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Abstract: This paper presents an innovative entanglement-based protocol to address the Dining
Cryptographers problem, utilizing maximally entangled |GHZn⟩ tuples as its core. This protocol
aims to provide scalability in terms of both the number of cryptographers n and the amount of
anonymous information conveyed, represented by the number of qubits m within each quantum
register. The protocol supports an arbitrary number of cryptographers n, enabling scalability in both
participant count and the volume of anonymous information transmitted. While the original Dining
Cryptographers problem focused on a single bit of information—whether a cryptographer paid for
dinner—the proposed protocol allows m, the number of qubits in each register, to be any arbitrarily
large positive integer. This flexibility allows the transmission of additional information, such as the
cost of the dinner or the timing of the arrangement. Another noteworthy aspect of the introduced
protocol is its versatility in accommodating both localized and distributed versions of the Dining
Cryptographers problem. The localized scenario involves all cryptographers gathering physically at
the same location, such as a local restaurant, simultaneously. In contrast, the distributed scenario
accommodates cryptographers situated in different places, engaging in a virtual dinner at the same
time. Finally, in terms of implementation, the protocol accomplishes uniformity by requiring that
all cryptographers utilize identical private quantum circuits. This design establishes a completely
modular quantum system where all modules are identical. Furthermore, each private quantum
circuit exclusively employs the widely used Hadamard and CNOT quantum gates, facilitating
straightforward implementation on contemporary quantum computers.

Keywords: quantum cryptography; quantum entanglement; GHZ states; the Dining Cryptographers
problem; quantum protocols; quantum games

1. Introduction

In today’s rapidly evolving digital era, technology seamlessly integrates into every as-
pect of our lives, a fact that makes cybersecurity more crucial than ever. As we navigate the
complexity of digital boundaries, we find ourselves immersed in a world where unforeseen
threats coexist with the free exchange of knowledge. The concept of privacy has evolved,
encompassing critical aspects of individual freedom and security in an era characterized
by rapid technological discoveries and digitally interconnected realms. In such a time,
privacy refers to an individual’s ability to manage personal information, choosing whether
and how it is collected, used, and disclosed. The spectrum of issues where privacy is
considered necessary has expanded significantly, ranging from personal communications
and financial transactions to private health information. Privacy issues are more intricate
as digital platforms and smart technologies have become more ingrained in our daily lives.
Social media, internet services, and data-driven technologies have brought unprecedented
convenience, triggering urgent concerns about individual privacy. The clash between the
need for innovation and the demand for personal data protection has emerged as a central
topic of discussion in recent years.
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Cybersecurity is entrusted with safeguarding our data, privacy, and networked culture.
It is responsible for protecting digital systems, networks, and devices from various threats
in cyberspace. These risks, ranging from ransomware attacks and advanced espionage to
computer viruses and data breaches, not only pose economic risks but also jeopardize the
foundation of trust on the Internet. The development of the Internet and the widespread
use of smart gadgets have transformed the way we work, communicate, shop, and spend
our leisure time. However, the digital revolution has increased the attack possibilities that
cybercriminals can exploit to their advantage. Consequently, cybersecurity is a constantly
evolving field trying to stay ahead of these risks. Alongside the evolution of software and
hardware, the security of these systems must also progress, fortifying each system against
new threats. This is achieved by combining technological advancements, regulations,
and human skills. As we traverse the realm of cybersecurity, it becomes evident that
safeguarding our digital future involves more than simple data protection. Understanding
and implementing robust cybersecurity measures are key to building a safer, more resilient
digital society.

The cryptographic protocol known as the Dining Cryptographers problem explores
the idea of anonymous communication in a social context. David Chaum first introduced it
in 1988 [1] as a thought experiment to demonstrate the possibilities of private and secure
communication among participants. Emphasis is placed on preserving the privacy and
anonymity of each participant to achieve the goal of exchanging messages. To prevent the
revelation of individual contributions, the protocol uses cryptographic techniques to ensure
that the information exchanged between cryptographers reveals only the pre-agreed result
(0/1). The scenario is based on real-life situations where people desire to share information
with others while maintaining their privacy and the confidentiality of their messages.
It is worth mentioning that techniques aimed at obfuscating the sender or receiver in a
communication scheme have received considerable attention in classical cryptography in
the context of numerous applications [2,3].

Anonymity, being a fundamental cryptographic primitive crucial for hiding the iden-
tity of the sender and/or receiver of a message, inevitably stimulated research within the
emerging field of quantum cryptography. Boykin in 2002 proposed a quantum protocol,
where participants distribute pairs of entangled qubits known as EPR pairs, which are
subsequently utilized to generate cryptographic keys [4]. An EPR pair consists of two
qubits entangled in a maximally entangled state, serving as a valuable resource for quan-
tum communication and quantum computation, such as quantum teleportation. Boykin’s
system enables the anonymous transmission of classical information based on quantum
teleportation. Later, Christandl and Wehner introduced a new protocol for the anonymous
distribution of qubits [5]. This protocol uses EPR pairs to transmit a quantum coin via
teleportation. Unlike the classical protocol, it does not require all honest players to possess
the same qubit at the end, avoiding conflicts with the non-cloning property of quantum
states. Bouda and Sprojcar accomplished quantum communication without assuming that
a trusted state is shared between the participants of the protocol [6]. Subsequently, Bras-
sard and Tapp et al. presented information-theoretically secure protocols for anonymous
quantum communication in [7,8], respectively. According to their proposal, the sender
can transmit a quantum message with complete anonymity even if some participants are
corrupted. They introduced the concept of fail-safe teleportation, ensuring that, in the
case of quantum teleportation, the information reaches its destination with the highest
possible precision and security, even in the presence of errors or disturbances. A quantum
communication scheme based on nonmaximally entangled qubit pairs was proposed in [9],
while [10] introduced anonymous entanglement using single photons and CNOT opera-
tions. Shi et al. presented a method for implementing quantum anonymous communication
in a public receiver model using the anonymity features of DC-Nets and nonmaximally
entangled quantum channels [11]. Wang and K Zhang analyzed the shortcomings of the
above protocols and proposed some modifications, emphasizing the risk to the sender’s
anonymity in the case of a malicious participant [12]. In 2015, Ramij Rahaman and Gu-
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ruprasad Kar presented two quantum protocols addressing the Dining Cryptographers
problem and the Anonymous Veto (AV) problem. These protocols are based on the GHZ
paradox and the properties of GHZ correlations [13]. Later, Hameedi et al. proposed a new
quantum solution to this problem using a one-way sequential protocol and extending it
to the Anonymous Veto problem [14]. The protocol is characterized by relying on a single
qubit, utilizing GHZ states due to their high symmetry. In 2021, Li et al. presented an
anonymous transmission protocol using single-particle states with collective detection [15].
Finally, in 2022, Mishra et al. published a series of QAV protocols, quantum protocols for
the Anonymous Veto [16].

