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Abstract: Psychosocial trauma has accompanied mankind since time immemorial and has been
sufficiently portrayed in art and literature to suggest that posttraumatic stress disorder may be as old
as combat itself. Since war is more frequent in human history than peace, public health measures
are confined to mitigating the detrimental impact of battlefield experiences on combat participants.
At present, PTSD outcome studies show mixed results, marked by high nonresponse rates, therapy
dropout, and completed suicide, suggesting that novel strategies are urgently needed. Those of us
who work routinely with combat veterans have noted an increasing trend of patients preferring
mindfulness-based therapies as opposed to trauma-centered treatments, such as prolonged exposure
or trauma-focused cognitive behavioral therapy. Preference for mindfulness over trauma-based
therapies appears to coincide with the shift in research focus from the amygdala and fear to the
insular cortex and interoceptive awareness. Therefore, rethinking PTSD as insular pathology is
driven by the recent findings that neurons in this cortical area not only regulate cardiac rhythm but
also record past intestinal inflammations. These discoveries likely explain the high comorbidity
of stress-related disorders with premature endothelial senescence and a dysfunctional intestinal
barrier. Moreover, the identification of the cholinergic anti-inflammatory pathway and the revelation
that endothelial cells express alpha-7 nicotinic receptors has brought PTSD prevention and early
detection within reach. In this narrative review, we discuss the relationship between early vascular
aging, gut barrier disruption, and PTSD. We also examine the link between this pathology and faulty
interoceptive awareness, surmising that hypertension and decreased heart rate variability are PTSD
risk factors, while lipopolysaccharide, lipopolysaccharide binding protein, soluble CD14, microbial
cell-free DNA, acyloxyacyl hydrolase, and IL22 comprise early detection markers of this disorder.

Keywords: post traumatic stress disorder; hypertension; heart rate; microbial translocation;
endothelial cells

1. Introduction

Although the term “shell shock” was coined during World War I, battle trauma
had likely entered human history long before modern warfare [1]. Ancient civilizations,
unacquainted with the inner dimensions of the human mind, likely experienced war trauma
as a mythical destiny based on the “rule of blood”, traced in Ancient Greece to the House
of Atreus, a primitive jurisprudence predating the “rule of law” [2,3].

“Nothing Matters to Me Now, But killing and blood and men in agony”, exclaimed
Trojan hero Achilles, suggesting that experiencing combat can beget new and often random
acts of violence (Iliad 19.226). Indeed, combat scenarios, relived over and over by many con-
temporary veterans, appear to hijack selective neuronal assemblies implicated in emotional
recall, keeping the traumatic event vividly alive. Although posttraumatic stress disorder
(PTSD) patients maintain awareness of the subjective nature of their adversity-induced
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experiences, frequent misinterpretation of innocuous cues as danger signals likely reflects
subtle defects of insight. In the section “PTSD and interoceptive awareness”, we discuss
“dysgnosia”, a trauma-mediated partial agnosia, also known as “cognitive bias”, a less
accurate term unreflective of insight.

In the US, the lifetime prevalence of PTSD in the general population is in the range
of 7–8%; however, it can surge to 14–16% in combat veterans and military personnel [4].
These data suggest that stress alone, without individual vulnerability, is insufficient to
engender this pathology [4]. On the other hand, in susceptible individuals, the exposure
to real or threatened death, severe injury, or sexual assault may be followed by pathology,
manifested by nightmares, dissociative phenomena, hypervigilance, avoidance of situations
reminiscent of the traumatic experience, and, in a subset of veterans, aggressive behavior
directed at the self or others [5,6]. The question we ask here is what constitutes susceptibility,
and can the high-risk phenotypes be identified early?

The common psychotherapeutic interventions for PTSD (VA/DoD Clinical Practice
Guidelines revised in 2017) are primarily “amygdala-centered” and aim at correcting the
cognitive bias, reducing fear associated with the traumatic scenario [7,8]. These approaches
include prolonged exposure (PE), cognitive processing therapy (CPT), and trauma-focused
cognitive behavioral therapy (CBT) with or without psychopharmacological interven-
tions [9–11]. Although for many patients, these approaches are beneficial, nonresponse
and treatment dropout rates are high, while the rate of suicide, the most concerning PTSD
manifestation, is around 14%, compared to the lifetime risk of 3.7% in patients with major
depressive disorder (MDD) [12]. Some clinicians have noticed that interventions incor-
porating exposure may sometimes trigger flashbacks, possibly accounting for the high
therapy dropout rates [13]. In addition, vivid dreams, common adverse effects of an-
tidepressant drugs, exacerbate nightmares in many patients, contributing to medication
non-adherence [14].

