW,max) is another crucial indicator of the service quality, alongside the average wait-
ing time [49,50]. This paper recognizes the importance of tW,max and includes it as an
evaluation criterion.

To compute tW,max, the waiting time of each individual passenger is recorded as
tW,i. The total number of passengers transported is represented by np. The maximum
waiting time of a passenger is then determined by selecting the longest waiting time among
all passengers:

tW,max = max
(

tW,1, tW,2, · · · , tW,np

)
. (2)

This metric allows for the identification of the most extended waiting time experienced
by any passenger during the simulation or study period. It highlights the potential instances
of prolonged waiting, which can be critical for passenger satisfaction and the overall
service performance. By incorporating tW,max, the paper aims to assess the reliability and
consistency of both the conventional public transportation and FLAIT-train systems in
serving individual passengers.

3.1.3. Average In-Vehicle Time per Passenger

Indeed, the average in-vehicle time per passenger (tJ,mean) is a critical metric in assess-
ing the public transport service reliability, and it has been recognized as such in previous
studies, including in [48]. This paper also considers tJ,mean as an essential evaluation factor.

To calculate tJ,mean, the in-vehicle time for each individual passenger is recorded as tJ,i.
The total number of passengers transported is represented by np. The average in-vehicle
time per passenger is then derived using following formula:

tJ,mean =
∑

np
i=1 tJ,i

np
. (3)
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This metric measures the average time spent by passengers on their journey, exclu-
sively while onboard the tram/bus or FLAIT-train. It provides valuable insights into the
transport system’s efficiency and the passengers’ overall travel experience. By incorporat-
ing tJ,mean, the paper aims to analyze the in-vehicle experiences of passengers using both
modes of transport and assess their comparative reliability and efficiency.

3.1.4. Average Occupancy Rate of Vehicles

Additionally, to complement the aforementioned key performance figures, this paper
introduced the average occupancy rate of the vehicles as a means to compare the usage
efficiency between bus and FLAIT-train transit systems. As the number of the FLAIT-trains
increased, there was a corresponding decrease in the average and maximum waiting times,
as well as the average in-vehicle time. However, it is expected that the occupancy rate of
the vehicles would decrease due to the increased passenger capacities available.

In this paper, the average occupancy rate of the vehicles was considered as long as
at least one passenger was transported by a vehicle. This key performance figure was
determined using the following formula:

OCCmean =
∑te

t=t0

nP,ti
CP,V · nV

∑te
t=t0

ti
. (4)

To calculate the average occupancy rate of the vehicles, the occupancy rate of each
time point was summed and divided by the total duration for which at least one passenger
was transported by a vehicle. The occupancy rate of the time point (ti) was computed by
dividing the number of transported passengers (nP,ti ) by the passenger capacity of each
vehicle (CP,V) and the total number of vehicles in the fleet (nV).

4. Scenario Concept Design
4.1. Simulation Tool

For simulating the scenario involving conventional public transportation systems and
FLAIT-trains, the researchers utilized SUMO (Simulation of Urban Mobility, version 11.2.0),
an open-sourced microscopic traffic simulation software. The decision to use SUMO was
based on the specific requirements of the simulations and the extensive analyses comparing
various simulation software options [51,52].

By leveraging SUMO, the researchers were able to accurately model and analyze
the transportation scenarios involving conventional public transportation systems and
FLAIT-trains, taking into account factors such as the passenger volumes, waiting times,
in-vehicle times, and other performance indicators. SUMO’s capabilities and flexibility
allowed for the comprehensive evaluation of the FLAIT system and its comparison with
conventional public transportation systems, enabling valuable insights and conclusions to
be drawn from simulation results.

4.2. Simulation Scenario

Currently, there are six night bus routes available in Duisburg, as shown in Table 2. The
night bus service, operated by DVG, runs daily from 11 p.m. to 5 a.m., and on weekends,
it operates until 8 a.m. The bus stops for these six routes are distributed throughout the
entire city. Each bus route has its final stop at Duisburg’s central railway station, providing
passengers with the opportunity to transfer to other bus routes at the station.

During nighttime, the number of passengers is typically lower compared to daytime.
As a result, the time interval between two night buses is usually longer than during the day.
Based on the current timetable, the buses depart once every hour. Consequently, passengers
are unable to return home at any time they wish. Instead, they must make their way to the
bus stop shortly before the bus is scheduled to arrive.
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Table 2. Duisburg night bus routes.

Bus Route From To Stops Duration in [min]

NE1
Buschhauser Str. DU-Hbf East Entrance 44 64

DU-Hbf East Entrance Buschhauser Str. 44 63

NE2
Rumeln Town Hall DU-Hbf East Entrance 29 53

DU-Hbf East Entrance Rumeln Town Hall 29 54

NE3
Watereck DU-Hbf East Entrance 23 41

DU-Hbf East Entrance Watereck 23 38

NE4
St. Anna Hospital DU-Hbf East Entrance 28 34

DU-Hbf East Entrance St. Anna Hospital 27 39

NE5
Hochheide Market DU-Hbf East Entrance 25 38

DU-Hbf East Entrance Hochheide Market 25 42

NE6
Mannesmann Gate 2 DU-Hbf East Entrance 20 33

DU-Hbf East Entrance Mannesmann Gate 2 20 34

However, this particular use case is well suited for on-demand vehicles. On-demand
vehicles typically have lower passenger capacities than conventional buses, allowing for
a more flexible service when serving fewer passengers. This flexibility enables the on-
demand vehicles to provide a tailored and responsive service based on the specific needs
of the passengers.

In the simulative analysis, all six night bus routes in Duisburg have been included.
The details of these routes, including their end station, number of stops, and duration in
both directions, have been compiled in Table 2. It is important to note that for the bus route
“NE3”, there are stops located in the city of Dinslaken and outside Duisburg, which are not
considered within the scope of this paper. The visualization of all the bus routes can be
found in Figure 3.

Figure 3. Scenario “Night Bus Routes in Duisburg”.



Future Transp. 2024, 4 390

Similar to the other scenarios, the simulations were carried out with varying numbers
of FLAIT vehicles. Furthermore, the passenger capacity of each FLAIT vehicle was con-
sidered to assess its influence on transportation performance. A reference simulation was
conducted in the same scenario using buses and following the actual timetable to facilitate
a comparison with the conventional transportation system.