In this work, we make the case for an innovative entanglement-based protocol for the
Dining Cryptographers problem. The protocol is described as a quantum game, involving
signature characters such as Alice, Bob, etc. The pedagogical nature of games is expected
to enhance the comprehension of technical concepts. Quantum games, in particular, were
initially introduced in 1999 [17,18] and have by now gained widespread acceptance because
quantum strategies, at times, surpass classical ones [19]. Clearly, this is not the first time
games have been used in quantum cryptography. Even the original groundbreaking
article [20] presents the QKD protocol as a game. For some recent results regarding QKD
the reader may consult [21] and references therein.

This study introduces an innovative entanglement-based protocol to solve the Dining
Cryptographers problem, leveraging maximally entangled |GHZn⟩ tuples as its foundation.
The primary motivation behind this protocol is to provide scalability in terms of both
the number of cryptographers n and the volume of anonymous information conveyed,
represented by the number m of qubits within each quantum register.

The protocol accommodates an arbitrary number of cryptographers n, allowing scal-
ability not only in participant count but also in the amount of anonymous information
transmitted. While the original Dining Cryptographers problem dealt with a single bit of
information—whether a cryptographer paid for dinner—the proposed protocol enables
m, the number of qubits in each register, to be any arbitrarily large positive integer. This
flexibility allows for the transmission of diverse information, such as the cost of the dinner
or the timing of the arrangement.

A notable aspect of the introduced protocol is its adaptability to both localized and
distributed versions of the Dining Cryptographers problem. The localized scenario involves
all cryptographers physically gathering at the same spatial location, like a restaurant,
simultaneously. In contrast, the distributed scenario accommodates cryptographers located
in different places, engaging in a virtual dinner at the same time.

In terms of implementation, the protocol ensures uniformity as all cryptographers
employ identical private quantum circuits. This design establishes a completely modular
quantum system where all modules are identical. Additionally, each private quantum cir-
cuit exclusively employs the widely used Hadamard and CNOT quantum gates, facilitating
straightforward implementation on contemporary quantum computers.

This article is organized as follows. Section 1 gives a comprehensive introduction to
the subject and points to the most relevant works of the literature. Section 2 contains the
necessary terminology that facilitates the exposition of the introduced protocol. Section 3
presents the rationale and the intuition behind the new protocol, while Section 4 provides
an extensive and analytical presentation of the inner workings of the new quantum protocol.
Section 5 summarizes and discusses the merits of this work.

2. Background Notions

Quantum physics reveals some astonishing and counterintuitive features that go
beyond the limits of classical physics and common sense. One of these amazing phenomena
is entanglement, which not only puzzles us but also offers great opportunities for achieving
tasks that are hard or even impossible in the classical realm. Entanglement occurs in
composite quantum systems, which have at least two subsystems, often located at different
places. For more information, including mathematical formulation, we refer the interested
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reader to standard textbooks, such as [22–24]. Maximal entanglement can be easily and
intuitively extended to the case of multipartite systems. Perhaps, the most well-known
form of maximal entanglement found in composite systems of n qubits, where n ≥ 3, is the
|GHZn⟩ state. In such a case, the composite quantum system is made of n separate qubits
and each subsystem is just a single qubit. The astonishing fact is that the entangled qubits
can very well be spatially separated, something that leads to intriguing possibilities, such
as quantum teleportation and superdense coding [25,26]. The |GHZn⟩ state is a maximally
entangled state, meaning that the entanglement between the n qubits is as strong as it can
be. For more details regarding multipartite entanglement measures of GHZ states, we refer
to the recent works [27–29] and to [30] for multiplex multilayer networks. Mathematically,
the situation can be expressed as follows:

|GHZn⟩ =
|0⟩n−1 |0⟩n−2 . . . |0⟩0 + |1⟩n−1 |1⟩n−2 . . . |1⟩0√

2
, (1)

where the subscript i, 0 ≤ i ≤ n − 1, denotes the ith qubit.
Contemporary quantum computers are powerful enough (see for instance the recent

IBM quantum computers [31,32]) to be able to generate GHZ states utilizing standard
quantum gates like the Hadamard and CNOT gates. Furthermore, the circuits responsible
for producing these states exhibit high efficiency, requiring only lg n steps for the |GHZn⟩
state, as demonstrated in [33].

The full power of the introduced protocol requires a more complex and versatile quantum
system where each subsystem is a quantum register ri, 0 ≤ i ≤ n− 1, containing m qubits. The
distinguishing characteristic of this setting is that corresponding qubits across all n registers
are entangled in the |GHZn⟩ state. This concept is formally captured by the Symmetric Bitwise
Entanglement Distribution Scheme. Definition 1 provides the details.

Definition 1. The (n, m) Symmetric Bitwise Entanglement Distribution Scheme, denoted by
SBEDSn,m, specifies that

• There are n quantum registers r0, r1, . . . , rn−1;
• Each register contains m qubits;
• The n qubits in the jth position of every register, 0 ≤ j ≤ m − 1, are entangled together in the

|GHZn⟩ state.