Mindfulness-based therapies have emerged as alternative interventions for PTSD,
aimed at enhancing interoceptive awareness by promoting conscious living in the “present
moment” [15]. Preferred by many patients, mindfulness-based approaches have shown sig-
nificantly lower dropout rates and have demonstrated statistically significant improvement
on self-report [16,17]. This may be significant as the insular cortex (IC) houses a cardiac
motor area, linking this neuroanatomical site to the autonomic features of PTSD [18]. For
example, stress-induced tachycardia is likely mediated by the IC, while flashbacks and
panic attacks may reflect a dysfunction in this neural hub. Moreover, aside from heart rate
(HR), the IC has been associated with awareness of error, position of the body and limbs,
linking cardiovascular system to insight [19–22].

The communication between the IC and vagus nerve (VN) was defined more than
three decades ago, while recent studies have not only confirmed the existence of these path-
ways, but also found that transcutaneous auricular VN stimulation (taVNS) can enhance
interoceptive awareness, suggesting a potential therapeutic strategy for PTSD [23,24]. In
addition, the IC is tightly connected to the GI tract and was recently shown to store the
memory of prior gut inflammations, likely explaining the high comorbidity between PTSD
and inflammatory bowel disease (IBD), estimated at 19.5% [25,26]. Indeed, these findings
were validated in neuroimaging studies, revealing impaired insular connectivity in patients
with Chron’s disease [27,28]. Interestingly, in one study, electrical stimulation of the IC was
shown to increase the abundance of gut Prevotella and Bacteroides species, suggesting that
insular neurons control microbiota composition [29].

2. PTSD and Interoceptive Awareness

Most PTSD models and therapies assume that excessive activation of amygdala trig-
gers fearful memories, contributing to the pathogenesis of this disorder [30–32]. However,
novel studies have shown that the inner perception of trauma may be more significant
for the development of posttraumatic symptoms than the activation of fear-imbued mem-
ories [32]. For example, when processing traumatic experiences, the IC permeates the
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interoceptive and exteroceptive stimuli with autonomic coloring, generating a unique, indi-
vidualized, inner perception of the catastrophic event [33,34]. In addition, the IC regulates
empathy, compassion, and social cues, including the ability to interpret the feelings of oth-
ers and adjust one’s behavior accordingly [35]. This special form of insight is often impaired
in PTSD patients, who frequently misinterpret neutral social signals as hostility, leading
to hypervigilance, anxiety, and, occasionally, aggression [36]. Furthermore, dissociative
phenomena, such as flashbacks and intrusive memories, may reflect disruption of insula-
mediated emotional intelligence as opposed to the amygdala and fear [37–39]. Indeed,
neuroimaging studies of PTSD patients, experiencing active flashbacks, have revealed both
dysconnectivity and impaired insular activation [40,41] (Figure 1).
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Figure 1. The IC-IEC dialog is part of the gut–brain axis as well as the CAP. These systems enable
interoceptive awareness, a two-way communication between insular neuronal networks and intestinal
epithelial/endothelial cells. At the molecular level, myenteric-plexus-secreted acetylcholine (ACh)
(via α7nAChR) activates the AhR/STAT3/IL22 system (which requires AhR entry into the nucleus,
where it acts as a transcription factor). IL22, the “guardian of intestinal barrier”, prevents MT into
host tissues.

Under normal circumstances, the IC receives input from the autonomic nervous
system, comprising sympathetic, parasympathetic, and enteric divisions, as well as innate
and adaptive immune data, maintaining a detailed inflammatory map [42–44]. In the gut,
intestinal epithelial cells (IECs) express alpha 7 nicotinic acetylcholine receptor (α7nAChR),



BioMed 2023, 3 487

a major component of the cholinergic anti-inflammatory pathway (CAP) discovered in
2000 by Borovikova LV and colleagues. This system likely explains the beneficial effect
of transcutaneous auricular vagal nerve stimulation (taVNS) on the intestinal barrier,
where dopamine (DA)-activated aryl hydrocarbon receptor (AhR) upregulates interleukin
22 (IL22), maintaining physiological permeability [45–48] (Figure 1).