4.3. Vehicle Models
4.3.1. Bus

In this paper, the existing vehicle class “Bus” in SUMO was employed to model and
simulate buses. The default parameters of the SUMO model source code were used directly.
The bus model was incorporated in the scenario “Night Bus Routes in Duisburg”, which
encompasses the entire Duisburg area. Therefore, no additional speed limitation was set
for the buses in this scenario.

4.3.2. FLAIT

The FLAIT vehicles were represented as a new vehicle class named “Flait” in SUMO.
The modeling process involved a combination of existing models for trams and taxis in
SUMO. To emulate trams, the FLAIT vehicles were restricted to driving exclusively on
the tram tracks, denoted by the SUMO road type “railway.tram”. The FLAIT vehicles
would come to a halt at the last exit point of a passenger and only resume movement upon
receiving the next passenger reservation. Since the FLAIT system’ss application focused on
an urban scenario, the FLAIT model’s driving speed was restricted to 50 kph (kilometer
per hour), which represents the maximum speed allowed within German cities.

4.4. Passengers

In the simulations, different passenger groups were modeled using the SUMO function
“personFlow” [53]. The following parameters characterized each passenger group:

• The time (to the second) when the first passenger of this group departs;
• The time (to the second) when the last passenger of the group departs;
• The number of members in the group;
• The street ID where the group departs from;
• The stop where the group waits for tram/bus or FLAIT-train;
• The destination street ID where the group alights.

As the focus of this paper is on transport performance, the passenger walking distance
and time were not considered as criteria. Therefore, it was assumed that passengers would
send out FLAIT reservations while waiting at the bus stops, without considering the
walking distances and times for the passengers.

In the scenario “Night Bus Routes in Duisburg”, the passenger volume modeling relies
on the statistical data obtained from Duisburger Verkehrsgesellschaft AG (DVG) for the
current bus routes NE1 to NE6. These datasets were used as a reference to simulate the
passenger demand and distribution for the proposed FLAIT-train system in comparison to
the existing bus routes.

To accurately represent the demand for transportation, the highest passenger volume
within an hour was determined for each bus route from the DVG database. These peak
passenger volumes were then summarized to create the datasets for the simulation. The
purpose of using the highest passenger volumes is to simulate the scenario with the most
demanding transport capacity requirement, representing a worst-case scenario for the
FLAIT-train system.

The statistical data obtained from the DVG provide information about the number
of boarding and alighting passengers at each stop along the six bus routes. However, the
following pieces of information are missing:

• From what time did the passenger wait for the bus?
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The data do not include the exact waiting times for individual passengers at each
bus stop. The waiting time of each passenger is essential to determine factors such as
the average waiting time and maximum waiting time per passenger, which are crucial
performance indicators for public transportation systems.

• At which bus stop will the boarding passenger alight?

The dataset does not specify each boarding passenger’s destination or alighting bus
stop. This information is vital to simulate the passenger journey from the boarding point to
the destination and accurately assess the transportation system’s performance, for example,
the total in-vehicle time.

• At which bus stop has the alighting passenger been boarded?

Similarly, the dataset does not indicate where the alighting passenger initially boarded
the bus. This information is necessary to determine the complete passenger journey,
including the boarding and alighting bus stops, to analyze the travel patterns and evaluate
the transportation system’s performance.

4.4.1. Estimation of Passenger Arrival Times at Bus Stops

In the nighttime, the passengers are often on the move and may want to return home
at any given time. However, due to the long headway of night buses, they are required to
wait, for instance, at a bar until shortly before the bus arrives based on the timetable.

Therefore, accurately estimating the passenger arrival time at bus stops using models
in the literature, such as in [48], is challenging. In this paper, the Monte Carlo method, as
described in Section 2.4.1, was applied to address this issue. The arrival time at a bus stop
of each passenger has been generated as a random number between 11 pm and 12 am.

4.4.2. Estimations of Passengers’ Boarding and Alighting Bus Stops

The passengers’ boarding and alighting bus stops were estimated as the solution of an
optimization problem, as described in [54]. The relationship between the numbers of board-
ing and alighting passengers at a bus stop was formulated using the following equation:

ai = ∑n
i=1 (x j−i·ej

)
, (5)

where:

• ai represents the number of alighting passengers at bus stop i;
• ej denotes the number of boarding passengers at bus stop j;
• xj−i represents the alighting possibility at bus stop i.

If all bus stops are considered, the equation system above can be summarized and
represented in a matrix format:

a1
a2
a3
...

an

 =


x1−1
x1−2
x1−3

x2−1
x2−2
x2−3

x3−1
x3−2
x3−3

· · ·
xm−1
xm−2
xm−3

...
. . .

...
x1−n x2−n x3−n · · · xm−n

×


e1
e2
e3
...

em

, (6)

where:

• a1, a2, . . . , an represent the alighting passengers at bus stop 1, 2, . . . , n, respectively;
• x1−1, x1−2, . . . , xm−n represent the alighting possibility at each bus stop;
• e1, e2, . . . , em represent the boarding passengers at bus stop 1, 2, . . . , m, respectively.
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It is derived from (6) to a standard form for an optimization problem as follows:
x1−1
x1−2
x1−3

x2−1
x2−2
x2−3

x3−1
x3−2
x3−3

· · ·
xm−1
xm−2
xm−3

...
. . .

...
x1−n x2−n x3−n · · · xm−n

×


e1
e2
e3
...

em

−


a1
a2
a3
...

an

 =


0
0
0
...
0

. (7)

To determine the possibilities x1−1, x1−2, . . . , xm−n, the optimization problem is
formulated as follows:

min
x∈Rn

(
(x1−1 × e1 + x2−1 × e2 + · · ·+ xm−1 × em − a1)

2 + . . .

+(x1−n × e1 + x2−n × e2 + · · ·+ xm−n × em − an)
2
)

,
(8)

subject to the constraint:

∑m
k=1 xk−i − 1 = 0 for i = 1, 2, 3, . . . , n (9)

Using the available Python (version 3.10.12) toolbox “CVXPY”, it is possible to solve
this convex optimization problem as introduced in Section 2.4.2. Additionally, with other
available Python toolboxes, the passenger models can be directly exported in the specified
XML format, which can be directly utilized in SUMO simulations [54]. This allows for the
efficient and seamless integration of the passenger models into the simulation environment.