The n quantum registers can be either situated in the same locality or spatially distributed, depending
on whether or not the registers are in the same or different geographical locations in space.

The global state of the composite system is given by the following equation.

|GHZn⟩⊗m =
1√
2m ∑

x∈Bm
|x⟩n−1 . . . |x⟩0 . (2)

In writing Formula (2), which is proved in [34], we take advantage of the standard
notation explained below.

• B is the binary set {0, 1}.
• To distinguish bit vectors from bits, we write bit vectors x ∈ Bm in boldface. A bit

vector x of length m corresponds to a sequence of m bits: x = xm−1 . . . x0. In the special
case where all bits are zero, i.e., 0 . . . 0, we have the zero bit vector, denoted by 0.

• In this setting, a bit vector x ∈ Bm stands for the binary representation of one of the 2m

basis kets that form the computational basis of the Hilbert space at hand.
• To eliminate any source of ambiguity, we rely on the indices i, 0 ≤ i ≤ n − 1, to

emphasize that |x⟩i is the state of the ith quantum register.

Figure 1 illustrates this setting, with the corresponding qubits belonging to the same
|GHZn⟩ n-tuple colored identically. This composite system is made of mn qubits as each
of the n registers holds m qubits. We point out that it does not matter in the least whether
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the registers are all in the same place or are all in different spatial locations. The power of
the entanglement effect, stemming from the m |GHZn⟩ n-tuples, will instill the necessary
correlation, irrespective of whether the composite system is localized or entirely distributed.
It is precisely this unique effect of entanglement that allows us to envision the whole setting
as a unified system.

|GHZn⟩ |GHZn⟩ |GHZn⟩

rn−1: qn−1
m−1 . . . qn−1

1 qn−1
0

rn−2: qn−2
m−1 . . . qn−2

1 qn−2
0

... ...

r1: q1
m−1 . . . q1

1 q1
0

r0: q0
m−1 . . . q0

1 q0
0

A composite system of n quantum registers r0, . . . , rn−1, each with
m qubits. The characteristic property of this system is that the

qubits in the corresponding positions make up a |GHZn⟩ n-tuple.

Figure 1. This figure draws the n qubits that populate the same position in the r0, . . . , rn−1 registers
with the same color so as to emphasize that they belong to the same |GHZn⟩ n-tuple.

The forthcoming mathematical analysis will also use the important formula shown
below that expresses the m-fold Hadamard transform of an arbitrary basis ket. Its proof is
omitted because it can be easily found in most standard textbooks, e.g., [22,35].

H⊗m |x⟩ = 1√
2m ∑

z∈Bm
(−1)z·x |z⟩ . (3)

The expression x · y in (3) denotes the inner product modulo 2 operation. The inner
product modulo 2 takes as inputs two bit vectors x, y ∈ Bm and outputs their inner product.
Specifically, if x = xm−1 . . . x0 and y = ym−1 . . . y0, then x · y is computed as

x · y = xm−1ym−1 ⊕ . . . ⊕ x0y0, (4)

where ⊕ is addition modulo 2. The inner product modulo 2 operation is characterized by a
fundamental property whose application is central to many quantum algorithms. Consider
any fixed element c of Bm; if c is different from 0, then, for half of x ∈ Bm, the outcome of
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the operation c · x is 0 and, for the remaining half, the result of the operation c · x is 1. The
exception of 0 is justified because, when c = 0, then, for all x ∈ Bm, c · x = 0. Following [36],
we call this property the characteristic inner product (CIP) property.

c = 0 ⇒ for all 2m bit vectors x ∈ Bm, c · x = 0 (5)

c ̸= 0 ⇒
{

for 2m−1 bit vectors x ∈ Bm, c · x = 0
for 2m−1 bit vectors x ∈ Bm, c · x = 1

}
(6)

For completeness, we also clarify that measurements are performed with respect to
the computational basis {|0⟩ , |1⟩}.

3. The Scalable Quantum Protocol for the Dining Cryptographers Problem

In the current section, we introduce the novel entanglement-based scalable protocol
that solves the Dining Cryptographers problem, SQDCP protocol for short. As is often
carried out with most of the cryptographic protocols, to lighten up the presentation and
make it more easy-going, we employ the format of a quantum game. This game is played
by n cryptographers, one of whom is Alice, the star of the game. Alice has organized
an official dinner for herself and her n − 1 colleagues C0, . . . , Cn−2. In the forthcoming
small-scale examples, the roles of Alice’s colleagues will be assumed by other famous
actors, namely, Bob, Charlie, and Dave. Nonetheless, in the formal presentation of the
protocol and in order to stress its scalability for arbitrarily large values of n, the n − 1
cryptographers will not be given particular names. Our n heroes, upon discovering that the
dinner has been paid for, set out to discover whether it was one of them or their employer
that paid the bill. The crucial thing here is that they must find out the truth in such a
way so that the anonymity and privacy of all cryptographers are not compromised in any
way whatsoever, and the identity of the cryptographer who paid remains unknown. In its
essence, the Dining Cryptographers problem is a metaphor for anonymous and untraceable
information transmission.

As we mentioned in the Introduction, the SQDCP protocol brings three main novelties
to the table. So, before we begin its description in earnest, let us explain them in detail.

(N1) Scalability. In the SQDCP protocol, the notion of scalability encompasses both
parameters n and m. The number of cryptographers n can be any large positive
integer. In addition to the scalability of players, our protocol can seamlessly scale
in terms of the amount of anonymous information it conveys. Initially, the Dining
Cryptographers problem was about just one bit of information, namely, whether
or not one of the cryptographers paid for the dinner. In the SQDCP protocol, the
number m of qubits in each register can also be any large positive integer. This
number reflects the amount of information that can be transmitted. For instance,
the cryptographer that actually paid the bill may also disclose how much it cost or
when the arrangement was made, etc.