Under pathological circumstances, the IC has been implicated in a wide variety of
syndromes marked by deficient insight, ranging from anosognosia to psychopathy, and fron-
totemporal dementia (FTD), linking insular neurons to disease awareness [19,49,50]. This
is significant as several viral infections highly comorbid with PTSD, including SARS-CoV-2
and human immunodeficiency virus 1 (HIV-1), disrupt IC, inducing anosognosia for cogni-
tive deficits. This suggests that insula is the likely the “dwelling place of insight” [51–53].
Moreover, as these viral infections induce intestinal inflammation, the GI tract likely plays
a role in interoceptive awareness, justifying the vernacular expression “gut feeling”, as
a synonym for insight [26,27,54]. This is significant as patients with PTSD likely exhibit
dysgnosia, a subtle insight deficit, interfering with the appreciation of situational real-
ity [55,56]. For example, interpreting innocuous stimuli as danger signals may represent
errors of insight, rather than amygdala-generated fearful stimuli [57]. In addition, like in
frontotemporal dementia, PTSD patients may engage in aggressive acts while maintaining
some degree of insight into the negative impact of this behavior [58]. Moreover, the fact that
some patients with PTSD prefer mindfulness, instead of trauma-oriented therapies, may be
the proof of concept that a dysfunctional IC may drive the pathogenesis of PTSD [13,59,60].

In the following subsections, we will discuss in more detail the role of the IC in
emotional intelligence, cardiac, and gut connection, as well as PTSD risk factors, early
detection markers, and public health approaches for preventing microbial translocation
(MT) into the host circulation.

2.1. Heart Rate Variability as a PTSD Risk Factor

In colloquial expression, the brain is the epitome of rational thinking and intelligence,
while the heart is generally associated with feelings and emotion. Over the past two decades,
the term “emotional intelligence” has been circulated widely, although the neuroanatomic
“home” of this social skill has yet to be defined. Here, we suggest that social or emotional
intelligence dwells in the IC and may be a function of von Economo neurons (VENs), which
populate the anterior insula and the cingulate cortex [61–63]. Indeed, dysfunctional VENs
have been associated with suicidal behavior and psychosis, while FTD is characterized
by the selective loss of these cells [64]. Aside from neuropathology, VENs have been
implicated in cardiac physiology as they regulate HR and blood pressure (BP), parameters
associated with both emotional expression and environmental demands [65,66]. Indeed,
VENs may comprise the heart motor center, which was recently identified in the IC, and
plays a major role in the autonomic accompaniment of emotional experiences [67]. The IC
communicates with the heart via VN and postganglionic cardiac neurons, likely explaining
heart rate variability (HRV) in response to inner or outer stimuli, such as emotions or the
environment [67]. Moreover, GI tract inflammation has been associated with decreased HRV,
suggesting IC regulation of the autonomic nervous system [68]. Interestingly, dysfunctional
resting HR as well as decreased HRV have been documented in psychopathy, a pathology
associated with insular damage [69–71]. This may explain the evolutionary preservation of
psychopathy, a phenotype likely conserved for its battlefield advantages.

Since under normal circumstances, VENs drive both empathy and HRV, in pathological
conditions, these cells may trigger anxiety attacks, hypervigilance, avoidant behavior, or
aggression [63,72,73]. HRV was previously identified as a PTSD risk factor, emphasizing
the key role of the cardiovascular system in this pathology [74–76].

2.2. PTSD-Associated Hypertension (HTN)

Under physiological circumstances, the IC gathers real-time interoceptive and exte-
roceptive input, permeating it with autonomic hues, memories of past experiences, and
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personal values. These data are subsequently communicated to the cardiovascular system
via insular–cardiac circuits, generating individualized homeostatic responses [77]. The
IC-heart dialog regulates the HR and BP, parameters driven by both emotional experiences
and environmental demands [78]. Indeed, the right IC has been associated with HTN, while
the left induces vasodilation [79]. BP fluctuations accompany many human experiences,
including emotion, physical pain, psychosocial stressors, infections, and pro-survival risk
taking [80–82]. For example, the major HTN driver, angiotensin II (ANG II), has been asso-
ciated with PTSD as renin-angiotensin (RAS) is a well-established component of the human
stress response [83,84]. Indeed, ANG II has been associated with the neural expression of
fear, while alamandine, a less-studied RAS member, lowers fear by acting on the rostral
insula, likely averting the development of PTSD [78,85]. The role of RAS in neuropathology
was emphasized during the COVID-19 pandemic, as SARS-CoV-2, the etiologic agent of
this viral infection, employs angiotensin-converting enzyme 2 (ACE-2) as the entry portal
into host cells.