4.5. Flexible Platooning

In the context of this paper, a toolbox called “Simpla” was utilized in SUMO to simulate
flexible vehicle platooning. The development of this toolbox was based on the work of [55].
The car-following model employed in the simulations was the Krauss model, as introduced
in [56]. As the FLAIT vehicles are highly autonomous vehicles, the model of perfect drivers
was utilized in the simulations. This choice allowed for the accurate representation of the
FLAIT vehicles’ behaviors in the platooning system, taking advantage of their advanced
automation capabilities.

5. Simulation Results Based on Statistical Data

In the scenario presented in Section 4, night transportation using different modes
of transport was simulated. In addition to the simulation involving traditional buses,
simulations were conducted with different numbers of FLAIT vehicles, ranging from 10 to
100 FLAIT vehicles. The delta value between the considered numbers of FLAIT vehicles
was set to 10, providing a comprehensive analysis of the performance with an increasing
FLAIT vehicle counts.

Furthermore, alongside the simulations involving different numbers of FLAIT ve-
hicles, the impact of passenger capacities on the transportation performance was also
analyzed. The simulations were conducted considering passenger capacities of 5, 10, 15,
and 20 passengers per FLAIT-train. This analysis allowed for a comprehensive assessment
of how varying passenger capacities affect the overall transportation performance.

In the analysis, the results for night buses are represented in magenta. Additionally,
the results for FLAIT-trains are depicted in different colors: cyan for a passenger capacity of
2, red for a passenger capacity of 5, green for a passenger capacity of 10, blue for a passenger
capacity of 15, and black for a passenger capacity of 20. This comprehensive approach
enables a detailed understanding of the performances of both buses and FLAIT-trains with
the increased seating places.
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5.1. Average Waiting Time per Passenger
5.1.1. Exploring the Passenger Capacity of Two Seats

In the reference simulations with conventional buses, the average waiting time was
calculated using Formula (1) and yielded similar values, specifically 26.5 min per passenger.

In the case of FLAIT-trains, the average waiting time displayed a relationship with the
number of FLAIT-trains, as illustrated in Figure 4, using a logarithmic scale. The average
waiting time exhibited a consistent decrease as the number of FLAIT-trains increased.

Figure 4. Average waiting time per passenger.

From 10 to 30 FLAIT-trains, the average waiting times were higher compared to the
reference simulation with buses. Specifically, the average waiting times for these FLAIT
ranges were approximately 155.3 min, 56.6 min, and 34.0 min. When compared to the
reference simulation, the average waiting time for FLAIT-trains was longer than that of
conventional buses by 486.0% (10 FLAIT-trains), 113.6% (20 FLAIT-trains), and 28.3%
(30 FLAIT-trains), respectively.

With 40 to 100 FLAIT vehicles, the average waiting time decreased compared to the
reference simulation, with values of 21.5 min, 16.1 min, 11.8 min, 9.3 min, 7.4 min, 6.4 min,
and 5.8 min. The improvements achieved by FLAIT vehicles in comparison to the reference
simulation were 18.9% (40 FLAIT-trains), 39.2% (50 FLAIT-trains), 55.5% (60 FLAIT-trains),
64.9% (70 FLAIT-trains), 72.1% (80 FLAIT-trains), 75.8% (90 FLAIT-trains), and 78.1%
(100 FLAIT-trains), respectively. These percentage improvements were calculated using
the formula tw,mean,Bus−tw,mean, FLAIT

tw,mean,Bus
× 100.

5.1.2. Exploring the Increased Passenger Capacities

To assess the impact of increased passenger capacities on the average waiting time,
additional simulations were performed with passenger capacities of 5, 10, 15, and 20,
respectively. The outcomes of these simulations are incorporated into Figure 4.

According to the simulation results, there was a noticeable decrease in the average
waiting time per passenger as the passenger capacity of each vehicle increased. Specifi-
cally, when each vehicle had a seating capacity of five, there was a noteworthy decrease
in the average waiting time compared to a passenger capacity of two. With the presence
of 10 FLAIT-trains, the average waiting time reduced from 155.3 min to 113.3 min, rep-
resenting a 27.0% decrease. Similarly, with 20 FLAIT-trains, the average waiting time
improved from 56.6 min to 46.0 min, reflecting an 18.7% improvement. Furthermore, with
30 to 100 FLAIT-trains, the average waiting time for five seating places in each FLAIT-train
ranged from 26.8 min (30 FLAIT-trains) to 5.6 min (100 FLAIT-trains). The improve-
ments achieved in each case were 21.2% (30 FLAIT-trains), 11.6% (40 FLAIT-trains), 16.1%
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(50 FLAIT-trains), 11.9% (60 FLAIT-trains), 9.7% (70 FLAIT-trains), 5.4% (80 FLAIT-trains),
6.3% (90 FLAIT-trains), and 3.4% (100 FLAIT-trains), respectively.

As the passenger capacities increased further from 5 to 20, the improvements in
the average waiting time per passenger decreased. Particularly, from 70 to 100 FLAIT-
trains, no improvements were achieved, with average waiting times remaining at 8.4 min
(70 FLAIT-trains), 7.0 min (80 FLAIT-trains), 6.0 min (90 FLAIT-trains), and 5.6 min (100 FLAIT-trains).

From 40 to 60 FLAIT-trains, there was a noticeable improvement in the average
waiting time after increasing the passenger capacity from 5 to 10. The average waiting time
decreased from 19.0 to 18.7 min (40 FLAIT-trains), from 13.5 to 13.3 min (50 FLAIT-trains),
and from 10.4 to 9.6 min (60 FLAIT-trains). However, no further improvements were
observed when increasing the passenger capacities from 10 to 20.

With 20 or 30 FLAIT-trains, there was an improvement in the average waiting time
after increasing the passenger capacities from 5 to 15. Specifically, the average waiting time
for 20 FLAIT-trains decreased from 46.0 min to 40.7 min, and further to 39.8 min. Similarly,
for 30 FLAIT-trains, the average waiting time decreased from 26.8 min to 25.4 min, and
further to 24.7 min. However, no further improvements were observed when increasing
the passenger capacities from 15 to 20.