(N2) Local and Distributed Mode. In its initial formulation in [1] and in the subsequent
treatments, the cryptographers’ dinner was a localized event, in the sense that all
cryptographers were together at the same spatial location at a specific point in time.
The protocol introduced in this work can address not only this localized situation
but also a distributed version of the Dining Cryptographers problem, in which the
cryptographers are in different spatial locations.

(N3) Uniformity and Ease of Implementation. All cryptographers employ identical
quantum circuits, that is, the quantum implementation is completely modular,
with all modules being the same. Furthermore, each quantum circuit can be easily
implemented by a contemporary quantum computer because it only uses the
ubiquitous Hadamard and CNOT quantum gates.

Given the above considerations, the following two definitions state formally the
localized and the distributed versions of the Dining Cryptographers problem.
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Definition 2 (Localized Setting). The localized setup is described below.

• Alice gathers together her n − 1 cryptographer colleagues C0, . . . , Cn−2 for a friendly dinner
in a nearby restaurant.

• For all n players, the dinner event takes place simultaneously and at the same location.
• Each player employs a quantum circuit where she secretly embeds the desired information,

namely, whether or not she paid for the dinner.
• Upon measuring their quantum registers and publicly combining the obtained results, all

the players know whether the dinner was paid for by one of them or by their employer, and,
possibly, some additional information, e.g., the cost of the dinner or the date of the payment, etc.

• The identity of the one who paid the bill remains unknown to all other cryptographers.

One of the most useful traits of entanglement is that entangled subsystems are inter-
twined despite being spatially separated. This is the key that enables the effective operation
of many distributed quantum protocols. The SQDCP protocol also takes advantage of
entanglement in order to achieve the desired outcome in a completely distributed setting.

Definition 3 (Distributed Setting). Let us now envision a more general situation.

• Alice and her n − 1 cryptographer colleagues C0, . . . , Cn−2 have made arrangement for dinner.
• There is a complication now compared to the previous case because all n agents reside at

different geographical locations.
• Nevertheless, they are determined to dine at the same time, albeit in different restaurants, and

be in constant audio and visual contact via teleconference.
• Each player employs a local quantum circuit where she secretly embeds the desired information,

namely, whether or not she paid for the dinner.
• Upon measuring their quantum registers, they publicly exchange their measurements via classi-

cal channels. Subsequently, each player uses the received results to find out whether the dinner
was paid for by one of them or by their employer, and, possibly, some additional information.

• The identity of the one who paid the bill remains unknown to all other cryptographers.

The task at hand is to devise a quantum protocol that can seamlessly operate in both
localized and distributed modes, and reveal the required information while guaranteeing
the privacy and anonymity of the generous cryptographer. Before we proceed with the
detailed description of the protocol, it will be expedient to make some clarifications, to
avoid any possible confusion.

• Although there is no theoretical limitation on the number n of cryptographers that
can be an arbitrarily large integer, contemporary quantum apparatus may impose
constraints to the generation of |GHZn⟩ tuples, whenever n exceeds some threshold.

• We assume that, prior to the execution of the SQDCP protocol, certain arrangements
have taken place among the cryptographers regarding the amount and nature of the
desired information. This is necessary in order to fix the number of m, corresponding
to the amount of information, and the proper interpretation of the outcome.

• In the distributed version, we also assume the existence of pairwise authenticated
channels that enable the transmission of classical information.

Example 1. This example features the four cryptographers Alice, Bob, Charlie, and Dave having
dinner in both the localized and the distributed scenario. Common to both scenarios is the fact that
their input quantum registers are entangled according to the (n, m) Symmetric Bitwise Entangle-
ment Distribution Scheme, explained in Definition 1. In this particular example, n = 4 and, if we
assume that the desired information also includes the amount of money paid for the dinner, we may
also take m equal to 4. Hence, the final outcome of the protocol will be m bits expressing the binary
representation of the cost of the dinner, say in euros (EUR). This small-scale example requires four
|GHZ4⟩ tuples evenly and uniformly distributed among the four players.
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When the dinner event takes place at the same restaurant at the same time for all four cryptog-
raphers, we have the standard version of the Dining Cryptographers problem. This is what we refer
to as the localized scenario, which is illustrated in Figure 2.

In addition to the standard approach, the fact that the quantum registers are entangled opens
up the possibility of implementing the SQDCP protocol even in the case where the cryptographers
are spatially separated. In such a scenario, they are having a virtual dinner at the same time, but
now each of them resides at a different location, as depicted in Figure 3.

Dave

»

Charlie »

Bob

»

Alice»

The Localized Scenario
The cryptographers Alice, Bob, Charlie, and Dave have gathered to-

gether at a restaurant for dinner. They want to find out if one of them
has paid for this dinner, but without disclosing her or his identity.

Figure 2. This figure visualizes an example of the localized scenario. Four cryptographers, Alice, Bob,
Charlie, and Dave, have gathered together at a restaurant for dinner. They want to find out if one of
them has paid for this dinner, but without disclosing her or his identity.

Having explained the general philosophy and intuition behind our protocol, we
proceed to its detailed presentation in the next section.
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Dave

Ñ

Charlie

Ñ

Bob

Ñ

Alice

Ñ

The Distributed Scenario
The cryptographers Alice, Bob, Charlie, and Dave have ar-
ranged a virtual dinner because they reside at different lo-
cations. They still want to find out if one of them has paid

for this dinner, but without disclosing her or his identity.

Figure 3. The above figure illustrates an example of the distributed scenario. Four cryptographers,
Alice, Bob, Charlie, and Dave, have arranged a virtual dinner using state-of-the-art technology
because they are at different geographical locations. Of course, they still want to find out if one of
them has paid for this dinner, but without disclosing her or his identity.

4. Execution of the SQDCP Protocol in Three Phases

For pedagogical reasons, we may conceptually view the protocol as evolving in
three phases. Before we begin in earnest, let us point out that our protocol does not violate
the no-cloning theorem [37]. The state of the distributed |GHZn⟩ tuples is known to all
cryptographers participating in the protocol. At a subsequent phase, the cryptographers
embed their private information into the distributed entangled state of the system.