RAS comprises two arms, the proinflammatory/prooxidative and anti-inflammatory/
antioxidative branch, which maintain the homeostasis of both BP and the human stress
response. ACE-2 bridges the two RAS branches, indicating that a defect of this enzyme,
including viral hijacking, can disable the entire protective RAS branch (Figure 2). This,
in return, leads to endothelial barrier disruption and spill-over of neurotoxic molecules,
including ANG II or endothelin-1 (ET-1), into the CNS, triggering pathology, including
PTSD [86]. Indeed, this mechanism may explain the high comorbidity of some viral
infections with both HTN and PTSD [87,88] (Figure 2). In addition, viruses have been
known for disrupting both epithelial cells and ECs, increasing the permeability of biological
barriers, including the intestinal and blood–brain barrier (BBB), enabling MT into the host
systemic circulation [89]. As we have discussed this issue in another article, will not go into
more detail here [90].
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Figure 2. The two RAS branches: pro-inflammatory/pro-oxidant and anti-inflammatory/antioxidant,
are connected via ACE-2. When ACE-2 is disabled by various pathologies, including the SARS-CoV-2
virus attachment, the entire protective RAS branch is inhibited, disrupting the ECs (comprising the
endothelial gut barrier) and enabling MT. ARBs and GABA oppose the effects of ANG II, averting EC
senescence, barrier disruption, and MT.

The COVID-19 pandemic emphasized the RAS-aryl hydrocarbon receptor (AhR) link,
which plays a key role in orchestrating virus-induced senescence (VIS) in ECs [91–94]. Con-
versely, angiotensin receptor blockers (ARBs) and γ-aminobutyric acid (GABA) counteract
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EC senescence, indicating potential therapeutic effects in PTSD. Indeed, both GABA and
ARBs have shown protective effects against psychosocial stress in both human and animal
studies [95–97].

In summary, several lines of evidence implicate dysfunctional IC in PTSD pathogen-
esis, suggesting that impaired HRV and BP comprise risk factors for this disorder. At
the molecular level, defective RAS and AhR contribute to PTSD by inducing premature
epithelial and endothelial senescence, causing gut barrier disruption and MT. In the fol-
lowing sections, after a brief reminder of AhR physiology and pathology, we discuss PTSD
resilience systems, HIF-1α and CAP, that not only counteract MT but also ameliorate
IC homeostasis.

3. Aryl Hydrocarbon Receptor and Enteric Nervous System: Quick Reminder

The enteric nervous system (ENS), comprising the myenteric and submucosal plexus,
is a semi-independent “gut brain” situated within the wall of the GI tract [98]. The ENS
contains glial cells and three times as many neurons as the spinal cord. The ENS neurons
exhibit unusual plasticity and a high level of neurogenesis as they are replaced every few
weeks with newly born neuronal cells [99]. Moreover, the ENS neurons are regulated by
AhR, which, depending on the attached ligand, may play a pro- or anti-apoptotic role [100].
Initially, AhR was believed to interact only with the environmental toxin dioxin (2,3,7,8-
tetrachlorodibenzo-p-dioxin). However, the discovery that the major neurotransmitters DA,
serotonin (5HT), and melatonin, as well as several psychotropic drugs, including clozapine,
are AhR ligands, brought this receptor into the neuropsychiatric arena [46,101–104]. Fur-
thermore, when AhR binds to gut indole, it promotes adult neurogenesis in various brain
niches, suggesting novel targets for major depressive disorder (MDD) and PTSD [105–108].
It has been well established that AhR regulates corticotropin releasing hormone (CRH), a
major PTSD driver, involved in interoceptive awareness and the IC [109,110].

3.1. AhR and Cellular Senescence

During development, AhR plays a key role in organogenesis; however, excessive
activation of this transcription factor later in life has been associated with premature cellular
senescence and neurodegeneration [111,112]. AhR is a transcription factor, stabilized in the
cytosol by the heat shock protein 90 (Hsp90), a chaperone implicated in PTSD [113,114].
When AhR detaches from HSP90, it enters the nucleus, where it binds to AhR nuclear
translocator (ARNT). This biochemical reaction is opposed by the aryl hydrocarbon receptor
repressor (AhRR), an inhibitor of AhR signaling [115]. If not inhibited by AhRR, the
AhR/ARNT heterodimer enters the genome, where it activates the DNA replication-related
element (DRE), initiating the transcription of many genes, including IL22 [116–118].

The effects of AhR are dependent on the attached ligands and are tissue- and context-
specific; thus, it may exert opposite effects in one cell type vs. another. For example,
activated AhR blocks cellular senescence in hepatocytes and fibroblasts, while in renal
cells, it precipitates this phenotype [119,120]. Another transcription factor, HIF-1α, averts
premature EC senescence by opposing the effects of AhR on microvascular endothelia [121].
Moreover, HIF-1α also protects enteric neurons as hypoxia caused by IEC oxygen con-
sumption exhibits neuroprotective properties [122]. In another article, we have discussed
HIF-1α lactylation and dysfunction in PTSD pathogenesis so we will not dwell on this topic
here [123].