With 10 FLAIT-trains, the average waiting times reduced from 113.3 min to 100.7 min,
further to 97.0 min, and ultimately to 94.9 min after increasing the passenger capacities
from 5 to 20. The impact of the number of FLAIT vehicles and passenger capacities is
summarized in Table 3.

Table 3. Impact of passenger capacities on average waiting time in [min].

2 SPs 5 SPs 10 SPs 15 SPs 20 SPs NE

10 FLAIT-trains 155.3 113.3 100.7 97.0 94.9

26.5

20 FLAIT-trains 56.6 46.0 40.7 39.8 39.8
30 FLAIT-trains 34.0 26.8 25.4 24.7 24.7
40 FLAIT-trains 21.5 19.0 18.7 18.7 18.7
50 FLAIT-trains 16.1 13.5 13.3 13.3 13.3
60 FLAIT-trains 11.8 10.4 9.6 9.6 9.6
70 FLAIT-trains 9.3 8.4 8.4 8.4 8.4
80 FLAIT-trains 7.4 7.0 7.0 7.0 7.0
90 FLAIT-trains 6.4 6.0 6.0 6.0 6.0
100 FLAIT-trains 5.8 5.6 5.6 5.6 5.6

5.2. Maximum Waiting Time of a Single Passenger
5.2.1. Exploring the Passenger Capacity of Two Seats

In [40], the analysis focused on the absolute maximum waiting time of a single passen-
ger, acknowledging the potential influence of the utilized dispatching algorithm. To ensure
a robust evaluation and comparison between buses and FLAIT-trains, the 95% maximum
waiting time was considered as a more representative metric. This approach allowed for
the comprehensive assessment of both transportation modes while accounting for any
variations introduced by the dispatching algorithm.

In the reference simulation with night buses, the 95% maximum waiting time for a
single passenger was calculated using the provided Formula (2). Based on the simulation
results, the 95% maximum waiting time of a bus was determined to be 57.9 min.

Similar to the average waiting time, the 95% maximum waiting time for FLAIT-trains
showed similar dependencies on the number of FLAIT-trains. These dependencies are
visualized as logarithmic coordinates in Figure 5.

Between 10 and 30 FLAIT-trains, the 95% maximum waiting times were higher com-
pared to the reference simulation with buses. Specifically, the 95% maximum waiting times
for these FLAIT ranges were approximately 329.8 min, 120.3 min, and 68.8 min. When
compared to the reference simulation, the average waiting time for FLAIT-trains was longer
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than that of conventional buses by 469.6% (10 FLAIT-trains), 107.8% (20 FLAIT-trains), and
18.8% (30 FLAIT-trains), respectively.

Figure 5. 95% maximum waiting time for a single passenger.

With 40 to 100 FLAIT-trains, there was a decrease in the 95% maximum waiting
time compared to the reference simulation, with values of 46.0 min, 35.9 min, 29.8 min,
21.4 min, 16.9 min, 15.3 min, and 13.2 min. The improvements achieved by FLAIT-trains
in comparison to the reference simulation were 20.6% (40 FLAIT-trains), 38.0% (50 FLAIT-
trains), 48.5% (60 FLAIT-trains), 63.0% (70 FLAIT-trains), 70.8% (80 FLAIT-trains), 73.6%
(90 FLAIT-trains), and 77.2% (100 FLAIT-trains), respectively.

5.2.2. Exploring the Increased Passenger Capacities

Similar to the average waiting time, the additional simulation results for the 95%
maximum waiting time are incorporated into Figure 5 for the increased seating capacities
from 5 to 20.

Based on the simulation results, there was a noticeable decrease in the 95% maximum
waiting time per passenger as the passenger capacity of each vehicle increased. Specifically,
when each vehicle had a seating capacity of five, there was a significant reduction in the 95%
maximum waiting time compared to a passenger capacity of two. With 10 FLAIT-trains,
the 95% maximum waiting time decreased from 329.8 min to 304.0 min, representing a 7.8%
decrease. With 30 to 70 FLAIT-trains and 90 to 100 FLAIT-trains, the 95% maximum waiting
time for five seating places in each FLAIT-train ranged from 64.2 min (30 FLAIT-trains)
to 13.2 min (100 FLAIT-trains). The improvements achieved in each case, compared to a
passenger capacity of two, were 13.7% (30 FLAIT-trains), 8.0% (40 FLAIT-trains), 15.3%
(50 FLAIT-trains), 19.8% (60 FLAIT-trains), 7.0% (70 FLAIT-trains), 5.9% (90 FLAIT-trains),
and 12.1% (100 FLAIT-trains), respectively. However, with 20 and 80 FLAIT-trains, the 95%
maximum waiting time showed no improvement.

As the passenger capacities increased further from 5 to 20, the 95% maximum waiting
times with 10 FLAIT-trains decreased from 304.0 min to 282.9 min, further to 281.6 min,
and ultimately to 264.3 min.

With 20 or 30 FLAIT-trains, there was an improvement in the 95% maximum waiting
time by increasing the passenger capacities from 5 to 15. Specifically, the 95% maximum
waiting time decreased from 124.5 min to 99.5 min, and further to 96.4 min with 20 FLAIT-
trains. With 30 FLAIT-trains, the 95% maximum waiting time decreased from 59.4 min
(5 seating places) to 54.7 min (10 seating places), and further to 53.1 min (15 seating
places). However, no further improvements were observed in each case when increasing
the passenger capacities from 15 to 20.

With 40 or 60 FLAIT vehicles, the 95% maximum waiting time was improved by
increasing the passenger capacity from 5 to 10. Specifically, the 95% maximum waiting
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time for 40 FLAIT vehicles decreased from 42.3 to 40.8 min. With 60 FLAIT vehicles, the
95% maximum waiting time reduced from 23.9 min to 20.9 min. However, no further
improvements were observed when increasing the passenger capacities from 10 to 20.