4.1. Entanglement Distribution Phase

The first phase of the protocol is the entanglement distribution phase, during which
the following actions take place. In the subsequent analysis, the number of qubits in every
input quantum register is designated by m. This number is taken to be an appropriately
chosen large positive integer, capable of conveying the amount of information desired. In
the rest of this article, we mainly consider the case where this information is the amount of
money paid for the dinner.

(ED1) Alice or perhaps a third party, trusted by all cryptographers, generates a sequence
of m |GHZn⟩ tuples, mn qubits in total, which are necessary for the execution of the
protocol and the private transmission of the required information. For the SQDCP
protocol, the exact source responsible for the production of the |GHZn⟩ tuples is
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not important; the only thing that matters is that they are faithfully created and
uniformly distributed among the cryptographers.

(ED2) Say for convenience that in every |GHZn⟩ tuple the qubits are numbered from 0 to
n − 1. Their distribution adheres to the following pattern, which guarantees the
even and uniform distribution of entanglement among the cryptographers.

• Alice stores in her input register, denoted by AIR in Figure 4, the (n − 1)th

qubit of each |GHZn⟩ tuple.
• Cryptographer Ci, 0 ≤ i ≤ n − 2, stores in her input register, symbolized by

IRi in Figure 4, the ith qubit of each |GHZn⟩ tuple.

(ED3) In addition to her input register, Alice utilizes a single-bit output register designated

by AOR in Figure 4, which is initialized at state H |1⟩ = |0⟩−|1⟩√
2

= |−⟩. Likewise,
all her cryptographer colleagues Ci, 0 ≤ i ≤ n − 2, possess a similar single-bit
output register denoted by ORi in Figure 4. The output registers are crucial for the
embedding of private information into the entangled state of the composite circuit.

Possibly Spatially Separated...

Possibly Spatially Separated

IR0

OR0: |−⟩

IRn−2

ORn−2: |−⟩

AIR

AOR: |−⟩

Initial State

U f0

U fn−2

U fA

Phase 1

H⊗m

H⊗m

H⊗m

Phase 2 Measurement

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ f ⟩

C0

Cn−2

Alice

|y0⟩

|yn−2⟩

|a⟩

Figure 4. The above figure shows the composite quantum circuit used by the dining cryptographers,
composed of the individual local circuits Alice and her colleagues possess. Even if these local circuits are
spatially separated, they still constitute one composite system because they are linked due to entanglement.
The state vectors |ψ0⟩, |ψ1⟩, |ψ2⟩, and |ψ f ⟩ describe the evolution of this composite system.

All cryptographers operate privately and secretly on their own quantum circuits.
The important remark in this respect is that all these circuits are identical. In closing this
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subsection, we point out that the entire algorithm hinges upon the existence of entanglement
and, therefore, it is very important to verify that all the cryptographers’ quantum registers
are appropriately entangled. Given its significance, this task has undergone thorough
scrutiny in the existing literature. Our protocol adheres to the sophisticated methodologies
outlined in prior works, including [38–43]. Hence, to preclude redundant exposition, we
direct the reader to the previously mentioned bibliography for all the details essential for
the successful validation of the entanglement.

4.2. Private Information Embedding Phase

During this phase, the cryptographer who actually paid for the dinner, assuming that
this was indeed the case, is able to privately and secretly embed this information, perhaps
along with any additional related information. In particular, the quantum circuit outlined
in Figure 4 operates as described below.

(PIE1) If it was Alice who secretly paid for the dinner and the binary representation of
the amount she paid is pA in euros (EUR), then she will insert pA into the global
entangled state of the circuit via her private unitary transform U fA . Since U fA is
only known to her, the required information will be embedded secretly, privately,
and none will be able to be trace it back to Alice.

(PIE2) If Alice did not pay for the dinner, then she uses the zero bit vector 0 in her private
unitary transform U fA , which in effect leaves the global state of the system unchanged.

(PIE3) Entirely analogously, if it was cryptographer Ci, 0 ≤ i ≤ n − 2, who secretly paid
for the dinner and the binary representation of the amount paid is pi, then she
will insert pi into the global entangled state of the circuit via her private unitary
transform U fi

. Since U fi
is only known to cryptographer Ci, this information will

be embedded secretly, and privately, and none will be able to trace it back to Ci.
Obviously, if Ci did not pay for the dinner, then she uses the zero bit vector 0 in
her private unitary transform U fi

.
(PIE4) The quantum part of the protocol is completed when the cryptographers measure

their input registers. The obtained measurements are added together using ad-
dition modulo 2, i.e., they are XOR-ed together. The final outcome p gives the
desired information in the following sense.

▶ If p is nonzero, this means that the dinner was paid by one of the cryptogra-
phers. We also find out how much the dinner cost, because p is the binary
representation of the cost in euros. The identity of the cryptographer who
paid cannot be inferred from p; it remains unknown and untraceable.

▶ If p is the zero bit vector 0, this means that the dinner was paid for by their
employer and not by one of the cryptographers.

(PIE5) The SQDCP protocol will work even if all the players are in different geographical
locations. This is because, even if the quantum input registers are spatially sepa-
rated, they still constitute one composite distributed quantum system due to the
strong correlations among their qubits originating from the |GHZn⟩ entanglement.
The only difference in the distributed case is that each cryptographer must com-
municate the obtained measurements to each other cryptographer using pairwise
authenticated classical channels.

The whole setup is shown in Figure 4. For consistency, all quantum circuits in this
work follow the Qiskit [44] convention in the ordering of their qubits, by placing the least
significant qubit at the top of the figure and the most significant at the bottom.

In the graphical outline of the above quantum circuit, the notation employed is
explained below.