3.2. PTSD, Premature EC Senescence, and Barrier Function

It is well established that psychosocial stress activates the hypothalamic–pituitary–
adrenal axis (HPA), and when the activation is chronic, it may precipitate PTSD. The initial
step in HPA activation, is CRH synthesis in the paraventricular nucleus of the hypothala-
mus, a process mediated by AhR via acyloxyacyl hydrolase (AOAH). AOAH is an LPS-
inactivating enzyme capable of neutralizing the translocated endotoxin, thus preventing
tissue damage. We surmise that low AOAH levels reflect PTSD severity and can serve as an
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early detection marker [109,124,125]. Another mechanism capable of neutralizing translo-
cated bacteria or their components involves α7nAChRs and the CAP (see below) [126–128]
(Figure 1). The CAP prevents premature vascular aging by enhancing the biosynthesis of
nitric oxide (NO) in ECs, lowering the effects of psychosocial stress [129,130].

The question of why, under a similar level of trauma exposure, an individual develops
PTSD while another does not, remains to be answered. However, as mentioned above,
external (i.e., microbiome alterations) and internal (i.e., epigenetic changes) factors are
likely involved. For example, psychosocial stressors have been associated with altered
DNA methylation in epithelial and ECs, inducing senescence and increased gut barrier per-
meability [131–135]. Moreover, in ECs, impaired methylation of nuclear receptor subfamily
3 group C member 1 (NR3C1), a glucocorticoid receptor encoding gene, was demonstrated
in both PTSD and cardiovascular disease (CVD), linking these conditions to premature
endothelial aging [136–138]. In addition, AhRR methylation can promote PTSD and CVD
via AhR/ARNT-induced EC senescence [139,140].

Recent studies have documented that AhR and HIF-1α exhibit opposing actions on
ECs, as the former promotes while the latter opposes cellular senescence [111,126] (Figure 3).
For example, AhR facilitates DNA methylation, contributing to EC senescence, a phenotype
that can also be induced by disabling HIF-1α [5,141,142].
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Figure 3. Psychosocial stress (via HPA and CRH) induces EC senescence by upregulating cate-
cholamines. This action is opposed by VN via ACh or nicotine signaling with α7nAChR, upregulating
HIF-1α and counteracting EC senescence. Psychosocial-stress-induced catecholamines upregulate
AhR, inhibiting AOAH and facilitating LPS accumulation. Both AhR and LPS promote EC senescence.

4. PTSD Resilience Systems

Besides epigenetic mechanisms, psychosocial stress promotes EC senescence via four
pathways: 1. AhR activation, 2. HIF-1α inhibition, 3. IL22 downregulation, and 4. disrupt-
ing tight junction molecules. These pathways enhance MT and the susceptibility for PTSD,
as evidenced by previous findings:



BioMed 2023, 3 491

1. MT markers are elevated in other disorders characterized by dysfunctional gut barrier,
including HIV, IBD, and schizophrenia, conditions highly comorbid with PTSD [143–145].

2. Microbial cell-free DNA (mcfDNA) has been identified as a novel marker of MT and,
to our knowledge, has not been evaluated for PTSD; however, it is utilized as a marker
of sepsis, another condition characterized by MT [46,146,147].

3. Lowered AOAH allows unopposed translocation of LPS into the host circulation and
may serve as a PTSD susceptibility marker [108].

4. Psychological stress downregulates intestinal IL22, increasing barrier permeability,
suggesting that low levels of this cytokine may reflect PTSD susceptibility [148].

5. Preclinical studies have implicated dysfunctional tight junction proteins, claudins and
occludins, in PTSD, suggesting that these biomolecules can serve as markers of this
pathology [149–151].

MT drew the attention of researchers and clinicians in the 1980s, during the HIV
epidemic, as this virus, known for depleting IL22, has been associated with the disruption
of the intestinal barrier [152]. This is significant as recent studies have found increased
prevalence of mental illness in the offspring of mothers suffering from MDD during
pregnancy. Since these pregnancies were associated with elevated levels of MT markers,
these molecules may reflect psychopathology risk before birth [153–156]. Therefore, testing
for MT biomarkers should be part of prenatal screening for mental illness in offspring.