Particularly with 50 FLAIT-trains and from 70 to 100 FLAIT-trains, no improvements
were achieved by increasing the passenger capacities from 5 to 20, as the 95% maximum
waiting times remaining at 30.4 min (50 FLAIT-trains), 19.9 min (70 FLAIT-trains), 16.9 min
(80 FLAIT-trains), 14.4 min (90 FLAIT-trains), and 11.6 min (100 FLAIT-trains). The impact
of the number of FLAIT vehicles and passenger capacities is summarized in Table 4.

Table 4. Impact of passenger capacities on 95% maximum waiting time in [min].

2 SPs 5 SPs 10 SPs 15 SPs 20 SPs NE

10 FLAIT-trains 329.8 304.0 282.9 281.6 264.3

57.9

20 FLAIT-trains 120.3 124.5 99.5 96.4 96.4
30 FLAIT-trains 68.8 59.4 54.7 53.1 53.1
40 FLAIT-trains 46.0 42.3 40.8 40.8 40.8
50 FLAIT-trains 35.9 30.4 30.4 30.4 30.4
60 FLAIT-trains 29.8 23.9 20.9 20.9 20.9
70 FLAIT-trains 21.4 19.9 19.9 19.9 19.9
80 FLAIT-trains 16.9 16.9 16.9 16.9 16.9
90 FLAIT-trains 15.3 14.4 14.4 14.4 14.4
100 FLAIT-trains 13.2 11.6 11.6 11.6 11.6

5.3. Average In-Vehicle Time per Passenger
5.3.1. Exploring the Passenger Capacity of Two Seats

The average in-vehicle time for FLAIT-trains was found to be shorter than bus trips
due to the absence of intermediate stops, as depicted in Figure 6. Using Formula (3), the
average in-vehicle time per bus passenger was calculated. Depending on the departure
and arrival stops, this resulted in approximately 16.7 min.

Figure 6. Average in-vehicle time per passenger.

In comparison to the reference value from the bus simulations, the trips using 10 to
100 FLAIT-trains took between 8.9 min and 9.1 min. By eliminating the intermediate stops,
passengers were able to reduce their travel time by approximately 45.5%.
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5.3.2. Exploring the Increased Passenger Capacities

To investigate the impact of increased passenger capacities on the average in-vehicle
time, additional iteration simulations were conducted with passenger capacities of 5, 10, 15,
and 20 seating places, respectively. The simulation results are shown in Figure 6.

As the passenger capacities increased, the number of intermediate stops also increased,
leading to longer average in-vehicle times per passenger. With 10 FLAIT-trains, the average
in-vehicle time increased from 9.1 min to 11.1 min, further to 13.3 min, 13.4 min, and
ultimately to 15.4 min. However, even with a seating capacity of 20, the average in-vehicle
time of FLAIT-trains is still lower than that of conventional buses by 7.8%.

For 20 FLAIT-trains, there was an increase in the average in-vehicle time as the
passenger capacities increased from 2 to 15. Specifically, the average in-vehicle time
increased from 9.1 min (2 seating places) to 10.4 min (5 seating places), further to 12.3 min
(10 seating places), and ultimately to 12.2 min (15 seating places). However, no further
change was observed when increasing the passenger capacities from 15 to 20.

Particularly with from 70 to 100 FLAIT-trains, no improvements were achieved, with
average waiting times remaining at 8.4 min (70 FLAIT-trains), 7.0 min (80 FLAIT-trains),
6.0 min (90 FLAIT-trains), and 5.6 min (100 FLAIT-trains).

For 30 or 40 FLAIT-trains, a significant increase in the average in-vehicle time was
observed by increasing the passenger capacity from 2 to 5. Specifically, the average in-
vehicle time increased from 9.0 min to 9.8 min and 9.9 min, respectively. However, the
further changes were within a range of 3.2% (30 FLAIT-trains) and 1.0% (40 FLAIT-trains)
as the passenger capacity increased from 5 to 20.

With 50 to 100 FLAIT-trains, no significant changes in the average in-vehicle time were
observed, and the value changes were within a range of 2.3%. The impact of the number
of FLAIT-trains and passenger capacities on the average in-vehicle time is summarized
in Table 5.

Table 5. Impact of passenger capacities on average in-vehicle time in [min].

2 SPs 5 SPs 10 SPs 15 SPs 20 SPs NE

10 FLAIT-trains 9.1 11.1 13.3 13.4 15.4

16.7

20 FLAIT-trains 9.1 10.4 12.3 12.2 12.2
30 FLAIT-trains 9.0 9.8 9.9 10.1 10.1
40 FLAIT-trains 9.0 9.9 10.0 10.0 10.0
50 FLAIT-trains 9.0 9.1 9.2 9.2 9.2
60 FLAIT-trains 9.0 9.0 9.0 9.0 9.0
70 FLAIT-trains 9.0 9.0 9.0 9.0 9.0
80 FLAIT-trains 9.0 9.0 9.0 9.0 9.0
90 FLAIT-trains 9.0 9.0 9.0 9.0 9.0
100 FLAIT-trains 8.9 8.9 8.9 8.9 8.9

5.4. Average Occupancy Rate of Vehicles
5.4.1. Exploring the Passenger Capacity of Two Seats

For the conventional buses, a passenger capacity (number of seating places) of 31,
denoted as CP,V , was considered according to [57]. Altogether, twelve buses were accounted
for, representing the vehicle number nV for the six night bus routes. Utilizing Formula
(4) with the aforementioned parameters, the average occupancy rate of the vehicles was
calculated for the conventional buses, yielding a value of 16.5%.

The simulation results with FLAIT-trains, represented by the cyan line in Figure 7,
demonstrate variations across different FLAIT numbers. The analysis revealed that the
curve of the average occupancy rate of vehicles decreases as the number of the FLAIT-trains
increases. Simulations with up to 70 FLAIT-trains exhibit a higher occupancy rate compared
to the buses.
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Figure 7. Average occupancy rate of vehicles.

The simulation results indicate that with 10 to 70 FLAIT vehicles, the average occu-
pancy rates of the FLAIT vehicles were higher than those of buses. Specifically, the average
occupancy rates of vehicles for FLAIT-trains within this range were approximately 32.2%,
31.3%, 24.7%, 21.6%, 19.6%, and 18.2%, respectively. The improvements in the occupancy
rate compared to the reference simulation were approximately 95.2%, 89.7%, 49.7%, 30.9%,
18.8%, and 10.3%.