• AIR is Alice’s input register.
• IRi is the input register of cryptographer Ci, 0 ≤ i ≤ n − 2.
• In total, there are n input registers, each containing m qubits. The corresponding

qubits in each of the n registers are entangled in the |GHZn⟩ state.
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• AOR is Alice’s output register.
• ORi is the output register of cryptographer Ci, 0 ≤ i ≤ n − 2.
• All output registers contain just a single qubit in the |−⟩ state.
• U fA is Alice’s unitary transform.
• U fi

is the unitary transform of cryptographer Ci, 0 ≤ i ≤ n − 2.
• H⊗m is the m-fold Hadamard transform.

The initial state of the distributed quantum circuit of Figure 4 is denoted by |ψ0⟩,
which, using (2), can be written as

|ψ0⟩ =
1√
2m ∑

x∈Bm
|−⟩A |x⟩A |−⟩n−2 |x⟩n−2 . . . |−⟩0 |x⟩0 . (7)

To eliminate any potential ambiguity, we rely on the subscripts A and i, 0 ≤ i ≤ n − 2,
to indicate whether the kets refer to Alice or cryptographer i.

Alice and the other cryptographers start the execution of the SQDCP protocol by
acting on their individual quantum circuits via their private unitary transforms U fA and
U fi

, 0 ≤ i ≤ n − 2. By doing so, each one of them can embed the required private
information into the entangled state of the composite system. We stress this important
fact: any one of them, by using her individual and local quantum circuit, can encode the
private information that must be communicated to the other players into the entangled
input registers of the composite, and potentially distributed, circuit. The unitary transforms
U fA and U fi

, 0 ≤ i ≤ n − 2, are based on the private and secret functions fA and fi,
0 ≤ i ≤ n − 2, which are known only to the corresponding cryptographer. Their formal
definition is given below.

fA(x) = pA · x , where pA =

{
the money paid if Alice paid for the dinner,
0 if Alice didn’t pay for the dinner.

(8)

fi(x) = pi · x , where pi =

{
the money paid if Ci paid for the dinner,
0 if Ci didn’t pay for the dinner.

(9)

The unitary transforms U f follow the typical scheme U f : |y⟩ |x⟩ → |y ⊕ f (x)⟩ |x⟩.
Therefore, in view of (8) and (9), they can be explicitly written as

U fA : |−⟩A |x⟩A → (−1)pA ·x |−⟩A |x⟩A , and (10)

U fi
: |−⟩i |x⟩i → (−1)pi ·x |−⟩i |x⟩i , 0 ≤ i ≤ n − 2 . (11)

The combined effect of the unitary transforms results in the system getting into the
state |ψ1⟩ described below.

|ψ1⟩ =
1√
2m ∑

x∈Bm

(
U fA |−⟩A |x⟩A

) (
U fn−2 |−⟩n−2 |x⟩n−2

)
. . .

(
U f0 |−⟩0 |x⟩0

)
=

1√
2m ∑

x∈Bm
(−1)pA ·x |−⟩A |x⟩A (−1)pn−2·x |−⟩n−2 |x⟩n−2 . . . (−1)p0·x |−⟩0 |x⟩0

=
1√
2m ∑

x∈Bm
(−1)(pA⊕pn−2⊕...⊕p0)·x |−⟩A |x⟩A |−⟩n−2 |x⟩n−2 . . . |−⟩0 |x⟩0 . (12)

Therefore, at the end of Phase 1, the cryptographer who paid for the dinner has
embedded the private information known only to her into the entangled state |ψ1⟩ of the
composite quantum circuit in a completely untraceable way. Now, it remains to decipher
this information, so that it becomes known to all other cryptographers. This is explained in
the following subsection.
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4.3. Deciphering Phase

To decipher the embedded private information, Alice and the rest of the cryptogra-
phers apply the m-fold Hadamard transform to their input registers, as shown in Figure 4.
Consequently, at the end of Phase 2, the state of the system has become |ψ2⟩:

|ψ2⟩ =
1√
2m ∑

x∈Bm
(−1)(pA⊕pn−2⊕...⊕p0)·x |−⟩A H⊗m |x⟩A |−⟩n−2 H⊗m |x⟩n−2 . . . |−⟩0 H⊗m |x⟩0 (13)

By invoking relation (3), we may analyze H⊗m |x⟩A, H⊗m |x⟩n−2, . . . , H⊗m |x⟩0 further.

H⊗m |x⟩A =
1√
2m ∑

a∈Bm
(−1)a·x |a⟩A

H⊗m |x⟩n−2 =
1√
2m ∑

cn−2∈Bm
(−1)cn−2·x |cn−2⟩n−2

. . .

H⊗m |x⟩0 =
1√
2m ∑

c0∈Bm
(−1)c0·x |c0⟩0

Via the above substitutions, |ψ2⟩ can be cast in the alternative form shown below.

|ψ2⟩ =
1

(
√

2m)n+1 ∑
a∈Bm

∑
cn−2∈Bm

. . . ∑
c0∈Bm

∑
x∈Bm

(−1)(pA⊕pn−2⊕...⊕p0⊕a⊕cn−2⊕...⊕c0)·x

|−⟩A |a⟩A |−⟩n−2 |cn−2⟩n−2 . . . |−⟩0 |c0⟩0 (14)

Although the above equation seems complicated, they can be greatly simplified if we
apply the characteristic inner product property outlined in relations (5) and (6). Let us
recall what the characteristic inner product property implies in this situation.

• If pA ⊕ pn−2 ⊕ . . . ⊕ p0 ⊕ a ⊕ cn−2 ⊕ . . . ⊕ c0 ̸= 0 or, equivalently, a ⊕ cn−2 ⊕ . . . ⊕ c0

̸= pA ⊕pn−2 ⊕ . . .⊕p0, the sum ∑x∈Bm (−1)(pA⊕pn−2⊕...⊕p0⊕a⊕cn−2⊕...⊕c0)·x |−⟩A |a⟩A
|−⟩n−2 |cn−2⟩n−2 . . . |−⟩0 |c0⟩0 appearing in (14) becomes just 0.