4.1. Resilience Mechanism #1: The Cholinergic Anti-Inflammatory Pathway (CAP)

Intestinal macrophages are innate immune cells that recognize gut pathogens and
clear both acute and chronic inflammation. These cells also regulate mucus secretion and
intestinal motility, participating actively in the barrier function [157]. Macrophages express
α7nAChRs and are directly innervated by the VN, averting premature epithelial and EC
senescence [158] (Figure 4).
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Due to the rapid turnover of enteric neurons and accelerated efferocytosis, intestinal
macrophages are much more active compared to those in other tissues [159,160]. For this
reason, dysfunctional elimination of dead cells and accumulation of molecular debris
can trigger gut barrier disruption and inflammation. Conversely, taVNS may restore the
integrity of the gut barrier, lowering the odds of PTSD [161–164] (Figure 4). Moreover,
as mentioned above, IECs express α7nAChRs and are subject to the CAP, which protects
the barrier function [165,166]. This is significant as it likely explains the high comorbidity
of PTSD with IBD and HIV, disorders characterized by gut barrier dysfunction [25,88].
In addition, AOAH and IL22 protect the intestinal barrier against microbial and LPS
translocation, indicating that these proteins could be used to identify PTSD early [124,167].

Dysfunctional CAP and macrophage-mediated efferocytosis can cause accumulation
of cellular and molecular debris and gut barrier disruption [168].

4.2. Resilience Mechanism #2: HIF-1α and PTSD Resilience

HIF-1α is a transcription factor activated by local hypoxia that plays a key role in
averting premature cellular senescence, including that of ECs. Senescence is a cellular pro-
gram of averting malignant transformation by inducing cell entry into a state of permanent
proliferation arrest, while maintaining an active metabolism. Although protective against
cancer, the senescent phenotype releases a detrimental secretome, known as senescence-
associated secretory phenotype (SASAP), which can disseminate senescence to the healthy
neighboring cells [169]. Replicative cellular senescence was discovered by Leonard Hayflick
in 1965, who demonstrated that cells do not replicate indefinitely, but after 40–60 divisions,
they undergo telomere erosion and permanently exit the cell cycle [170,171].

Many neuropsychiatric disorders, including PTSD, have been associated with acceler-
ated aging and shorter telomeres, indicating that psychosocial stress can induce premature
cellular senescence [172,173]. Early endothelial aging in PTSD has been documented in
many studies, suggesting that psychosocial stress primarily affects the endothelia and
epithelia, contributing to increased intestinal permeability [174–176]. For example, MT has
been documented in several PTSD studies, linking this pathology to an impaired gut bar-
rier [177]. HIF-1α opposes MT via telomere elongation, reversing the effects of premature
vascular aging, thus lowering the odds of PTSD [178,179].

As opposed to peripheral arteries in which HIF-1α rejuvenates endothelia, in the
lungs, hypoxia causes pulmonary arterioles to constrict, leading to pulmonary artery
resistance, which, under chronic conditions, may lead to right ventricular failure [180–182].
This may explain the high prevalence of obstructive sleep apnea (OSA) in PTSD patients,
linking chronic hypoxia to this pathology [183,184]. Indeed, chronic HIF-1α elevation is
detrimental, while intermittent hypoxemia is physiological and protects the endothelial
barrier, suggesting that hyperbaric oxygen may comprise an effective treatment strategy
for both PTSD and OSA. Indeed, several recent studies have reported amelioration of PTSD
symptoms with hyperbaric oxygen, suggesting that more studies are needed to clarify this
issue [185,186].

Aside from the endothelial barrier, HIF-1α also protects the intestinal epithelial bar-
rier [187,188]. The mechanism of hypoxia-induced gut barrier repair is complex, but it
comes down to IL22 upregulation. Microbiota-derived short-chain fatty acids (SCFAs)
induce a degree of GI tract hypoxia due to increased oxygen consumption by the IECs. This,
in turn, upregulates HIF-1α in mucosal ILC3, increasing the production of IL22 [189,190].

Although HIF-1α expression can be easily measured in blood serum, due to its fluctu-
ating levels, it may not be an ideal PTSD marker; therefore, IL22, which indirectly reflects
HIF-1α status, is likely a more reliable indicator of gut barrier integrity.

Taken together, PTSD association with gut barrier dysfunction is driven by the pre-
mature senescence of endothelial and epithelial cells. MT markers can be used to identify
PTSD susceptibility prior to the development of clinical symptoms and should be included
in prenatal care to screen for offspring mental health.
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5. Early Detection Markers

In this section, we take a closer look at individual markers that could be used to
identify PTSD in the premorbid phase, allowing prevention. Many markers of intestinal
permeability have been utilized; however, at present, there is no gold standard test for
MT [191]. Aside from the existing peripheral blood bacteria-detecting assays, including
LPS, LBP, CD14, or AOAH, we propose two new tests, mcfDNA (measured via Karius
Test®), and IL22 (measured via Singulex-Erenna®), which, when combined, may have
higher specificity for MT. Indeed, we chose this battery of microbial tests as they measure
both LPS translocation (LBP, CD14, and AOAH) and barrier integrity. LPS was chosen
because of its predictive value for neuropathology. For example, human and animal studies
show that maternal exposure to LPS during pregnancy contributes to high susceptibility
for anxiety disorders, including PTSD, in offspring [192–196] (Table 1).