Furthermore, with a FLAIT number between 70 and 80, the simulation results indi-
cate that a crossover point between FLAIT-trains and buses was reached in terms of the
average occupancy rate of the vehicles. For 70 FLAIT-trains, the FLAIT system’s average
occupancy rate, with a value of approximately 16.9%, is still higher than that of buses by
approximately 2.4%.

With 80 to 100 FLAIT-trains, the average occupancy rate of the vehicles decreased
compared to the reference simulation, resulting in average occupancy rate values of 16.1%,
14.5%, and 13%, respectively.

In contrast to the reference simulation, FLAIT-trains showed disadvantages in the
average occupancy rates of the vehicles, with relative decreases of 2.4% (80 FLAIT-trains),
12.1% (90 FLAIT-trains), and 21.2% (100 FLAIT-trains), respectively.

5.4.2. Exploring the Increased Passenger Capacities

The simulation results of average occupancy rate of vehicles with increased passenger
capacities from 5 to 20 are incorporated into Figure 7.

The simulation results indicate a generally worse average occupancy rate of the
vehicles compared to the reference simulation results. Specifically, the average occupancy
rate of the vehicles decreases with increased passenger capacities. Furthermore, the average
occupancy rate decreases correspondingly as the number of FLAIT-trains increases from
10 to 100. This suggests that FLAIT-trains exhibited a worse usage efficiency with the
increased passenger capacities from 5 to 20. The impact of the number of FLAIT-trains and
passenger capacities on the average in-vehicle time is summarized in Table 6.
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Table 6. Impact of passenger capacities on average occupancy rates of vehicles in [%].

2 SPs 5 SPs 10 SPs 15 SPs 20 SPs NE

10 FLAIT-trains 32.2 15.9 10.2 7.2 6.0

16.5

20 FLAIT-trains 31.3 13.3 8.1 5.3 4.0
30 FLAIT-trains 24.7 12.7 6.1 4.1 3.1
40 FLAIT-trains 21.6 8.1 4.1 2.7 2.0
50 FLAIT-trains 19.6 8.8 4.4 2.9 2.2
60 FLAIT-trains 18.2 7.3 4.4 2.9 2.2
70 FLAIT-trains 16.9 6.9 3.5 2.3 1.7
80 FLAIT-trains 16.1 6.1 3.1 2.0 1.5
90 FLAIT-trains 14.5 5.8 2.9 1.9 1.5
100 FLAIT-trains 13.0 5.2 2.6 1.7 1.3

6. Simulation Results for the On-Demand Use Cases

In the preceding sections, the simulative analysis was conducted using statistical data
from the public transportation system. The available statistical data included passenger
information from one bus stop to another, which was considered in the analysis. The
method of simulative analysis based on statistical data proved to be suitable for the current
development phase of the FLAIT-trains.

The ultimate objective of FLAIT-trains is to provide an on-demand DOOR-2-DOOR
service. To address this scenario, the simulations were extended to include passenger data
from the departure and arrival points, which are not limited to bus or tram stops. This
required further simulative analysis for the “Night Bus Routes in Duisburg” scenario, where
the transportation performance of FLAIT-trains was compared with conventional buses.

Since statistical data for the on-demand service are unavailable, some assumptions
were made in this analysis. The same number of passengers was considered as in Section 5,
and they were distributed randomly throughout the city of Duisburg.

In the reference simulations with conventional buses, the SUMO function “Intermodal
Routing” was utilized, allowing passengers to choose between bus rides or walking as
possible transport modes. This enables transfers between different night bus routes.

For simulations with FLAIT-trains, passengers were picked up directly from their
departure point and transported to their destination by the FLAIT-trains. Consequently,
the walking duration for passengers was reduced to zero.

Due to the functionality of “Intermodal Routing”, the quota of the walking route and
time could not be ignored in the analysis. Therefore, an additional key performance figure
was incorporated into this chapter alongside the ones discussed previously. The following
key performance figures were considered:

• Average waiting time per passenger riding a FLAIT vehicle;
• Maximum waiting time for a single passenger riding a FLAIT vehicle;
• Average in-vehicle time per passenger riding a FLAIT vehicle;
• Average journey time per passenger.

However, due to the limitation of the available dispatch algorithm in SUMO, this paper
did not conduct an analysis on the impact of the passenger capacity for each FLAIT-train.

6.1. Average Waiting Time per Passenger Riding a FLAIT Vehicle

In the baseline simulations involving conventional buses, the average waiting time
per passenger was determined using Equation (1), resulting in a value of 53.4 min per
passenger traveling by bus.

In contrast, for FLAIT-trains, the average waiting time showed a correlation with the
quantity of FLAIT-trains, as depicted in Figure 8 utilizing a logarithmic scale. Notably,
the average waiting time consistently decreased with the increment in the number of
FLAIT-trains.
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Figure 8. Average waiting time per passenger in the scenario “Night Bus Routes in Duisburg” for
on-demand use case.

From 10 to 50 FLAIT-Trains, the average waiting times were higher compared to the
reference simulation with buses. Specifically, the average waiting times for these FLAIT-
train ranges were approximately 427.3 min, 195.3 min, 120.0 min, 83.3 min, and 64.5 min.
Comparatively, the average waiting times for FLAIT-trains exceeded those of conventional
buses by 700.2% (10 FLAIT-trains), 265.7% (20 FLAIT-trains), 124.7% (30 FLAIT-trains),
56.0% (40 FLAIT-trains), and 20.8% (50 FLAIT-trains), respectively.

With 60 to 100 FLAIT-trains, the average waiting time decreased compared to the
reference simulation, with values of 51.9 min, 39.9 min, 33.8 min, 28.9 min, and 23.9 min.
FLAIT showed improvements in comparison to the reference simulation by 2.8% (60 FLAIT-
trains), 25.3% (70 FLAIT-trains), 36.7% (80 FLAIT-trains), 45.9% (90 FLAIT-trains), and 55.2%
(100 FLAIT-trains), respectively. The impact of the number of FLAIT-trains is summarized
in Table 7.

Table 7. Impact of vehicle number on the average waiting time in [min].