• If, on the other hand, pA ⊕ pn−2 ⊕ . . .⊕ p0 ⊕ a⊕ cn−2 ⊕ . . .⊕ c0 = 0 or, equivalently, a⊕
cn−2 ⊕ . . .⊕ c0 = pA ⊕pn−2 ⊕ . . .⊕p0, the sum ∑x∈Bm (−1)(pA⊕pn−2⊕...⊕p0⊕a⊕cn−2⊕...⊕c0)·x

|−⟩A |a⟩A |−⟩n−2 |cn−2⟩n−2 . . . |−⟩0 |c0⟩0 becomes 2m |−⟩A |a⟩A |−⟩n−2 |cn−2⟩n−2 . . .
|−⟩0 |c0⟩0.

The above explanation allows us to cast |ψ2⟩ in the following reduced form.

|ψ2⟩ =
1

(
√

2m)n−1 ∑
a∈Bm

∑
cn−2∈Bm

. . . ∑
c0∈Bm

|−⟩A |a⟩A |−⟩n−2 |cn−2⟩n−2 . . . |−⟩0 |c0⟩0 , (15)

where
a ⊕ cn−2 ⊕ . . . ⊕ c0 = pA ⊕ pn−2 ⊕ . . . ⊕ p0 . (16)

Using the terminology introduced in [34,45], we refer to relation (16) as the Fundamen-
tal Correlation Property that intertwines the input registers of the dining cryptographers.
This relation is the aftermath of the initial entanglement among all the input registers.
At the end of Phase 2, the cryptographer who paid for the dinner has embedded all the
relevant private information in the global state of the composite quantum circuit, which
has appeared through this constraint on the contents of the input registers.

The quantum part of the SQDCP protocol is over when the cryptographers measure
their input registers in the computational basis. By this action, the state of the composite
system collapses to the final state |ψ f ⟩ that has the following form.



Dynamics 2024, 4 183

|ψ f ⟩ = |−⟩A |a⟩A |−⟩n−2 |cn−2⟩n−2 . . . |−⟩0 |c0⟩0 , where (17)

a ⊕ cn−2 ⊕ . . . ⊕ c0 = pA ⊕ pn−2 ⊕ . . . ⊕ p0 (18)

Let us emphasize that all the above equations hold true in both the localized and
the distributed versions of the SQDCP protocol because their validity stems from the
initial entanglement among all the input registers. As long as entanglement is present, the
distance among the dining cryptographers plays no role. Furthermore, another profound
consequence of entanglement is that the precise temporal sequence of measurements
performed by Alice and her cryptographer colleagues is immaterial. The soundness of
Equation (18) does not presuppose that all players measure their input registers at exactly
the same moment. For instance, let us, momentarily, consider the simplest manifestation
of maximal entanglement in the form of an EPR pair in the |Φ+⟩ = |0⟩A |0⟩B+|1⟩A |1⟩B√

2
state.

If Alice and Bob who are spatially separated possess one qubit of the pair each, and
Alice measures her qubit first, she will know with probability 1.0 the result of Bob’s
subsequent measurement of his qubit. Symmetrically, if Bob measures his qubit first, he
will know with probability 1.0 the result of Alice’s subsequent measurement of her qubit.
Obviously, the same situation is observed if both Alice and Bob measure their respective
qubits simultaneously (ignoring relativistic considerations). The temporal ordering of
the measurements does not change the constraint underlying this simple entanglement,
namely, that upon measurement both qubits will collapse in the same state. Although, in
our protocol, the entanglement assumes a much more complicated form and the resulting
constraint, as expressed by (18), is more elaborate, the underlying physical principle
is exactly the same. That is, the measurement of the players’ input registers may take
place in any arbitrary order, sequentially, or even simultaneously. The resulting contents
a, c0, . . . , cn−2 measured by Alice and cryptographers C0, . . . , Cn−2, respectively, will satisfy
the entanglement constraint (18).

The protocol completes the task of actually decrypting the embedded private informa-
tion through the following steps.

(D1) Every cryptographer communicates to every other cryptographer the measured con-
tents of her input register. That is, Alice sends a to her n− 1 cryptographer colleagues,
and each Ci, 0 ≤ i ≤ n − 2, sends ci to Alice and every other cryptographer.

(D2) In a localized setting, this step is quite trivial. In a distributed setting, it is also
easily achievable, as it only requires the use of pairwise authenticated classical
communication channels.

(D3) At this point, every player knows all bit vectors a, cn−2, . . . , c0. This allows each
cryptographer to compute the modulo 2 sum a ⊕ cn−2 ⊕ . . . ⊕ c0, which, according
to (18), produces the modulo 2 sum pA ⊕ pn−2 ⊕ . . . ⊕ p0.

(D4) The modulo 2 sum pA ⊕ pn−2 ⊕ . . . ⊕ p0 conveys the information the cryptogra-
phers wanted to uncover in the first place. Here is why.

• In case none of the cryptographers paid for the dinner, then, according to
(PIE2) and (PIE3), pA = pn−2 = . . . = p0 = 0. Consequently, their modulo
2 sum is 0, which means that the computed modulo 2 sum a, cn−2, . . . , c0 is
also 0. Hence, the cryptographers infer that the dinner was paid for by their
employer.

• In case Ci, 0 ≤ i ≤ n − 2, paid for the dinner a certain amount of money, then,
considering (PIE1) – (PIE3), pi, the binary representation of this amount, is
nonzero, whereas pA and all other pj, j ̸= i, are zero. This implies that the
computed modulo 2 sum a, cn−2, . . . , c0 is pi. Therefore, the cryptographers
infer that it was one of them who paid for the dinner and, as an added
bonus, they also get to know how much the dinner cost. Obviously, the same
argument goes verbatim in case it was Alice who paid for the dinner.