5.1. LPS

LPS is a component of the outer membrane of Gram-negative bacteria that consists
of lipid A, the O antigen, and the core oligosaccharide [197]. Circulatory LPS originates
in the GI tract, although lower amounts can be derived from the oral microbiome, and
even food [198,199]. LPS is an inducer of host inflammatory responses and induces the
release of IL1 alpha, IL1 beta, IL6, IL10, tumor necrosis factor alpha (TNF-alpha), and
cyclooxygenase-2 as well as nitric oxide synthase (NOS), an enzyme that metabolizes
arginine into nitric oxide (NO) and citrulline [200]. Interestingly, citrulline is an established
marker of gut barrier integrity as well as an enhancer of athletic performance, suggesting
anti-inflammatory properties [201,202]. In contrast, as a posttranslational modification,
citrullination (due to excess citrulline) is detrimental as it promotes inflammation and
autoimmunity [203,204].

Upon crossing into the host tissues, LPS is detected by Toll-like receptor 4 (TLR4),
a protein that activates nuclear factor kappa B (NF-κB) and interferon regulatory factor
3 (IRF3), promoting the release of proinflammatory cytokines [205]. Minute amounts of
LPS can lead to PTSD as this toxin (the lethal dose for humans is 1 to 2 µg) stimulates host
immunity, inducing premature cellular senescence [206–209].

Psychosocial trauma can also activate TLR4, a process known as sterile inflammation,
suggesting that the body does not discern very well between biological and psychosocial
stress [210,211]. This may be significant as various disorders of unclear etiology, usually
labeled as “psychogenic” or “functional”, such as fibromyalgia or psychogenic fever, may
be explained by the concept of sterile inflammation [212]. Conversely, psychotherapy,
antidepressant drugs, and exercise have been demonstrated to lower TLR4 [213–215].

Sterile inflammation engenders pathology via TLR4-induced assembly of inflamma-
some (NOD)-like receptor protein 3 (NLRP3), which can be activated by LPS, psychosocial
stress, a high-fat diet, and other environmental factors, including air pollution [216–218].
Excessive NLRP3 activation has been documented in PTSD, while inhibition of this in-
flammasome can ameliorate the symptoms, likely through AhR [219–221] (Figure 5). In
addition, LPS has been reported to directly induce EC senescence in biological barriers,
promoting MT [209,222].

Dysfunctional NLRP3 was demonstrated to aberrantly activate microglia, trigger-
ing the elimination of healthy neurons, a pathology manifested in PTSD as gray matter
loss [223–225]. Indeed, neuroimaging studies have revealed decreased gray matter in PTSD,
suggesting abnormal microglial activation [226–228].
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Figure 5. NLRP3 inflammasome activation: psychosocial stress and LPS trigger inflammation
by inducing inflammasome assembly. Inflammasomes comprise a sensor, the nucleotide-binding
oligomerization domain (NOD), in this case the (NOD)-like receptor protein 3 (NLRP3), apoptosis-
associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. In the
presence of proinflammatory endogenous or exogenous stimuli, these molecules assemble and the
inflammasome becomes biologically active, transforming premature IL-1 beta and IL-18 into their
biologically active forms, which, in turn, activates microglia.

5.2. LBP and CD14

Upon LPS migration from the gut into the host systemic circulation, it binds LBP, a
secretory phase-one molecule, as well as CD14, the receptor of the LPS-LPB complex [229].
Together, LBP/LPS/CD14 initiate cellular secretory responses that are much stronger than
those of LPS alone, suggesting that these translocation markers enhance the pathological
effects of translocated microbes or their components [230]. LBP serum levels are upreg-
ulated (normal range 5 to 10 µg/mL) and elevated LPB binds LPS with higher affinity,
exacerbating PTSD [226,231]. Conversely, low LBP attenuates host inflammation, lowering
the susceptibility for PTSD. In this regard, psychosocial stress has been demonstrated to
upregulate LBP, inducing depressive symptoms and PTSD exacerbations, thus validating
the role of the LBP/LPS/CD14 complex in these pathologies [232]. Conversely, the soluble
form of CD14 (sCD14) is a reliable microbial translocation marker upregulated in sepsis,
schizophrenia, and cancer, indicating that it likely comprises a valid signature of PTSD
susceptibility [143,233,234].
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5.3. Microbial Cell-Free DNA (mcfDNA)

Microbial cell-free DNA (mcfDNA) is a novel plasma marker utilized in infectious
diseases that may also have potential to be used to detect translocated bacteria in PTSD [235].
The mcfDNA test was developed by Karius Inc. (Redwood City, CA 94065, USA) in 2017
(Karius Test®) and may accurately detect microbial translocation in PTSD [236]. To our
knowledge, Karius Test® has never been used in PTSD; however, mcfDNA could serve
as an early detection marker for this pathology. Further studies are needed to assess the
validity of this marker in PTSD.