FLAIT Number FLAIT NE

10 427.3

53.4

20 195.3
30 120.0
40 83.3
50 64.5
60 51.9
70 39.9
80 33.8
90 28.9

100 23.9

6.2. Maximum Waiting Time of a Single Passenger Riding a FLAIT Vehicle

As in Section 5.2, the 95% maximum waiting time was deemed as a more representative
metric. This approach facilitated the thorough evaluation of both transportation modes,
accounting for any variations introduced by the dispatching algorithm.

In the reference simulation involving night buses, the 95% maximum waiting time
for a single passenger was computed using Equation (2). The simulation yielded a 95%
maximum waiting time of 122.8 min for buses.

Similarly to the average waiting time, the 95% maximum waiting time for FLAIT
vehicles exhibited comparable dependencies on the number of FLAIT vehicles. These
dependencies are illustrated using logarithmic coordinates in Figure 9.
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Figure 9. The 95% maximum waiting time for a single passenger in the scenario “Night Bus Routes
in Duisburg” for on-demand use case.

Between 10 and 50 FLAIT vehicles, the 95% maximum waiting times were higher
compared to the reference simulation with buses. Specifically, within these FLAIT ranges,
the 95% maximum waiting times were approximately 871.9 min, 398.6 min, 242.6 min,
165.9 min, and 129.1 min. When compared to the reference simulation, the 95% maximum
waiting times for FLAIT-trains were longer than those of conventional buses by 610.0%
(10 FLAIT-trains), 224.6% (20 FLAIT-trains), 97.6% (30 FLAIT-trains), 35.1% (40 FLAIT-
trains), and 5.1% (50 FLAIT-trains), respectively.

With 60 to 100 FLAIT-trains, there was a decrease in the 95% maximum waiting time
compared to the reference simulation, with values of 99.6 min, 80.5 min, 68.2 min, 55.1 min,
and 52.4 min. The improvements achieved by FLAIT-trains in comparison to the reference
simulation were 18.9% (60 FLAIT-trains), 34.4% (70 FLAIT-trains), 44.5% (80 FLAIT-trains),
55.1% (90 FLAIT-trains), and 57.3% (100 FLAIT-trains), respectively. The impact of the
number of FLAIT-trains is summarized in Table 8.

Table 8. Impact of vehicle number on the 95% maximum waiting time in [min].

FLAIT Number FLAIT NE

10 871.9

122.8

20 398.6
30 242.6
40 165.9
50 129.1
60 99.6
70 80.5
80 68.2
90 55.1

100 52.4

6.3. Average In-Vehicle Time per Passenger Riding a FLAIT Vehicle

The average in-vehicle time for FLAIT vehicles was found to be shorter than bus trips
due to the absence of intermediate stops, as depicted in Figure 10. Using Equation (3), the
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average in-vehicle time per bus passenger was calculated to be approximately 50.3 min,
depending on the departure and arrival points.

Figure 10. Average in-vehicle time per passenger in the scenario “Night Bus Routes in Duisburg” for
on-demand use case.

In comparison to the reference value from the bus simulations, the trips using 10 to
100 FLAIT vehicles took between 23.3 min and 24.4 min. The elimination of intermediate
stops allowed the passengers to reduce their in-vehicle time by approximately 51.5%. The
impact of the number of FLAIT vehicles on the average in-vehicle time is summarized
in Table 9.

Table 9. Impact of vehicle number on the average in-vehicle time in [min].

FLAIT Number FLAIT NE

10 24.4

50.3

20 24.3
30 24.3
40 23.9
50 24.0
60 23.8
70 23.7
80 23.8
90 23.3

100 23.5

6.4. Average Journey Time per Passenger

In this on-demand service scenario, the journey time of a passenger is described as the
time interval from the departure to the arrival point. In the public transportation system, a
passenger could choose whether to walk to the next bus stop or opt for a longer journey to
save waiting time at the bus stop. Due to the limitation of walking speed, the total journey
time could increase if the passenger walks a long distance to save the waiting time at the
bus stop. For this reason, the average journey time per passenger must be considered as
a key performance measure, as shown in Figure 11, where the average journey time per
passenger amounts approximately 146.1 min.
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Figure 11. Average journey time per passenger in the scenario “Night Bus Routes in Duisburg” for
on-demand use case.

Similar to the average waiting time, the average journey time for FLAIT vehicles
exhibited similar dependencies on the number of FLAIT vehicles. These dependencies are
visualized as logarithmic coordinates in Figure 11.

For FLAIT-trains ranging from 10 to 20 units, the average journey times were higher
compared to the reference simulation with buses. Specifically, the average journey times
for these FLAIT ranges were approximately 451.7 min and 219.6 min, respectively. When
compared to the reference simulation, the average journey time for FLAIT-trains exceeded
that of conventional buses by 209.2% (10 FLAIT-trains) and 50.3% (20 FLAIT-trains).

However, with 30 to 100 FLAIT-trains, the average journey time decreased compared
to the reference simulation. The journey times for these ranges were 144.3 min, 107.1 min,
and 88.5 min, 75.8 min, 63.6 min, 57.7 min, 52.2 min, and 47.4 min, respectively. The
improvements achieved by FLAIT-trains compared to the reference simulation were 1.2%
(30 FLAIT-trains), 26.7% (40 FLAIT-trains), 39.4% (50 FLAIT-trains), 48.1% (60 FLAIT-trains),
56.5% (70 FLAIT-trains), 60.5% (80 FLAIT-trains), 64.3% (90 FLAIT-trains), and 67.6%
(100 FLAIT-trains). The impact of the number of FLAIT-trains is summarized in Table 10.

Table 10. Impact of vehicle number on the average journey time in [min].

FLAIT Number FLAIT NE

10 451.7

146.1

20 219.6
30 144.3
40 107.1
50 88.5
60 75.8
70 63.6
80 57.7
90 52.2

100 47.4

7. Conclusions and Outlook

In this paper, an alternative system to the conventional public transportation system
was investigated and analyzed in a realistic scenario using simulations. The advantages and
disadvantages of both the public transportation and FLAIT-train systems are summarized
in Table 11.



Future Transp. 2024, 4 404

Table 11. Advantages and disadvantages of public transportation systems and FLAIT-trains [40].