(D5) The above explanation also shows that the original source of the information
remains unknown and untraceable. The private information, be it pA or some pi,
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0 ≤ i ≤ n − 2, has been absorbed into the sum pA ⊕ pn−2 ⊕ . . . ⊕ p0 and there is
no way that it can be retrieved.

Example 2. The present example is a continuation of our previous Example 1. It does not matter
whether they are physically together around the same table or if they are in different geographical
locations dining virtually; the SQDCP Protocol will go through in both settings.

First, let us consider the case where one of the cryptographers, Alice, paid for the dinner. If
Alice paid say EUR 12, then she embeds the binary representation of 12, namely, pA = 1100 in the
entangled state of the composite circuit. This is easily achieved via CNOT gates. If we implement the
general quantum circuit shown in Figure 4 in Qiskit, we end up with the specific implementation
depicted in Figure 5. By measuring their input registers, Alice, Bob, Charlie, and Dave get one
of the 216 = 65,536 equiprobable outcomes. For obvious technical limitations, we cannot show all
these outcomes, since this would result in an unintelligible figure. Hence, we depict only 16 of them
in Figure 6. It is straightforward to check that every possible outcome satisfies the Fundamental
Correlation Property and verifies Equations (16) and (18). For example, we may examine the
label of the first bar of the histogram contained in Figure 6, which is 0001 1000 0111 0010. This
means that upon measurement the contents of Alice, Bob, Charlie, and Dave’s input registers are
a = 0001, b = 1000, c = 0111, and d = 0010, respectively. These contents are shared among the four
cryptographers, according to (D1) and (D2), and become common knowledge to all of them. Finally,
they XOR them together to uncover the secret information, i.e., p = a ⊕ b ⊕ c ⊕ d = 1100, which
leads them to infer that one of them paid EUR 12 for the dinner. The crucial thing is that neither
the measured contents a, b, c, and d of the input registers, nor the final private information p can
reveal the identity of the cryptographer who paid the bill.

Let us also briefly examine the case where none of the cryptographers paid for the dinner. In
such a situation all cryptographers embed the zero bit vector in the entangled state of the composite
circuit, i.e., pA = pB = pC = pD = 0000. The quantum circuit in this case is shown in Figure 7.
Again, it is very easy to ascertain that every possible outcome satisfies the Fundamental Correlation
Property and verifies Equations (16) and (18). For example, we may examine the label of the third
bar of the histogram contained in Figure 8, which is 0001 1100 1001 0100. This means that the
contents of Alice, Bob, Charlie, and Dave’s input registers are a = 0001, b = 1100, c = 1001, and
d = 0100, respectively. These contents are shared among the four cryptographers, according to
(D1) and (D2), and become common knowledge to all of them. Finally, they XOR them together to
uncover the secret information, i.e., p = a ⊕ b ⊕ c ⊕ d = 0000, from which they deduce that none
of them paid for the dinner, so it must have been their employer.
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Figure 5. The above quantum circuit simulates the SQDCP protocol corresponding to the case where
Alice paid for the dinner, as outlined in Example 2.
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Figure 6. Some of the possible measurements and their corresponding probabilities for the circuit in
Figure 5.
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Figure 7. The above quantum circuit simulates the SQDCP protocol corresponding to the case where
none of the four cryptographers paid for the dinner, as outlined in Example 2.
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Figure 8. Some of the possible outcomes and their corresponding probabilities for the circuit in Figure 7.

5. Discussion and Conclusions

This work introduces the novel entanglement-based SQDCP protocol for solving the
Dining Cryptographers problem. The proposed protocol relies on maximally entangled
|GHZn⟩ tuples to achieve its goal. The main incentive was to offer scalability in terms of
both the number of cryptographers n and the amount of anonymous information it conveys,
measured by the number m of qubits contained in each quantum register. The number of
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cryptographers n can be any large positive integer. In addition to scalability in the number
of participants, our protocol can seamlessly scale in terms of the amount of anonymous
information it transmits. Originally, the Dining Cryptographers problem involved only
one bit of information, namely, whether one of the cryptographers paid for the dinner. In
the proposed SQDCP protocol, the number m of qubits in each register can also be any
arbitrarily large positive integer. This number reflects the amount of information that can
be transmitted. For instance, the cryptographer who actually paid the bill may also disclose
how much it cost or when the arrangement was made, etc.

Another noteworthy feature of the protocol introduced in this work is its ability to
address both a localized and distributed version of the Dining Cryptographers problem.
The localized scenario involves all cryptographers being together at the same spatial
location, i.e., at the same restaurant, at a specific point in time. The distributed scenario
involves cryptographers being in different spatial locations but having dinner at the same
time virtually.

We give a comparative assessment of the SQDCP protocol with respect to previous
protocols designed to solve the same problem in Table 1. The comparison emphasizes
some of the most important qualitative and quantitative traits of the protocols. The results
contained in Table 1 corroborate the novelties incorporated in the SQDCP protocol.

Table 1. Comparison between SQDCP and previous similar quantum protocols.

EPR GHZ Gilbert
Varshamov

Single
Particle Cryptographers Information Auxiliary

Players
Auxiliary

Bits

[4] ✓ 3 1 bit

[5] ✓ 3 1 bit

[6] ✓ ✓ Arbitrary 1 bit

[11] ✓ 3 1 bit 1 bit

[12] ✓ 3 1 bit 1 bit

[13] ✓ Arbitrary 1 bit

[14] ✓ ✓ Arbitrary 1 bit +2

[28] ✓ Arbitrary 1 bit

[15] ✓ Arbitrary Arbitrary

SQDCP ✓ Arbitrary Arbitrary

Finally, in terms of the actual implementation of the protocol, we point out that all
cryptographers employ private quantum circuits that are identical. This achieves a com-
pletely modular quantum system, with all distinct modules being the same. Furthermore,
each private quantum circuit utilizes only the ubiquitous Hadamard and CNOT quantum
gates, making them easily implemented on contemporary quantum computers.
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