5.4. Acyloxyacyl Hydrolase (AOAH)

AOAH is a leukocyte-secreted lipase that hydrolyzes LPS by breaking the acyloxyacyl
bonds [124]. For example, mice with higher AOAH levels were found to recover more
rapidly from Gram-negative infections, while AOAH-deficient rodents exhibited not only
more severe infection but also chronic pain, anxiety, and depression-like behaviors [109].
Interestingly, it was recently reported that AOAH regulates CRH via AhR, implicating this
enzyme in PTSD pathogenesis [109]. In this regard, as AOAH eliminates LPS, low levels
of this protein likely reflect PTSD vulnerability. Indeed, preclinical studies have shown
that genetic treatment with the AOAH gene lowers LPS, suggesting a potential therapeutic
strategy for Gram-negative sepsis and likely PTSD [237].

5.5. IL22

IL22 is a member of the IL-10 family of cytokines that is synthesized by several
lymphocyte types, including T helper (Th) 17 cells, γδ T cells, NKCs, and ILCs3 [238]. IL22
functions as a master regulator of gut barrier permeability as it modulates gut microbiota
as well as the function of intestinal mucosa ILCs [239]. Luminal IL22 is generated by ILC3
and functions to enhance the beneficial gut microbes Bifidobacterium and Lactobacillus spp.,
increasing PTSD resilience. Along this line, we have suggested recombinant human IL22
as a treatment for schizophrenia and believe that this cytokine can also be beneficial in
PTSD [240,241]. Indeed, psychological stress was demonstrated to disrupt IL22 as well
as the gut barrier function, indicating that exogenous IL22 could restore the integrity of
the intestinal barrier [148]. IL22 serum levels can be measured via Singulex-Erenna®, an
ultrasensitive assay, indicating that detection of this cytokine is currently possible [242].

Taken together, based on several clinical and preclinical studies, PTSD susceptibility
may be measured using MT markers, including elevated LPS, LBP, CD14, and lowered
AOAH. Downregulated IL22, a marker of gut barrier integrity, likely reflects PTSD vulnera-
bility. If validated, these biomarkers could be useful for discerning individuals at high risk
of PTSD and adjusting or developing deployment policies accordingly.

Table 1. Microbial markers, sources, and physiological role.

Markers Origin or Function References

HRV GI tract inflammation lowers HRV [68]

BP Right vs. left IC = vasopressor vs. vasodilation [79]

LPS (elevated) Gut, oral microbiome, food origin [198–200]

sCD14 (elevated) Receptor for LPS/LBP heterodimer [229]

LBP (elevated) Enhances the action of LPS [230]

AOAH (low) Neutralizes translocated LPS [124]

IL22 (low) Impaired barrier function [239]
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6. Conclusions

PTSD has accompanied human history for millennia. However, under a similar level
of trauma exposure, who develops and who does not develop this condition remains
poorly defined.

Shifting the research focus from the amygdala and fear to the IC and interoceptive
awareness has brought forth new potential treatments as well as diagnostic opportunities,
suggesting that dysgnosia may be corrected by interventions at the body periphery, such
as taVNS. Since the IC is in close communication with both the heart and the GI tract,
cardiac and gut biomarkers can be utilized for identifying PTSD susceptibility. For example,
high-risk phenotypes, offspring of mothers with a history of MDD and bacterial (or viral)
infections during pregnancy, may be identified early through postnatal screening.

This article emphasizes the prevalence of PTSD after war trauma, an aspect that may
appear relevant only to military personnel, the police force, and their families. However,
since a significant number of people from all walks of life are exposed daily to overwhelm-
ing stressors, including assaults, motor vehicle accidents, shootings, and hold-ups, this
report may have significance for PTSD in general.

The battery of markers proposed here reflect intestinal barrier permeability (IL22) and
translocation of microbial components (LPS, LBP, CD14, and AOAH). As they also mirror
the BBB integrity, these biomarkers likely reveal the presence of bacteria or LPS in the CNS,
including the IC.
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