Public Transportation Systems FLAIT-Train

Pros

+ Environmental friendliness
+ Cheaper compared to using a private car
+ Possibility of avoiding traffic jams
+ High passenger capacity

+ Environmentally friendly
+ Cheaper compared to using a private car
+ Good accessibility (without fixed stops)
+ Shorter waiting time
+ Shorter in-vehicle time
+ Independence of the time schedule
+ Better seating comfort and privacy due to low

passenger numbers
+ Lower investment and inspection costs

Cons

− Poor accessibility to fixed stops
− Long waiting time
− Long in-vehicle time due to intermediate stops
− Lack of passenger’s privacy and comfort
− High investment costs for infrastructure
− High inspection costs
− Large surface area occupancy

− Large number of vehicles required due to low
passenger seating capacity

− Large surface area occupancy

In the evaluation of the “Night Bus Routes in Duisburg” scenario, some key perfor-
mance measures were considered, including the average waiting time per passenger, the
maximum waiting time of a single passenger, the average in-vehicle time per passenger,
and the average occupancy rate of the vehicles. For the analysis of the on-demand use-case,
the average journey time per passenger was considered as an additional key performance
measure. To assess these measures, a realistic urban scenario was created in the SUMO sim-
ulation environment. The impact of an increased passenger capacity on the transportation
performance was also investigated.

The question posed at the beginning of this paper, regarding whether FLAIT-trains are
capable of replacing conventional public transportation systems, has been analyzed and
answered using the simulation results. The results of the simulation based on the statistical
data revealed that the transport capacity of the six existing bus routes in Duisburg could be
effectively covered by 30 FLAIT vehicles with a passenger capacity of five seating places,
demonstrating their superior performance if the average waiting time, the 95% maximum
waiting time, and the average in-vehicle time were considered. The FLAIT-vehicles exhibit
a worse performance compared to buses, if the average occupancy rate of the vehicles is
considered. A comprehensive comparison of the transport capacity between buses and
FLAIT-trains is presented based on the statistical data in Table 12.

Table 12. Transport capacity comparison between buses and 30 FLAIT-trains in the scenario “Night
Bus Routes in Duisburg” based on the statistical data.

Buses 30 FLAIT-Trains

Average waiting time [min] 26.5 26.8

95% maximum waiting time [min] 57.9 59.4

Average in-vehicle time [min] 16.7 9.8

Average occupancy rate of vehicles [%] 16.5 12.7

The simulation results for the real on-demand use case indicated that the transport
capacity of the current public transportation system for the night bus routes in Duisburg
could be effectively met by 60 FLAIT-trains with a passenger capacity of two seating places,
provided that four key performance measures were taken into account. Alternatively, if the
average journey time is considered as a criterion, 30 FLAIT-trains are capable of replacing
the public transportation system in this scenario. A comprehensive comparison of the
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transport capacity between public transportation system and FLAIT-trains is presented
in Table 13.

Table 13. Transport capacity comparison between public transportation system and FLAIT-trains in
the scenario “Night Bus Routes in Duisburg” for on-demand use case.

Walking + NE 30 FLAIT-Trains 60 FLAIT-Trains

Average waiting time riding by bus [min] 53.4 120.0 51.9

95% maximum waiting time riding by bus [min] 122.8 242.6 99.6

Average in-vehicle time riding by bus [min] 50.3 24.3 23.8

Average journey time [min] 146.1 144.3 75.8

In the FLAIT simulations conducted so far, the state of charge of the vehicle battery
was not taken into account, and each FLAIT-train was assumed to operate without needing
to recharge its battery. However, in future steps of the research, the battery capacity, energy
consumption, and charging infrastructure (such as charging station) will be considered
as the constraints in the simulations. By incorporating these factors, the exact number of
FLAIT-trains required to operate efficiently in the realistic urban scenario can be determined.
This additional analysis will provide valuable insights into the practical implementation
and optimization of the FLAIT system for public transportation.

In this paper, the dispatching algorithm integrated in SUMO was utilized to analyze
the performance of FLAIT-trains. However, it should be noted that the current dispatching
algorithm only considers the average waiting time as a cost function. To further optimize the
performance of FLAIT-trains and enhance their transport capacity, potential improvements
can be made in the dispatching algorithm.

One potential enhancement is to include additional key figures, such as the maximum
waiting time of a single passenger and average occupancy rate, in the calculation of the
cost function. By incorporating these metrics, the dispatching algorithm can make more
informed decisions and prioritize actions that reduce both the average and maximum
waiting times for passengers. This approach can lead to a better overall transport experience
for passengers using FLAIT-trains.

Furthermore, by considering the daily transportation productivity, the algorithm
can focus on maximizing the efficiency of the entire transportation system rather than
just optimizing individual aspects. This can lead to a more balanced and effective use
of FLAIT-trains, ultimately improving their overall transport capacity and ensuring a
smoother operation.

Incorporating these optimization potentials into the dispatching algorithm will con-
tribute to a more comprehensive evaluation of the FLAIT-trains’ performance and help
identify the most efficient configurations for implementing this transportation system in
real-world urban scenarios.

In this paper, the Krauss model along with the perfect driver model was initially used
to model flexible platooning. However, to explore and evaluate different possibilities for
autonomous vehicles and their behaviors in platooning scenarios, further car-following
models will be considered in future research.

One such car-following mode that will be investigated is the model specified in [58],
which is specifically designed for autonomous vehicles. This model takes into account
the unique characteristics and capabilities of autonomous vehicles, which may differ from
conventional vehicles with human drivers. By incorporating this model into the simulation,
researchers can better understand how autonomous vehicles perform in flexible platooning
situations and assess their potential benefits and limitations.

By exploring different car-following models, researchers can gain a deeper insight
into the behavior of vehicles in platooning scenarios, how different driving characteristics
impact platooning efficiency and safety, and ultimately identify the most suitable model
for the specific context and objectives of the study.
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Indeed, as an intermediate solution, the FLAIT-train system addresses certain chal-
lenges conventional public transportation systems face, but some issues remain unsolved.
One such problem is the large space occupancy of FLAIT-trains, which could be improved
in the future to achieve fully autonomous FLAIT-trains.
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